	His	story	
Туре	Author	Citation	Literature Cutoff Date
Full Evaluation	F. G. Kondev, S. Lalkovski	NDS 112, 707 (2011)	1-Aug-2010

Parent: ²⁰⁷At: E=0; J^{π}=9/2⁻; T_{1/2}=1.81 h 3; Q(ε)=3903 22; % ε +% β ⁺ decay=91.4 10

1981Ch38,1981Ch39: Source produced in bombardment of 660-MeV protons on ²³²Th target; chemical extraction of At from Th with subsequent mass separation of At isotopes. Detectors:Ge(Li) and Si(Li); Measured: Εγ, Ιγ, Ice, γγ coin., ce-γ coin. Other: 1970Jo20.

²⁰⁷Po Levels

The previous evaluator (1984Sc44) proposed 22 new levels based on $\gamma\gamma$, ce- γ coin and energy sums. All the levels proposed by 1971Jo20 and 1981Ch39 are accepted except for levels at 2734.2 and 3156.4 of 1971Jo20. The criterion for γ placement was an energy fit to within 2 standard deviations (except for a few multiply placed gammas). The ε decay to the low-lying (<2.5 MeV) levels in ²⁰⁷Po resembles the ²⁰⁵Bi ε decay to Pb; however, the log *ft*'s in ²⁰⁷Po are in general lower than the analogous transitions in ²⁰⁵Pb. Some of the low log *ft*'s for E≥2230 may be due to 2g9/2 and 1i11/2 n configuration fragments.

E(level) [†]	$J^{\pi \ddagger}$	T _{1/2} ‡	Comments
0	5/2-	5.80 h 2	
68.556 14	$1/2^{-}$	205 ns 10	
236.472 13	3/2-		
392.953 18	3/2-		
588.323 16	7/2-		
685.755 18	5/2-		
814.422 17	9/2-		
907.046 17	7/2-		
1115.071 <i>18</i>	$13/2^{+}$	49 µs 4	
1171.586 <i>19</i>	7/2-		
1225.600 17	5/2-		
1274.11 4	$13/2^{-}$		
1281.67 6	$(7/2, 9/2, 11/2)^{-}$		
1331.53? 8			E(level): ce- γ coin suggest that 1095 γ feeds the 236 level.
1383.15 7	19/2-	2.79 s 8	
1511.07 6	7/2-		
1548.21 4	$(7/2^{-}, 9/2^{-})$		
1582.191 18	9/2+		
16/6.65 4	7/2,9/2-		
1762.82 8	$(5/2^{-}, 7/2^{-})$		
17/3.455 19	11/2+		
1/81.// 4	(1/2,9/2)		
1908.8? 3	(9/21)		$ce-\gamma$ coin suggests that 1001 γ feeds the 236 or the 907 levels.
2016.347 0	212-512-712-		
2099.00 5	3/2, $3/2$, $1/2$		
2250.244 20	$9/2^{+}$		
2294.21 9	(9/2) $0/2^+$		
2303.301 19	9/2		
2393.40 0	$(0/2^+ 11/2^-)$		
2414.24 5	$(9/2^+,11/2^-)$		
2583 02 11	$(5/2^{-})$		
2641.40? 17	$(3/2^{-}, 5/2^{-})$		
2827.68.4	$9/2^+, 11/2^+$		
2845.88 4	$(9/2^+, 11/2^+)$		
2860.42 6	$9/2^+.11/2$		
2870.99 11	$(7/2^{-}, 9/2^{-}, 11/2^{-})$		

From ENSDF

²⁰⁷At ε decay **1981Ch38,1981Ch39** (continued)

²⁰⁷Po Levels (continued)

E(level) [†]	$J^{\pi \ddagger}$	E(level) [†]	$J^{\pi \ddagger}$	E(level) [†]	$J^{\pi \ddagger}$	E(level) [†]	$\mathrm{J}^{\pi \ddagger}$
2887.94 6	(9/2)	3080.12 9		3272.58 7	(7/2, 9/2)	3449.87 8	$(7/2^{-}, 9/2^{-})$
2958.09 5	$(7/2^-, 9/2^-)$	3095.97? 12	$(7/2^+, 9/2^+)$	3300.90 6	(9/2)	3457.87 7	(9/2)
2961.91 10		3179.37 8	$(9/2^+)$	3380.46 10			
3036.98? 11	$(5/2^+)$	3245.68 8	$(5/2^+, 7/2)$	3442.60 15			

[†] From a least-squares fit to the $E\gamma$.

[‡] From Adopted Levels.

ε, β^+ radiations

I_γ normalization: From the requirement that $\Sigma \operatorname{Ti}(\gamma' \text{s to g.s.})=100$ and that there is no direct feeding to the g.s.. From log *ft*>12.8 expected for the 9/2⁻ to 5/2⁻ $\varepsilon + \beta^+$ transition to the g.s., one gets I($\varepsilon + \beta^+$ to g.s.)<8×10⁻⁵%.

 $I(\beta^+) \approx 1.2\%$ from $\gamma^{\pm} (I(\gamma^{\pm})/I(814\gamma)) = 0.059$ 7 (1981Ch38). The decay scheme gives $I(\beta^+) = 1.4\%$ 2.

E(decay)	E(level)	Ιβ ^{+ ‡}	$I\varepsilon^{\ddagger}$	Log ft	$I(\varepsilon + \beta^+)^{\dagger \ddagger}$	Comments
(445 22)	3457.87		1.58 9	6.37 6	1.58 9	εK=0.738 5; εL=0.194 4; εM+=0.0677 14
(602 22)	3300.90		2.55 14	6.47 5	2.55 14	εK=0.7601 23; εL=0.1786 16; εM+=0.0613 7
(945 22)	2958.09		2.87 20	6.85 4	2.87 20	εK=0.7798 8; εL=0.1645 6; εM+=0.05563 23
(1015 22)	2887.94		2.33 14	7.01 4	2.33 14	εK=0.7821 7; εL=0.1629 5; εM+=0.05499 19
(1043 22)	2860.42		1.25 8	7.31 4	1.25 8	εK=0.7829 7; εL=0.1624 5; εM+=0.05477 18
(1057 22)	2845.88		4.3 <i>3</i>	6.78 4	4.3 3	εK=0.7832 6; εL=0.1621 5; εM+=0.05465 18
(1075 22)	2827.68		3.38 18	6.90 4	3.38 18	εK=0.7837 6; εL=0.1618 5; εM+=0.05451 17
(1489 22)	2414.24		1.69 22	7.51 6	1.69 22	εK=0.7909 3; εL=0.15635 22; εM+=0.05234 9
(1600 22)	2303.301	0.019 3	19.1 9	6.52 3	19.1 9	av Eβ=283.2 99; εK=0.7917 2; εL=0.15533 20; εM+=0.05193 8
(1609 22)	2294.21	0.00122 21	1.14 8	7.75 4	1.14 8	av Eβ=287.3 99; εK=0.7918 2; εL=0.15524 20; εM+=0.05190 8
(1673 22)	2230.244	0.020 3	12.4 7	6.75 3	12.4 7	av Eβ=315.7 98; εK=0.7920; εL=0.15469 19; εM+=0.05168 8
(2121 22)	1781.77	0.0126 13	1.12 9	8.01 4	1.13 9	av Eβ=512.8 97; εK=0.7879 5; εL=0.15076 22; εM+=0.05021 8
(2226 22)	1676.65	0.0260 17	1.68 2	7.872 14	1.71 23	av Eβ=558.7 96; εK=0.7852 7; εL=0.14972 23; εM+=0.04983 9
(2321 22)	1582.191	< 0.022	<1.1	>8.1	<1.1	av Eβ=600.0 96; εK=0.7822 8; εL=0.14871 25; εM+=0.04947 9
(2392 22)	1511.07	0.037 3	1.54 12	7.97 4	1.58 12	av Eβ=631.0 97; εK=0.7796 9; εL=0.1479 3; εM+=0.04919 9
(2621 22)	1281.67	0.060 8	1.52 19	8.06 6	1.58 20	av Eβ=731.3 97; εK=0.7686 13; εL=0.1450 3; εM+=0.04817 11
(2731 22)	1171.586	0.056 14	1.1 3	8.22 11	1.2 3	av Eβ=779.5 97; εK=0.7621 15; εL=0.1434 4; εM+=0.04763 12
(2788 22)	1115.071	0.11 3	7.2 21	8.89 ¹ <i>u</i> 13	7.3 21	av Eβ=798.6 92; εK=0.7779 4; εL=0.15504 22; εM+=0.05199 9
(2996 22)	907.046	0.27 6	3.4 7	7.83 10	3.7 8	av Eβ=895.7 97; εK=0.7429 18; εL=0.1391 4; εM+=0.04615 14
(3089 [#] 22)	814.422	<0.2	<3	>8.0	<3	av Eβ=936.4 97; εK=0.7351 20; εL=0.1374 5; εM+=0.04558 14
(3315 22)	588.323	0.69 13	5.6 11	7.71 9	6.3 12	av Eβ=1036.1 98; εK=0.7137 23; εL=0.1329 5; εM+=0.04408 16

207 At ε decay 1981Ch38,1981Ch39 (continued)

ε, β^+ radiations (continued)

[†] From the I(γ +ce) intensity balance at each level. Since there is an unplaced γ +ce intensity of \approx 13%, only branches >1% are shown.
[‡] For absolute intensity per 100 decays, multiply by 0.914 *10*.
[#] Existence of this branch is questionable.

 $\gamma(^{207}\text{Po})$

 $K\alpha_1 \ge ray/I(814\gamma) = 1.176$, $K\alpha_2 \ge ray/I(814\gamma) = 0.667$ (1981Ch38). Other: $K\alpha_1 \ge ray/I(814\gamma) = 1.4010$ (1971Jo20). $K\alpha_1 \ge ray/I(814\gamma) = 0.937$ and $K\alpha_2 \ge ray/I(814\gamma) = 0.564$ from the decay scheme.

1981Ch38 did not observe the 422.2 and 960.6 γ 's reported by 1971Jo20. They are probably due to a ²⁰²Bi impurity. A 994.0 γ with I γ =50 20 reported by 1971Jo20 and placed from the 1582 level is not included here. Not confirmed by 1981Ch38, and the I γ for placement from the 1582 level is inconsistent with the ce- γ coin data of 1981Ch38.

For gammas of doubtful assignment to ²⁰⁷At, see 1981Ch38.

E_{γ}^{\ddagger}	I_{γ} [‡] <i>g</i>	E_i (level)	\mathbf{J}_i^{π}	$\mathbf{E}_f \mathbf{J}_f^{\pi}$	Mult. [@]	$\delta^{\&}$	α^{\dagger}	$I_{(\gamma+ce)}$ #g	Comments
^x 43.7 1					M1+E2	0.35 25	6.×10 ¹ 6	1.3 8	$ce(L)/(\gamma+ce)=0.75; ce(M)/(\gamma+ce)=0.1921; ce(N+)/(\gamma+ce)=0.06$
^x 45.8 <i>I</i>								0.9 2	$ce(N)/(\gamma+ce)=0.05 6; ce(O)/(\gamma+ce)=0.009 12; ce(P)/(\gamma+ce)=0.0010 11$
^x 48.28 4	0.36 7				M1(+E2)	0.06 6	18.4 22	7.6 8	$\begin{array}{l} {\rm ce}(L)/(\gamma+{\rm ce}){=}0.72\ 6;\ {\rm ce}(M)/(\gamma+{\rm ce}){=}0.17\ 3;\\ {\rm ce}(N+)/(\gamma+{\rm ce}){=}0.055\ 9\\ {\rm ce}(N)/(\gamma+{\rm ce}){=}0.044\ 8;\ {\rm ce}(O)/(\gamma+{\rm ce}){=}0.0092\ 15;\\ {\rm ce}(P)/(\gamma+{\rm ce}){=}0.00117\ 17\\ {\rm E}_{\gamma}:\ {\rm Placed\ from\ the\ 1274\ level\ by\ 1984Sc44;\ however,}\\ {\rm ce}(L)(48\gamma)\ {\rm coin\ with\ the\ 459\gamma\ requires\ placement\ below\ the}\\ 1225\ {\rm level\ or\ above\ the\ 1274\ level,\ and\ mult\ is\ inconsistent}\\ {\rm with\ the\ revised\ J}^{\pi}(1274). \end{array}$
^x 56.8 1					(M1+E2)		6.×10 ¹ 5	7.2 12	$ce(L)/(\gamma+ce)=0.75; ce(M)/(\gamma+ce)=0.1920; ce(N+)/(\gamma+ce)=0.067$ $ce(N)/(\gamma+ce)=0.056; ce(O)/(\gamma+ce)=0.00911;$ $ce(P)/(\gamma+ce)=0.000910$ Mult.: L subshell ratios are inconsistent with any multipolarity.
^x 63.87 2	0.53 9				M1(+E2)		33 25	7.69	ce(L)/(γ+ce)=0.7 4; ce(M)/(γ+ce)=0.19 19; ce(N+)/(γ+ce)=0.06 6 ce(N)/(γ+ce)=0.05 5; ce(O)/(γ+ce)=0.009 10; ce(P)/(γ+ce)=0.0009 9 E _γ : Placed by 1984Sc44 from the 2294 level; however, the absence of coin between ce(L)(63γ) and the strong 456, 648, and 1115γ's deexciting the 2230 level argue against this placement.
x65.2 3					M1(+E2)	0.35 25	12 7	2.7 4	$ce(L)/(\gamma+ce)=0.7 3; ce(M)/(\gamma+ce)=0.17 13; ce(N+)/(\gamma+ce)=0.05 5$ $ce(N)/(\gamma+ce)=0.04 4; ce(O)/(\gamma+ce)=0.009 7; ce(P)/(\gamma+ce)=0.0010 7$
68.55 2	3.1 3	68.556	1/2-	0 5/2-	E2		41.0		$\begin{aligned} &\alpha(L)=30.4 \ 5; \ \alpha(M)=8.11 \ 12; \ \alpha(N+)=2.50 \ 4 \\ &\alpha(N)=2.08 \ 3; \ \alpha(O)=0.393 \ 6; \ \alpha(P)=0.0348 \ 5 \\ &\text{Mult.:} \ L1/L2=0.06 \ \text{and} \ L2/L3=1.09 \ (1981\text{Ch38}); \ \text{Other:} \\ &L1:L2:L3=<0.05:1.17 \ 5: \ 1 \ (1970\text{Jo20}). \end{aligned}$

					²⁰⁷ A	tε decay	1981Ch38	,1981Ch39 (c	continued)	
						2	v(²⁰⁷ Po) (co	ntinued)		
${\rm E}_{\gamma}$ ‡	$I_{\gamma}^{\ddagger g}$	E _i (level)	\mathbf{J}_i^π	E_{f}	\mathbf{J}_f^{π}	Mult. [@]	δ ^{&}	α^{\dagger}	$I_{(\gamma+ce)}$ #g	Comments
^x 69 40 3	2612								8715	I _γ : From Ice(L)=95 and $ε$ L(exp)=30.42 (1981Ch38). Iγ(exp)=4.8 24 (1981Ch38).
^x 97.27 4	0.64 6					M1+E2	0.87 6	10.34 20	2.74 18	$\begin{array}{l} ce(K)/(\gamma+ce)=0.501 \ 15; \ ce(L)/(\gamma+ce)=0.307 \ 10; \\ ce(M)/(\gamma+ce)=0.079 \ 4; \ ce(N+)/(\gamma+ce)=0.0247 \ 12 \\ ce(N)/(\gamma+ce)=0.0203 \ 10; \ ce(O)/(\gamma+ce)=0.00396 \\ 19; \ ce(P)/(\gamma+ce)=0.000399 \ 15 \end{array}$
97.27 4	0.64 6	685.755	5/2-	588.323	7/2-	M1+E2	0.71 8	10.70 25		α(K) = 6.6 5; α(L) = 3.09 21; α(M) = 0.79 6; α(N+) = 0.247 18 α(N) = 0.203 15; α(O) = 0.040 3; α(P) = 0.00415 21 Eγ: Transition placed by the evaluators based on level energy differences and required Mult. Mult.: From α(L1)exp=0.61 12, α(L2)exp=1.3 2 and α(L3)exp=0.56 11 (1981Ch38)
109.1	< 0.03	1383.15	19/2-	1274.11	13/2-	M3		453		$\alpha(K) = 82.9 \ 12; \ \alpha(L) = 265 \ 4; \ \alpha(M) = 79.5 \ 12; \alpha(N+) = 25.8 \ 4 \alpha(N) = 21.2 \ 3; \ \alpha(O) = 4.18 \ 6; \ \alpha(P) = 0.430 \ 6 E \ L = 1.2 \ 3; \ \alpha(O) = 4.18 \ 6; \ \alpha(P) = 0.430 \ 6 $
x121.03 3	3.5 3								18.7 <i>15</i>	E_{γ}, I_{γ} : From adopted gammas. E_{γ} : ce(K)(121 γ)(2342 γ) (1981Ch38) suggests placement of the 121 γ above the 3458 level, if the placement of the 2342 γ as feeding the 1115 isomer is correct.
130 ^{<i>b</i>}	<1	814.422	9/2-	685.755	5/2-	[E2]		2.41		$\alpha(K)=0.375 \ 6; \ \alpha(L)=1.511 \ 22; \ \alpha(M)=0.403 \ 6; \ \alpha(N+)=0.1247 \ 18 \ \alpha(N)=0.1022 \ 5; \ \alpha(D)=0.0107 \ 3; \ \alpha(D)=0.00170 \ 3; \ \alpha(D)=0.00$
156.54 5	1.8 <i>3</i>	392.953	3/2-	236.472	3/2-	[M1]		3.10		$\alpha(N)=0.1032 \ 15, \ \alpha(O)=0.0197 \ 5, \ \alpha(I)=0.00179 \ 5$ $\alpha(K)=2.52 \ 4; \ \alpha(L)=0.445 \ 7; \ \alpha(M)=0.1049 \ 15; \ \alpha(N+)=0.0334 \ 5$ $\alpha(N)=0.0270 \ 4; \ \alpha(O)=0.00565 \ 8; \ \alpha(P)=0.000730 \ 11$ Placed by 1984Sc44 on the basis of energy fit and ce- γ coin of 1981Ch38.
^x 163.88 <i>4</i> 167.900 <i>20</i>	4.4 <i>11</i> 22.5 <i>12</i>	236.472	3/2-	68.556	1/2-	M1(+E2)	0.08 8	2.53 5	13.9 14	$\alpha(K)=2.05 5; \alpha(L)=0.365 6; \alpha(M)=0.0863 15; \alpha(N+)=0.0274 5$ $\alpha(N)=0.0222 4; \alpha(O)=0.00464 8; \alpha(P)=0.000598 9$ Mult.: From K:L12:L3=47 5:8.6 10: \leq 0.60, L1/2 2-9.4 and $\alpha(K)$ exp=2 09 25 (1981Cb38)
^x 169.08 3 ^x 187.15 15	3.0 <i>3</i> 1.8 <i>6</i>					M1(+E2)	0.26 26	1.79 20	8.0 15	$ce(K)/(\gamma+ce)=0.51 4$; $ce(L)/(\gamma+ce)=0.097 7$; $ce(M)/(\gamma+ce)=0.0230 19$; $ce(N+)/(\gamma+ce)=0.0073 6$ $ce(N)/(\gamma+ce)=0.0059 5$; $ce(O)/(\gamma+ce)=0.00123 9$.
191.256 8	11.8 7	1773.455	11/2+	1582.191	9/2+	M1(+E2)	0.2 2	1.72 13		$\frac{(2.1)}{(\gamma + ce)} = 0.000156 \ 12$ $\alpha(K) = 1.38 \ 13; \ \alpha(L) = 0.253 \ 5; \ \alpha(M) = 0.0600 \ 16;$

S

²⁰⁷ At ε decay 1981Ch38,1981Ch39 (continued)											
						γ ⁽²⁰	⁷ Po) (contin	ued)			
	E_{γ}^{\ddagger}	$I_{\gamma}^{\ddagger g}$	E _i (level)	${ m J}^{\pi}_i$	E_{f}	${ m J}_f^\pi$	Mult. [@]	$\delta^{\&}$	α^{\dagger}	Comments	
										α (N+)=0.0191 5 α (N)=0.0154 4; α (O)=0.00322 6; α (P)=0.000411 10 Mult.: α (K)exp=1.41 17 (1981Ch38).	
	213.877 7 221.270 20	2.4 6 26.7 <i>15</i>	907.046	9/2* 7/2 ⁻	2016.34? 685.755	5/2-	M1+E2	0.26 24	1.12 12	$\alpha(K)=0.90 \ 12; \ \alpha(L)=0.166 \ 4; \ \alpha(M)=0.0395 \ 6; \ \alpha(N+)=0.01254 \ 19 \ \alpha(N)=0.01015 \ 15; \ \alpha(O)=0.00211 \ 4; \ \alpha(P)=0.000269 \ 13 \ Mult.; \ \alpha(K)exp=0.90 \ 11 \ (1981Ch38).$	
	233.58 ^{<i>f</i>} 5	2.9 6	1781.77	(7/2,9/2) ⁻	1548.21	(7/2 ⁻ ,9/2 ⁻)	M1(+E2)	0.4 4	0.91 <i>19</i>	$\alpha(K)=0.72 \ 18; \ \alpha(L)=0.140 \ 7; \ \alpha(M)=0.0335 \ 9; \ \alpha(N+)=0.0106 \ 4 \ \alpha(N)=0.00863 \ 23; \ \alpha(O)=0.00179 \ 8; \ \alpha(P)=0.000224 \ 23 \ N \ N \ N \ N \ N \ N \ N \ N \ N \ $	
	236.477 15	21.7 <i>13</i>	236.472	3/2-	0	5/2-	M1+E2	0.25 9	0.93 4	Mult.: $\alpha(K)\exp=0.77.79$ (1981Ch38). $\alpha(K)=0.75.4$; $\alpha(L)=0.1375.23$; $\alpha(M)=0.0326.5$; $\alpha(N+)=0.01036.16$ $\alpha(N)=0.00839.13$; $\alpha(O)=0.00175.3$; $\alpha(P)=0.000223.5$ Mult.: From K:L1:L2=17.4.18: \approx 3: \approx 0.4 and $\alpha(K)\exp=0.80.10$ (1981Ch38).	
	264.04 ^j 14 268.08 6	3.8 <i>10</i> 4.3 <i>4</i>	3300.90 1383.15	(9/2) 19/2 ⁻	3036.98? 1115.071	(5/2 ⁺) 13/2 ⁺	E3		1.169	$\alpha(K)=0.229 \ 4; \ \alpha(L)=0.692 \ 10; \ \alpha(M)=0.189 \ 3; \ \alpha(N+)=0.0593 \ 9 \ \alpha(N)=0.0490 \ 7; \ \alpha(O)=0.00945 \ 14; \ \alpha(P)=0.000897 \ 13 \ Mult : From adopted gammas$	
	278.8 ^{<i>f</i>} 3 ^{<i>x</i>} 286.84 4	≈3 6.7 5	3457.87	(9/2)	3179.37	(9/2+)				E _{γ} : Placed by 1984Sc44 from the 2303 level; however, the observed coin with ce(K)(167 γ)	
	292.816 25	8.1 7	685.755	5/2-	392.953	3/2-	M1(+E2)	0.6 3	0.43 8	argues against this placement. $\alpha(K)=0.34$ 7; $\alpha(L)=0.069$ 6; $\alpha(M)=0.0166$ 11; $\alpha(N+)=0.0053$ 4 $\alpha(N)=0.0043$ 3; $\alpha(O)=0.00088$ 7; $\alpha(P)=0.000109$ 12	
	300.648 13	287 14	1115.071	13/2+	814.422	9/2-	M2		1.84	Mult.: From α (K)exp=0.35 6 (1981Ch38). α (K)=1.371 20; α (L)=0.350 5; α (M)=0.0871 13; α (N+)=0.0279 4 α (N)=0.0226 4; α (O)=0.00470 7; α (P)=0.000589 9 Mult : From α (K)exp=1 37 9 α (L12)exp=0 32 3	
	324.408 20	17.8 12	392.953	3/2-	68.556	1/2-	M1(+E2)	0.2 2	0.40 4	α (L3)exp=0.022 2, α (M)exp=0.089 11 and L1/L2=7.5 (1981Ch38). α (K)=0.32 3; α (L)=0.057 3; α (M)=0.0135 6; α (N+)=0.00428 18 α (N)=0.00346 15; α (O)=0.00072 4; α (P)=9.3×10 ⁻⁵ 6 Mult.: From K/L12=8 3 and α (K)exp=0.33 4 (1981Ch38)	
	336.8 ^{<i>f</i>} 4	3.1 3	2099.00	3/2-,5/2-,7/2-	1762.82	(5/2 ⁻ ,7/2 ⁻)	M1+E2	0.6 3	0.29 6	$\alpha(K)=0.23 5; \alpha(L)=0.046 5; \alpha(M)=0.0110 10; \alpha(N+)=0.0035 3$	

From ENSDF

²⁰⁷Po₁₂₃-6

L

²⁰⁷₈₄Po₁₂₃-6

				20	07 At ε decay	1981Ch38,	1981Ch39 ((continued)	
					<u>)</u>	/(²⁰⁷ Po) (con	tinued)		
${\rm E_{\gamma}}^{\ddagger}$	$I_{\gamma}^{\ddagger g}$	E _i (level)	${ m J}^{\pi}_i$	E_{f}	\mathbf{J}_f^{π}	Mult. [@]	$\delta^{\&}$	α^{\dagger}	Comments
339.10 ^f 25	4.0 5	1511.07	7/2-	1171.586	7/2-	M1(+E2)	0.15 15	0.356 18	α (N)=0.00283 24; α (O)=0.00059 6; α (P)=7.3×10 ⁻⁵ 9 Mult.: α (K)exp=0.23 4 (1981Ch38). α (K)=0.289 16; α (L)=0.0508 16; α (M)=0.0120 4; α (N+)=0.00381 12 α (N)=0.00308 9; α (O)=0.000645 20; α (P)=8.3×10 ⁻⁵ 3
x343.5 ^b 10 357.153 15	60 4	1171.586	7/2-	814.422	9/2-	M1(+E2)	0.32 4	0.292 7	Mult.: $\alpha(K) = 0.3866$; $\alpha(L) = 0.04268$; $\alpha(M) = 0.0100718$; $\alpha(K) = 0.2366$; $\alpha(L) = 0.04268$; $\alpha(M) = 0.0100718$; $\alpha(N+) = 0.0032066$; $\alpha(O) = 0.00054110$; $\alpha(P) = 6.92 \times 10^{-5}$
×365.34 11	5.0 3					M1(+E2)	0.18 18	0.289 <i>19</i>	Mult.: From α (K)exp=0.26 2, α (L12)exp=0.063 14, α (M)exp=0.011 3 and L1/L2=7.5 (1981Ch38). α (K)=0.234 17; α (L)=0.0412 18; α (M)=0.0097 4; α (N+)=0.00309 13 α (N)=0.00250 10; α (O)=0.000523 23; α (P)=6.7×10 ⁻⁵ 4
373.14 ^f 8	9.1 10	2827.68	9/2+,11/2+	2454.63	(9/2+,11/2-)	(M1)		0.279	$\alpha(K)=0.227 \ 4; \ \alpha(L)=0.0395 \ 6; \ \alpha(M)=0.00931 \ 13; \ \alpha(N+)=0.00296 \ 5$
392.94 6	17.9 <i>14</i>	392.953	3/2-	0	5/2-	M1(+E2)	0.2 2	0.236 19	$\alpha(N)=0.00240 \ 4; \ \alpha(O)=0.000502 \ 7; \ \alpha(P)=6.49\times10^{-3} \ 9$ Mult.: $\alpha(K)\exp\approx0.0052 \ 13 \ (1981Ch38).$ $\alpha(K)=0.192 \ 17; \ \alpha(L)=0.0337 \ 19; \ \alpha(M)=0.0079 \ 4;$ $\alpha(N+)=0.00253 \ 13$ $\alpha(N)=0.00204 \ 11; \ \alpha(O)=0.000427 \ 23; \ \alpha(P)=5.5\times10^{-5} \ 4$
411.10 4	13.3 9	1225.600	5/2-	814.422	9/2-	E2		0.0523	Mult.: From K/L12=8.1 <i>18</i> and α (K)exp=0.22 <i>4</i> (1981Ch38). α (K)=0.0334 <i>5</i> ; α (L)=0.01414 <i>20</i> ; α (M)=0.00360 <i>5</i> ; α (N+)=0.001127 <i>16</i> α (N)=0.000925 <i>13</i> ; α (O)=0.000183 <i>3</i> ; α (P)=1.93×10 ⁻⁵ <i>3</i> Alternate placement from 2641 is possible based on E γ ; however, consideration of final spins populated by other transitions from that level makes placement from the 2641 level less probable. Mult.: α (K)exp≤0.19, α (L12)exp=0.065 <i>10</i> (1981Ch38).
x425.19 25 x432.96 10 438.5 ^{f j} 5 449.12 13	4.3 8 9.4 7 ≈2 4.8 4	3080.12 685.755	5/2-	2641.40? 236.472	(3/2 ⁻ ,5/2 ⁻) 3/2 ⁻	[M1]		0.1696	$\alpha(K)=0.1383\ 20;\ \alpha(L)=0.0239\ 4;\ \alpha(M)=0.00563\ 8;$ $\alpha(N+)=0.00179\ 3$

				continued)					
					<u> </u>	²⁰⁷ Po) (conti	nued)		
${\rm E_{\gamma}}^\ddagger$	Ι _γ ‡ <i>g</i>	E _i (level)	\mathbf{J}_i^π	E_f	J_f^π	Mult.@	δ ^{&}	α^{\dagger}	Comments
456.750 20	40 3	2230.244	9/2+	1773.455	11/2+	M1		0.1621	$ \begin{array}{c} \alpha(\mathrm{N}) = 0.001450 \ 21; \ \alpha(\mathrm{O}) = 0.000303 \ 5; \ \alpha(\mathrm{P}) = 3.92 \times 10^{-5} \\ 6 \\ \alpha(\mathrm{K}) = 0.1322 \ 19; \ \alpha(\mathrm{L}) = 0.0229 \ 4; \ \alpha(\mathrm{M}) = 0.00538 \ 8; \\ \alpha(\mathrm{N}_{+}) = 0.001713 \ 24 \\ \alpha(\mathrm{N}) = 0.001385 \ 20; \ \alpha(\mathrm{O}) = 0.000290 \ 4; \ \alpha(\mathrm{P}) = 3.75 \times 10^{-5} \\ \end{array} $
459.69 <i>3</i>	37.9 25	1274.11	13/2-	814.422	9/2-	E2		0.0394	⁶ Mult.: α (K)exp=0.148 <i>17</i> and α (L12)exp=0.018 <i>4</i> (1981Ch38). α (K)=0.0264 <i>4</i> ; α (L)=0.00977 <i>14</i> ; α (M)=0.00247 <i>4</i> ; α (N+)=0.000634 <i>9</i> ; α (O)=0.0001260 <i>18</i> ; α (P)=1.362×10 ⁻⁵ <i>19</i> Mult.: α (K)exp=0.029 <i>4</i> (1981Ch38). α (K)exp gives
467.116 <i>13</i>	160 <i>10</i>	1582.191	9/2+	1115.071	13/2+	E2		0.0379	E2(+M1) with δ≈6.2. The decay scheme requires ΔJ=2. α (K)=0.0255 4; α (L)=0.00928 13; α (M)=0.00234 4; α (N+)=0.000734 11 α (N)=0.000602 9; α (O)=0.0001197 17; α (P)=1.297×10 ⁻⁵ 19 Mult.: α (K)exp=0.036 5, α (L12)exp=0.0088 13, α (L3)exp=0.0022 5 and α (M)exp= 0.0023 5 (1981Ch38). α (K)exp gives E2(+M1) with δ >3.3. The decay endeme requires Δ I=2
473.04^{j} 25 487.96^{f} 8 x498 23 16	3.5 <i>5</i> 6.4 <i>12</i> 8 6 8	3300.90 3449.87	(9/2) (7/2 ⁻ ,9/2 ⁻)	2827.68 2961.91	9/2+,11/2+				The decay scheme requires $\Delta J=2$.
503.40 ^{<i>f</i>} 13	11 3	2958.09	(7/2 ⁻ ,9/2 ⁻)	2454.63	(9/2+,11/2-)	M1(+E2)	0.6 6	0.10 3	$\alpha(K)=0.08 \ 3; \ \alpha(L)=0.015 \ 4; \ \alpha(M)=0.0035 \ 8; \ \alpha(N+)=0.00112 \ 25 \ \alpha(N)=0.00091 \ 20; \ \alpha(O)=0.00019 \ 5; \ \alpha(P)=2.4\times10^{-5} \ 6$
514.7 9	8 1	907.046	7/2-	392.953	3/2-	[E2]		0.0300	Mult.: α (K)exp=0.008 3 (1981Ch38). α (K)=0.0209 3; α (L)=0.00684 11; α (M)=0.00172 3; α (N+)=0.000538 8 α (N)=0.000441 7; α (O)=8.81×10 ⁻⁵ 14; α (P)=9.72×10 ⁻⁶ 15
520.78 ^f 9	19.0 <i>13</i>	2294.21	(9/2)+	1773.455	11/2+	M1(+E2)	0.18 <i>18</i>	0.112 8	$\alpha(K)=0.091\ 7;\ \alpha(L)=0.0158\ 9;\ \alpha(M)=0.00372\ 19;\ \alpha(N+)=0.00118\ 6$ $\alpha(N)=0.00096\ 5;\ \alpha(O)=0.000200\ 11;\ \alpha(P)=2.58\times10^{-5}\ 15$ Mult is $\alpha(K)$ and $\alpha(L)=0.002\ 12$ and $\alpha(L)=0.010\ 2$
529.790 25	77 5	2303.301	9/2+	1773.455	11/2+	M1		0.1093	Mult. $\alpha(\mathbf{X}) = 0.095 \ 12$ and $\alpha(\mathbf{L}) = 20.019 \ 5$ (1981Ch38). $\alpha(\mathbf{K}) = 0.0892 \ 13; \ \alpha(\mathbf{L}) = 0.01536 \ 22; \ \alpha(\mathbf{M}) = 0.00361 \ 5; \ \alpha(\mathbf{N}+) = 0.001150 \ 16$

 ∞

²⁰⁷ At ε decay 1981Ch38,1981Ch39 (continued)										
					γ (²⁰⁷ I	Po) (continue	d)			
${\rm E_{\gamma}}^{\ddagger}$	$I_{\gamma}^{\ddagger g}$	E _i (level)	${ m J}^{\pi}_i$	E_f	\mathbf{J}_f^{π}	Mult.@	δ ^{&}	α^{\dagger}	Comments	
									α (N)=0.000930 <i>13</i> ; α (O)=0.000195 <i>3</i> ; α (P)=2.52×10 ⁻⁵ <i>4</i>	
x538.53 12 553.58 22	3.6 7 2.6 5	2230.244	9/2+	1676.65	7/2,9/2-					
562.10 [†] 20 583.34 3	1.6 5 49 <i>3</i>	3449.87 1171.586	(7/2 ⁻ ,9/2 ⁻) 7/2 ⁻	2887.94 588.323	(9/2) 7/2 ⁻	M1+E2	0.72 23	0.063 10	α (K)=0.051 8; α (L)=0.0094 11; α (M)=0.00224 25; α (N+)=0.00071 8 α (N)=0.00058 7; α (O)=0.000120 14; α (N)=1.52×10 ⁻⁵ 10	
588.333 <i>23</i>	432 23	588.323	7/2-	0	5/2-	E2+M1	2.7 +11-6	0.029 4	Mult.: $\alpha(K) \exp=0.051 7$ (1981Ch38). $\alpha(K)=0.022 4$; $\alpha(L)=0.0054 5$; $\alpha(M)=0.00133$ 11 ; $\alpha(N+)=0.00042 4$ $\alpha(N)=0.00034 3$; $\alpha(O)=7.0\times10^{-5} 6$; $\alpha(P)=8.2\times10^{-6} 8$ Mult.: From K/L12=4.7 8 and $\alpha(K) \exp=0.022$ 3 (1981Ch38).	
$x599^{b}$ 1 603.8 ^f 5	8.0 16	1511.07	7/2-	907.046	7/2-	M1(+E2)	0.6 6	0.062 19	α (K)=0.050 <i>16</i> ; α (L)=0.0091 <i>22</i> ; α (M)=0.0022 <i>5</i> ; α (N+)=0.00068 <i>16</i> α (N)=0.00055 <i>13</i> ; α (O)=0.00012 <i>3</i> ; α (P)=1.5×10 ⁻⁵ <i>4</i>	
617.20 4	40.5 24	685.755	5/2-	68.556	1/2-	E2		0.0198	Mult.: α (K)exp=0.050 <i>14</i> from 1981Ch38. α (K)=0.01450 <i>21</i> ; α (L)=0.00401 <i>6</i> ; α (M)=0.000992 <i>14</i> ; α (N+)=0.000312 <i>5</i> α (N)=0.000255 <i>4</i> ; α (O)=5.14×10 ⁻⁵ <i>8</i> ; α (P)=5.85×10 ⁻⁶ <i>9</i>	
626.77 4	43.0 25	2303.301	9/2+	1676.65	7/2,9/2-				Mult.: From α (K)exp=0.017 3 (1981Ch38). Mult.: α (K)exp=0.013 2 (1981Ch38) consistent with mult=M1+E2 with δ >5 or	
637.270 20	56 5	1225.600	5/2-	588.323	7/2-	M1(+E2)	0.2 2	0.065 5	with E1+M2 with σ =0.24 4. $\alpha(K)$ =0.053 5; $\alpha(L)$ =0.0092 6; $\alpha(M)$ =0.00216 14; $\alpha(N+)$ =0.00069 5 $\alpha(N)$ =0.00056 4; $\alpha(O)$ =0.000116 8; $\alpha(P)$ =1.50×10 ⁻⁵ 11 Mult.: $\alpha(K)$ exp=0.055 8, $\alpha(L12)$ exp=0.0098 18 (1981Ch38).	
641.00 ^{ie} 7 641.00 ^{ie} fj7	$12^{i} 4$	2414.24	$(9/2^+, 11/2^-)$ $(7/2^-, 9/2^-, 11/2^-)$	1773.455	$\frac{11}{2^+}$					
648.095 20	\\ 96 7	2230.244	(1/2, ,7/2, ,11/2) 9/2 ⁺	1582.191	9/2 ⁺	M1		0.0642	$\begin{aligned} &\alpha(\text{K}) = 0.0525 \ 8; \ \alpha(\text{L}) = 0.00899 \ 13; \\ &\alpha(\text{M}) = 0.00211 \ 3; \ \alpha(\text{N}+) = 0.000672 \ 10 \\ &\alpha(\text{N}) = 0.000544 \ 8; \ \alpha(\text{O}) = 0.0001138 \ 16; \\ &\alpha(\text{P}) = 1.474 \times 10^{-5} \ 21 \\ &\text{Mult.:} \ \alpha(\text{K}) \text{exp} = 0.054 \ 8 \ (1981\text{Ch38}). \end{aligned}$	

From ENSDF

²⁰⁷₈₄Po₁₂₃-9

					γ (²⁰⁷ P	o) (continue	ed)		
${\rm E_{\gamma}}^{\ddagger}$	$I_{\gamma}^{\ddagger g}$	E _i (level)	${ m J}^{\pi}_i$	E_f	J_f^π	Mult. [@]	δ ^{&}	α^{\dagger}	Comments
658.40 <i>15</i>	144 16	1773.455	11/2+	1115.071	13/2+	M1+E2	1.1 4	0.037 10	$\begin{aligned} \alpha(\mathbf{K}) = 0.030 \ 9; \ \alpha(\mathbf{L}) = 0.0057 \ 12; \ \alpha(\mathbf{M}) = 0.0014 \ 3; \\ \alpha(\mathbf{N}+) = 0.00043 \ 9 \\ \alpha(\mathbf{N}) = 0.00035 \ 7; \ \alpha(\mathbf{O}) = 7.3 \times 10^{-5} \ 15; \\ \alpha(\mathbf{P}) = 9.1 \times 10^{-6} \ 21 \end{aligned}$
670.41 7	84 8	907.046	7/2-	236.472	3/2-	E2		0.01655	Mult.: $\alpha(K)\exp=0.030\ 6\ (1981Ch38)$. $\alpha(K)=0.01233\ 18;\ \alpha(L)=0.00319\ 5;\ \alpha(M)=0.000785$ $11;\ \alpha(N+)=0.000247\ 4$ $\alpha(N)=0.000202\ 3;\ \alpha(O)=4.08\times10^{-5}\ 6;$ $\alpha(P)=4.71\times10^{-6}\ 7$ Mult.: $\alpha(K)\exp=0.000\ 2\ (1081Ch28)$
675.154 <i>23</i>	152 10	1582.191	9/2+	907.046	7/2-	E1		0.00563 8	Mult.: α (K)exp=0.009 5 (1981Ch38). α =0.00563 8; α (K)=0.00466 7; α (L)=0.000745 11; α (M)=0.0001736 25; α (N+)=5.48×10 ⁻⁵ 8 α (N)=4.44×10 ⁻⁵ 7; α (O)=9.21×10 ⁻⁶ 13; α (P)=1.160×10 ⁻⁶ 17 Mult.: α (K)exp=0.0041 8 (1981Ch38).
681.80 <i>14</i> 686.0 <i>10</i>	1.50 20 ≈45 ^c	3095.97? 685.755	(7/2 ⁺ ,9/2 ⁺) 5/2 ⁻	2414.24 0	(9/2 ⁺ ,11/2 ⁻) 5/2 ⁻	[M1]		0.0554	$\alpha(K)=0.0452 \ 7; \ \alpha(L)=0.00773 \ 12; \ \alpha(M)=0.00182 \ 3; \\ \alpha(N+)=0.000578 \ 9 \\ \alpha(N)=0.000468 \ 7; \ \alpha(O)=9.79\times10^{-5} \ 15; \\ \alpha(P)=1.268\times10^{-5} \ 19$
693.33 ^{<i>f</i>} 6	58 <i>4</i>	1281.67	(7/2,9/2,11/2) ⁻	588.323	7/2-	E2+M1	4.6 3	0.0171 4	$\alpha(K)=0.0130 \ 3; \ \alpha(L)=0.00312 \ 6; \ \alpha(M)=0.000763 \ 13; \ \alpha(N+)=0.000240 \ 4$ $\alpha(N)=0.000196 \ 4; \ \alpha(O)=3.98\times10^{-5} \ 7; \ \alpha(P)=4.68\times10^{-6} \ 9$ $E_{\gamma}: \ \gamma\gamma \ \text{coin indicate that the 693}\gamma \ \text{feeds the 588} \ \text{level; however, the ce-}\gamma \ \text{coin results of 1981Ch38} \ \text{suggest that the 693}\gamma \ \text{feeds the 393 level. No} \ \text{placement is suggested by 1981Ch38 for this intense } \gamma. \ \text{The ce-}\gamma \ \text{coin results of 1981Ch38} \ \text{appear to be inconsistent with the } \gamma-\gamma \ \text{coin of 1971Jo20 and our decay scheme.}$ Mult.: $\alpha(K)\exp=0.013 \ 2 \ \text{from 1981Ch38}, \ \alpha(K)\exp=0.044 \ 11 \ \text{from 1971Jo20}$
721.14 <i>4</i>	9.3	2303.301	9/2+	1582.191	9/2+	M1		0.0486	$\begin{aligned} &\alpha(K)=0.0397\ 6;\ \alpha(L)=0.00678\ 10;\ \alpha(M)=0.001593\\ &23;\ \alpha(N+)=0.000507\ 7\\ &\alpha(N)=0.000410\ 6;\ \alpha(O)=8.58\times10^{-5}\ 12;\\ &\alpha(P)=1.112\times10^{-5}\ 16\\ &\text{Mult.:}\ \alpha(K)\exp=0.046\ 8 \text{ and } \alpha(L12)\exp=0.0092\ 16\\ &(1981\text{Ch38}). \end{aligned}$
755.08 ^{<i>f</i>} 9	11.1 9	2303.301	9/2+	1548.21	(7/2 ⁻ ,9/2 ⁻)	[E1]		0.00455 7	α =0.00455 7; α (K)=0.00377 6; α (L)=0.000597 9; α (M)=0.0001390 20; α (N+)=4.39×10 ⁻⁵ 7

			2	07 At ε deca	y 1981Ch38 ,1	1981Ch39 (continued)	
					$\gamma(^{207}\text{Po})$ (cont	tinued)		
${\rm E_{\gamma}}^{\ddagger}$	$I_{\gamma}^{\ddagger g}$	E _i (level)	J_i^π	E_f	${ m J}_f^\pi$	Mult. [@]	α^{\dagger}	Comments
,								$\alpha(N)=3.56\times10^{-5} 5; \alpha(O)=7.39\times10^{-6} 11; \alpha(P)=9.34\times10^{-7} 13$
$x760.8^{b}$ 10	≤1.5 12.8 0	2170 27	$(0/2^{+})$	2414.24	$(0/2 \pm 11/2 \pm 1)$			
768.3 3	11.2 7	1582.191	(9/2 ⁺) 9/2 ⁺	814.422	(9/2 ,11/2) 9/2 ⁻	[E1]	0.00440 7	$\alpha = 0.00440 \ 7; \ \alpha(K) = 0.00365 \ 6; \ \alpha(L) = 0.000578 \ 8;$ $\alpha(M) = 0.0001344 \ 19; \ \alpha(N+) = 4.25 \times 10^{-5} \ 6$ $\alpha(N) = 3.44 \times 10^{-5} \ 5; \ \alpha(O) = 7.14 \times 10^{-6} \ 10;$ $\alpha(P) = 9.04 \times 10^{-7} \ 13$
772.20 ^f 15	9.0 6	2870.99	(7/2 ⁻ ,9/2 ⁻ ,11/2 ⁻)	2099.00	3/2-,5/2-,7/2-			
$789.54^{f} 25$	5.0 6	2887.94	(9/2)	2099.00	3/2-,5/2-,7/2-			
^x 798.20 12	5.4 6	1908.8?	(9/2+)	1115.071	13/2+			
814.41 <i>3</i>	1000 50	814.422	9/2-	0	5/2-	E2	0.01104	$\alpha(K)=0.00850 \ 12; \ \alpha(L)=0.00192 \ 3; \ \alpha(M)=0.000467 \ 7; \ \alpha(N+)=0.0001474 \ 21 \ \alpha(N)=0.0001200 \ 17; \ \alpha(O)=2.45\times10^{-5} \ 4; \ \alpha(P)=2.91\times10^{-6} \ 4 \ Mult.: \ From \ \alpha(K)exp=0.0085 \ 6, \ \alpha(L1)exp=0.00184 \ 22 \ and \ L1/L_{2>2.6} \ (1981Ch38).$
820.50 ^f 15	12.0 <i>16</i>	2583.02	(5/2 ⁻)	1762.82	(5/2 ⁻ ,7/2 ⁻)	[M1]	0.0347	$\alpha(K)=0.0284 \ 4; \ \alpha(L)=0.00483 \ 7; \ \alpha(M)=0.001134 \ 16; \\ \alpha(N+)=0.000361 \ 5 \\ \alpha(N)=0.000292 \ 4; \ \alpha(O)=6.11\times10^{-5} \ 9; \\ \alpha(D)=7.02010^{-6} \ 11 \\ \alpha(D)=7.02010^{$
x833.06 10	10.6 15							$\alpha(r) = 7.92 \times 10^{-11} r$ E_{γ} : ce- γ coin suggest that this γ could be a doublet, part of I γ may deexcite the 1225 level.
^x 838 ^b 1 ^x 847.55 17	6.7 12					M1	0.0319	$\alpha(K)=0.0261 \ 4; \ \alpha(L)=0.00443 \ 7; \ \alpha(M)=0.001042 \ 15; \ \alpha(N+)=0.000331 \ 5 \ \alpha(N)=0.000268 \ 4; \ \alpha(O)=5.61\times10^{-5} \ 8; \ \alpha(P)=7.27\times10^{-6} \ 11$
852.46 ^f 16	5.5 5	3245.68	(5/2+,7/2)	2393.48				
862.46^{haf} 5	16.0^{h} 11	1548.21	(7/2 ⁻ ,9/2 ⁻)	685.755	5/2-			
862.46 ^{may} 5 865.3 4	16.0" 11 5.0 6	1676.65 3095.97?	(7/2 ⁺ ,9/2 ⁺)	814.422 2230.244	9/2 9/2 ⁺	(M1)	0.0302	$\alpha(K)=0.0247 \ 4; \ \alpha(L)=0.00420 \ 6; \ \alpha(M)=0.000986 \ 14; \ \alpha(N+)=0.000314 \ 5 \ \alpha(N)=0.000254 \ 4; \ \alpha(O)=5.32\times10^{-5} \ 8; \ \alpha(D)=6 \ 80\times10^{-6} \ 10$
^x 880.92 4	24.5 18							E_{γ} : Placed by 1984Sc44 from the 1274 level, on the basis of energy fit; however, this placement is not consistent with the in hear level scheme.
^x 893.34 23	7.9 9							consistent with the in-ocalli level scheme.

²⁰⁷₈₄Po₁₂₃-11

				²⁰⁷ A	It ε decay 198	1Ch38,1981	C h39 (c	ontinued)	
					$\gamma(^{207}]$	Po) (continue	d)		
${\rm E_{\gamma}}^{\ddagger}$	$I_{\gamma}^{\ddagger g}$	E _i (level)	\mathbf{J}_i^{π}	E_f	${ m J}_f^\pi$	Mult. [@]	δ ^{&}	α^{\dagger}	Comments
907.08 3	149 9	907.046	7/2-	0	5/2-	M1(+E2)	≤0.5	0.0250 19	$\begin{aligned} &\alpha(\mathrm{K}) = 0.0204 \ 16; \ \alpha(\mathrm{L}) = 0.00349 \ 23; \ \alpha(\mathrm{M}) = 0.00082 \\ &6; \ \alpha(\mathrm{N}+) = 0.000261 \ 17 \\ &\alpha(\mathrm{N}) = 0.000211 \ 14; \ \alpha(\mathrm{O}) = 4.4 \times 10^{-5} \ 3; \\ &\alpha(\mathrm{P}) = 5.7 \times 10^{-6} \ 4 \\ &\mathrm{Mult.:} \ \alpha(\mathrm{K}) \mathrm{exp} = 0.021 \ 4 \ \mathrm{and} \ \mathrm{EL12} = 0.0043 \ 9 \\ &(1981 \mathrm{Ch38}). \end{aligned}$
934.6 ^{<i>f</i>} 3	8.67 ≈2	1171.586	7/2-	236.472	3/2-	[E2]		0.00839 12	α =0.00839 <i>12</i> ; α (K)=0.00658 <i>10</i> ; α (L)=0.001378 20; α (M)=0.000332 <i>5</i> ; α (N+)=0.0001049 α (N)=8.53×10 ⁻⁵ <i>12</i> ; α (O)=1.749×10 ⁻⁵ <i>25</i> ; α (P)=2.12×10 ⁻⁶ <i>3</i>
^x 948.37 10	15.0 12								E_{γ} : Placed by 1984Sc44 from the 1762 level; however, this placement is not consistent with the observed coin with ce(L)(68 γ).
948.37 ^f 10 959.79 ^f 18	15.0 <i>12</i> 4.8 5	1762.82 1548.21	(5/2 ⁻ ,7/2 ⁻) (7/2 ⁻ ,9/2 ⁻)	814.422 588.323	9/2 ⁻ 7/2 ⁻	[M1]		0.0231	$\alpha(K)=0.0189 \ 3; \ \alpha(L)=0.00320 \ 5; \ \alpha(M)=0.000752 \ 11; \ \alpha(N+)=0.000239 \ 4 \ \alpha(N)=0.000194 \ 3; \ \alpha(O)=4.05\times10^{-5} \ 6; \ \alpha(P)=5.26\times10^{-6} \ 8$
^x 967.80 9 ^x ≈974 ^b	5.9 11								$u(r) = 3.20 \times 10$ o
1001.5 ^{fj} 5 1004.56 6	≈2 5.4 8	1908.8? 2230.244	(9/2 ⁺) 9/2 ⁺	907.046 1225.600	7/2 ⁻ 5/2 ⁻	[M2]		0.0496	α (K)=0.0397 6; α (L)=0.00755 11; α (M)=0.00180 3; α (N+)=0.000575 8 α (N)=0.000466 7; α (O)=9.73×10 ⁻⁵ 14; α (P)=1.249×10 ⁻⁵ 18
1015.40 <i>f</i> 8	5.3 6	3245.68	$(5/2^+, 7/2)$	2230.244	9/2+				
1021.67 ^{<i>f</i>} 12	19.6 12	2303.301	9/2+	1281.67	(7/2,9/2,11/2) ⁻	[E1]		0.00261 4	$\begin{aligned} &\alpha = 0.00261 \ 4; \ \alpha(\text{K}) = 0.00217 \ 3; \ \alpha(\text{L}) = 0.000337 \ 5; \\ &\alpha(\text{M}) = 7.83 \times 10^{-5} \ 11; \ \alpha(\text{N}+) = 2.48 \times 10^{-5} \ 4 \\ &\alpha(\text{N}) = 2.00 \times 10^{-5} \ 3; \ \alpha(\text{O}) = 4.17 \times 10^{-6} \ 6; \\ &\alpha(\text{P}) = 5.33 \times 10^{-7} \ 8 \\ &\text{Mult.:} \ \alpha(\text{K}) \text{exp gives E2}(+\text{M1}) \ \text{with} \ \delta > 2.3 \ \text{or} \\ &\text{E1+M2} \ \text{with} \ \delta = 0.37 \ 10. \end{aligned}$
^x 1024.6 2	3 1								
1042.39 ^{<i>f</i>} 8 1054.22 <i>4</i>	6.6 6 24.0 <i>17</i>	3272.58 2827.68	(7/2,9/2) 9/2 ⁺ ,11/2 ⁺	2230.244 1773.455	9/2 ⁺ 11/2 ⁺	M1		0.0182	$\alpha(K)=0.01487\ 21;\ \alpha(L)=0.00251\ 4;$ $\alpha(M)=0.000589\ 9;\ \alpha(N+)=0.000187\ 3$ $\alpha(N)=0.0001515\ 22;\ \alpha(O)=3.17\times10^{-5}\ 5;$ $\alpha(P)=4.12\times10^{-6}\ 6$ Mult.: $\alpha(K)exp=0.014\ 2$ and $\alpha(L)exp=0.0029\ 9$ (1981Ch38).

²⁰⁷₈₄Po₁₂₃-12

From ENSDF

²⁰⁷₈₄Po₁₂₃-12

				²⁰⁷ A	tε decay	y 1981C	h38,1981Ch3	39 (continued)
						γ(²⁰⁷ Po)	(continued)	
E_{γ}^{\ddagger}	$I_{\gamma}^{\ddagger g}$	E _i (level)	J^{π}_{i}	E _f	J_f^{π}	Mult. [@]	α^{\dagger}	Comments
1077.68 3	44 3	2303.301	9/2 ⁺	1225.600	5/2-	[M2]	0.0411	$\alpha(K)=0.0329$ 5; $\alpha(L)=0.00620$ 9; $\alpha(M)=0.001478$ 21;
			,		,			α(N+)=0.000471 7
receich en								α (N)=0.000381 6; α (O)=7.97×10 ⁻⁵ 12; α (P)=1.024×10 ⁻⁵ 15
x1081.0° 15	· · -							
1087.06 ^J 10	6.1 7	2860.42	9/2+,11/2	1773.455	11/2			
1095.13^{J} 15 1115 106 24	3.7 5	1331.53?	$0/2^{+}$	236.472	$\frac{3}{2^{-}}$	E2	0.00507.0	$\alpha = 0.00507.0; \alpha(K) = 0.00476.7; \alpha(L) = 0.000021.13; \alpha(M) = 0.000220.$
1115.190 24	108 0	2230.244	9/2	1113.071	13/2	112	0.00397 9	$a = 0.00397 \ 9, \ a(R) = 0.00470 \ 7, \ a(L) = 0.000921 \ 13, \ a(R) = 0.000220 \ 3; \ \alpha(N+) = 6.98 \times 10^{-5} \ 10$
								$\alpha(N) = 5.65 \times 10^{-5} 8; \alpha(O) = 1.165 \times 10^{-5} 17; \alpha(P) = 1.435 \times 10^{-6} 20;$
								α (IPF)=2.56×10 ⁻⁷ 4
C								Mult.: α (K)exp=0.0051 7 and α (L)exp=0.0022 4 (1981Ch38).
1118.25 8	9.1 9	1511.07	7/2-	392.953	3/2-	[E2]	0.00594 9	α =0.00594 9; α (K)=0.00473 7; α (L)=0.000915 13; α (M)=0.000219
								$3; \alpha(N+)=6.94\times10^{-5} 10$
								$\alpha(N)=5.02\times10^{-7} 6; \alpha(O)=1.158\times10^{-7} 17; \alpha(P)=1.426\times10^{-7} 20; \alpha(IPF)=2.91\times10^{-7} 5$
1127.9 f j 3	3.0 10	3036.98?	$(5/2^+)$	1908.8?	$(9/2^+)$	[E2]	0.00584 9	$\alpha = 0.00584$ 9: $\alpha(K) = 0.00466$ 7: $\alpha(L) = 0.000898$ 13: $\alpha(M) = 0.000214$
					(-1)			3; $\alpha(N+)=6.83\times10^{-5}$ 10
								$\alpha(N)=5.51\times10^{-5} 8; \alpha(O)=1.136\times10^{-5} 16; \alpha(P)=1.401\times10^{-6} 20;$
								α (IPF)=4.28×10 ⁻⁷ 8
1131.72 6	10.2 8	2303.301	9/2+	1171.586	7/2-	[E1]	0.00218 3	$\alpha = 0.00218 \ 3; \ \alpha(\text{K}) = 0.00182 \ 3; \ \alpha(\text{L}) = 0.000280 \ 4; \ \alpha(\text{M}) = 6.49 \times 10^{-5} \ \alpha(\text{M}) = 0.00182 \ 3; \ \alpha(\text{L}) = 0.000280 \ 4; \ \alpha(\text{M}) = 6.49 \times 10^{-5} \ \alpha(\text{M}) = 0.000280 \ 4; \ \alpha(\text{M}) = 6.49 \times 10^{-5} \ \alpha(\text{M}) = 0.000280 \ 4; \ \alpha(\text{M}) = 0.000280 \ 4$
								9; $\alpha(N+)=2.28\times10^{-5} 4$ $\alpha(N)=1.663\times10^{-5} 24; \alpha(\Omega)=3.47\times10^{-6} 5; \alpha(\Omega)=4.44\times10^{-7} 7;$
								$\alpha(\text{IPF})=2.30 \times 10^{-6} 4$
^x 1134.6 3	2.0 5							
1139.03 ^{<i>f</i>} 22	1.7 5	3442.60		2303.301	9/2+			
1154.65 ^f 11	3.6 5	3457.87	(9/2)	2303.301	9/2+			
1163.2 ^{<i>f</i>} 4	2.0 5	3457.87	(9/2)	2294.21	$(9/2)^+$			
^x 1171.62 4	27.9 17							E_{γ} : Placed from 1171 level by 1984Sc44 on the basis of coin with
								1283γ (19/1J020); nowever, this placement is not consistent with observed coin with $ce(K)(167\gamma)$ (1981Ch38). Placement of the
								1171γ above the 1283 γ is thus suggested, a placement that could
								also be consistent with the observed coin with $ce(K)(121\gamma)$.
1171.62 ^{<i>f</i>} 4	27.9 17	1171.586	7/2-	0	5/2-	E2		Mult.: α (K)exp=0.0038 6 (1981Ch38).
1174.60 [†] 8	10.3 8	1762.82	$(5/2^-, 7/2^-)$	588.323	$7/2^{-}$			
1179.5 [†] 15	≈5	2294.21	$(9/2)^+$	1115.071	$13/2^{+}$	[E2]	0.00537 8	α =0.00537 8; α (K)=0.00429 6; α (L)=0.000814 <i>12</i> ; α (M)=0.000194
								$3; \alpha(N+)=6.37 \times 10^{-3} 9$
								$\alpha(N)=4.98\times10^{-5} 8; \alpha(O)=1.029\times10^{-5} 15; \alpha(P)=1.274\times10^{-6} 19;$
1188.26.3	38.2	2303.301	$9/2^{+}$	1115.071	$13/2^{+}$	E2	0.00529.8	$\alpha(\Gamma \Gamma) = 2.20 \times 10^{-1} I0^{-1}$ $\alpha = 0.00529 \ 8; \ \alpha(K) = 0.00424 \ 6; \ \alpha(L) = 0.000801 \ 12; \ \alpha(M) = 0.000191$
			-,-	/1	-,-			$3; \alpha(N+)=6.32 \times 10^{-5} 9$

From ENSDF

				²⁰⁷ At	ε decay	1981C	h38,1981Ch39 (continued)
						γ(²⁰⁷ Po)	(continued)	
${\rm E_{\gamma}}^{\ddagger}$	I_{γ} ‡ g	E _i (level)	${f J}^\pi_i$	E_{f}	\mathbf{J}_f^{π}	Mult. [@]	α^{\dagger}	Comments
					<u>v</u>			α (N)=4.90×10 ⁻⁵ 7; α (O)=1.012×10 ⁻⁵ 15; α (P)=1.254×10 ⁻⁶ 18; α (IPF)=2.82×10 ⁻⁶ 4 Mult.: α (K)exp=0.0052 13 (1981Ch38).
1193.44 ^{<i>f</i>} 7	10.6 8	1781.77	(7/2,9/2)-	588.323	7/2-	[M1]	0.01320	$\alpha(\mathbf{K})=0.01081 \ 16; \ \alpha(\mathbf{L})=0.00182 \ 3; \ \alpha(\mathbf{M})=0.000427 \ 6; \ \alpha(\mathbf{N}+)=0.0001419 \ 20 \ \alpha(\mathbf{N})=0.0001419 \ 20 \ \alpha(\mathbf{N})=0.0001097 \ 16; \ \alpha(\mathbf{Q})=2.30\times10^{-5} \ 4; \ \alpha(\mathbf{P})=2.98\times10^{-6} \ 5;$
								α (IPF)=6.16×10 ⁻⁶ 9
1225.62 3	26.4 18	1225.600	5/2-	0	5/2-	M1+E2	0.009 4	α =0.009 4; α (K)=0.007 3; α (L)=0.0012 5; α (M)=0.00029 11; α (N+)=0.00010 4
1242.62.7	17515	2414 24	(0/2 + 11/2 -)	1171 596	7/2-			$\alpha(N)=7.E-5 \ 3; \ \alpha(O)=1.5\times10^{-5} \ 6; \ \alpha(P)=2.0\times10^{-6} \ 8; \ \alpha(IPF)=9.E-6 \ 3$
1245.46 5	13.4 11	2827.68	(9/2 ,11/2) 9/2 ⁺ ,11/2 ⁺	1582.191	9/2 ⁺	[M1]	0.01183	α (K)=0.00969 <i>14</i> ; α (L)=0.001628 <i>23</i> ; α (M)=0.000382 <i>6</i> ; α (N+)=0.0001369 <i>20</i>
								α (N)=9.82×10 ⁻⁵ 14; α (O)=2.06×10 ⁻⁵ 3; α (P)=2.67×10 ⁻⁶ 4; α (IPF)=1.543×10 ⁻⁵ 22
^x 1254.11 15	2.52 22							
1263.71 ^{<i>J</i>} 4	12.1 9	2845.88	(9/2+,11/2+)	1582.191	9/2+	(M1)	0.01140	$\alpha(K)=0.00933 \ 13; \ \alpha(L)=0.001568 \ 22; \ \alpha(M)=0.000368 \ 6; \alpha(N+)=0.0001364 \ 19 \alpha(N)=9.46\times10^{-5} \ 14; \ \alpha(O)=1.98\times10^{-5} \ 3; \ \alpha(P)=2.57\times10^{-6} \ 4; \alpha(IPF)=1.94\times10^{-5} \ 3$
1275.17 ^{<i>f</i>} 25	3.1 3	1511.07	7/2-	236.472	3/2-	[E2]	0.00464 7	$\alpha(M^{-1})^{-1} I_{0} I$
1277.83 <i>f</i> 23	3.3 4	2860.42	9/2+,11/2	1582.191	9/2+			
1283.08 ^{<i>f</i>} 4	27.4 16	2454.63	(9/2+,11/2-)	1171.586	7/2-	[E2]	0.00459 7	$ \begin{array}{l} \alpha = 0.00459 \ 7; \ \alpha(\mathrm{K}) = 0.00369 \ 6; \ \alpha(\mathrm{L}) = 0.000680 \ 10; \\ \alpha(\mathrm{M}) = 0.0001614 \ 23; \ \alpha(\mathrm{N} +) = 6.38 \times 10^{-5} \ 9 \\ \alpha(\mathrm{N}) = 4.14 \times 10^{-5} \ 6; \ \alpha(\mathrm{O}) = 8.57 \times 10^{-6} \ 12; \ \alpha(\mathrm{P}) = 1.069 \times 10^{-6} \ 15; \\ \alpha(\mathrm{IPF}) = 1.275 \times 10^{-5} \ 18 \end{array} $
x1291.8 4	2.3 3	2414 24	$(0/2 \pm 11/2 =)$	1115 071	12/2+			
1298.84 24 1305 4 <i>f</i> 3	4.2 11 5 8 16	2414.24 2887 94	$(9/2^{+},11/2^{-})$ (9/2)	1115.0/1	$\frac{13}{2}$			
1300.1 J	3.6 18	1908.8?	$(9/2^+)$	588.323	$7/2^{-}$			
1323.12 15	4.5 6	2230.244	9/2+	907.046	7/2-	[E1]	0.001723 25	$\alpha = 0.001723 \ 25; \ \alpha(K) = 0.001386 \ 20; \ \alpha(L) = 0.000212 \ 3; \alpha(M) = 4.91 \times 10^{-5} \ 7; \ \alpha(N+) = 7.66 \times 10^{-5} \ 11 \alpha(N) = 1.258 \times 10^{-5} \ 18; \ \alpha(O) = 2.62 \times 10^{-6} \ 4; \ \alpha(P) = 3.37 \times 10^{-7} \ 5; \alpha(IPF) = 6.11 \times 10^{-5} \ 9$
1331.63 ^{<i>f</i>} 12	4.0 6	1331.53?		0	5/2-			
1334.0 ^{<i>f</i>} 10	≈1	2845.88	$(9/2^+, 11/2^+)$	1511.07	7/2-	[E1]	0.001705 24	α =0.001705 24; α (K)=0.001366 20; α (L)=0.000209 3;

From ENSDF

²⁰⁷₈₄Po₁₂₃-14

				207 At ε	decay 1981Cl	138,1981Ch	39 (continued)	
					γ ⁽²⁰⁷ Po)	(continued)		
${\rm E_{\gamma}}^{\ddagger}$	$I_{\gamma}^{\ddagger g}$	E _i (level)	J_i^π	\mathbf{E}_{f}	${ m J}_f^\pi$	Mult. [@]	α^{\dagger}	Comments
1339.17 ^{<i>f</i>} 16	6.2 7	2454.63	(9/2+,11/2-)	1115.071	13/2+	[E1]	0.001697 24	$\begin{aligned} &\alpha(M) = 4.84 \times 10^{-5} \ 7; \ \alpha(N+) = 8.17 \times 10^{-5} \ 13 \\ &\alpha(N) = 1.240 \times 10^{-5} \ 18; \ \alpha(O) = 2.59 \times 10^{-6} \ 4; \\ &\alpha(P) = 3.33 \times 10^{-7} \ 5; \ \alpha(IPF) = 6.64 \times 10^{-5} \ 11 \\ &\alpha = 0.001697 \ 24; \ \alpha(K) = 0.001357 \ 19; \ \alpha(L) = 0.000207 \ 3; \\ &\alpha(M) = 4.81 \times 10^{-5} \ 7; \ \alpha(N+) = 8.42 \times 10^{-5} \ 12 \\ &\alpha(N) = 1.231 \times 10^{-5} \ 18; \ \alpha(O) = 2.57 \times 10^{-6} \ 4; \\ &\alpha(P) = 3.30 \times 10^{-7} \ 5; \ \alpha(IPF) = 6.90 \times 10^{-5} \ 10 \end{aligned}$
*1348.0 <i>10</i>	≈2 0.4.0	2440.07	(7)(2-0)(2-)	2000.00	212-512-712-			
1350.73^{5} 11 1358.5^{bf} 5 x1364.70 20	9.4 9 ≤1.5 3.0 5	3449.87 3457.87	(<i>1</i> /2 ,9/2) (9/2)	2099.00 2099.00	3/2 ,5/2 ,7/2 3/2 ⁻ ,5/2 ⁻ ,7/2 ⁻			
1371 ^{bf} 1	≤5	1762.82	$(5/2^-, 7/2^-)$	392.953	3/2-			
1396.19 4	31.8 18	2303.301	9/2+	907.046	7/2-	(E1)	0.001617 23	$\alpha = 0.001617 \ 23; \ \alpha(K) = 0.001265 \ 18; \ \alpha(L) = 0.000193 \ 3; \alpha(M) = 4.47 \times 10^{-5} \ 7; \ \alpha(N+) = 0.0001151 \alpha(N) = 1.145 \times 10^{-5} \ 16; \ \alpha(O) = 2.39 \times 10^{-6} \ 4; \alpha(P) = 3.08 \times 10^{-7} \ 5; \ \alpha(IPF) = 0.0001009 \ 15 Mult.: \ \alpha(K) exp \approx 0.0019 \ (1981Ch38).$
1409.86 ^{<i>f</i>} 5	25.9 15	2958.09	(7/2 ⁻ ,9/2 ⁻)	1548.21	(7/2 ⁻ ,9/2 ⁻)	M1	0.00866 <i>13</i>	$\begin{aligned} &\alpha = 0.00866 \ 13; \ \alpha(\text{K}) = 0.00705 \ 10; \ \alpha(\text{L}) = 0.001180 \ 17; \\ &\alpha(\text{M}) = 0.000277 \ 4; \ \alpha(\text{N}+) = 0.0001574 \\ &\alpha(\text{N}) = 7.12 \times 10^{-5} \ 10; \ \alpha(\text{O}) = 1.492 \times 10^{-5} \ 21; \\ &\alpha(\text{P}) = 1.94 \times 10^{-6} \ 3; \ \alpha(\text{IPF}) = 6.93 \times 10^{-5} \ 10 \\ &\text{Mult.:} \ \alpha(\text{K}) \exp = 0.0062 \ 16 \ (1981 \text{Ch38}). \end{aligned}$
1413.15 ^ƒ 5	22.4 13	2099.00	3/2-,5/2-,7/2-	685.755	5/2-	M1	0.00861 12	$\begin{aligned} &\alpha = 0.00861 \ 12; \ \alpha(\text{K}) = 0.00701 \ 10; \ \alpha(\text{L}) = 0.001173 \ 17; \\ &\alpha(\text{M}) = 0.000275 \ 4; \ \alpha(\text{N}+) = 0.0001583 \\ &\alpha(\text{N}) = 7.08 \times 10^{-5} \ 10; \ \alpha(\text{O}) = 1.483 \times 10^{-5} \ 21; \\ &\alpha(\text{P}) = 1.93 \times 10^{-6} \ 3; \ \alpha(\text{IPF}) = 7.08 \times 10^{-5} \ 10 \\ &\text{Mult.:} \ \alpha(\text{K}) \exp = 0.0071 \ 18 \ (1981 \text{Ch38}). \end{aligned}$
1450.75 ^{<i>f</i>} 20	1.3 <i>3</i>	2961.91		1511.07	7/2-			
1455.06 ^{<i>f</i>} 25	0.80 20	3036.98?	(5/2 ⁺)	1582.191	9/2+	[E2]	0.00367 6	$\alpha = 0.00367 \ 6; \ \alpha(K) = 0.00294 \ 5; \ \alpha(L) = 0.000522 \ 8; \alpha(M) = 0.0001235 \ 18; \ \alpha(N+) = 8.85 \times 10^{-5} \ 13 \alpha(N) = 3.17 \times 10^{-5} \ 5; \ \alpha(O) = 6.58 \times 10^{-6} \ 10; \alpha(P) = 8.27 \times 10^{-7} \ 12; \ \alpha(IPF) = 4.94 \times 10^{-5} \ 7$
1488.91 <i>12</i>	6.9 7	2303.301	9/2+	814.422	9/2-	[E1]	0.001520 22	$\alpha = 0.001520 \ 22; \ \alpha(K) = 0.001135 \ 16; \ \alpha(L) = 0.0001726$ 25; \alpha(M) = 4.00×10 ⁻⁵ \beta; \alpha(N+) = 0.000172 \alpha(N) = 1.024×10 ⁻⁵ \ 15; \alpha(O) = 2.14×10 ⁻⁶ \beta; \alpha(P) = 2.76×10 ⁻⁷ \beta; \alpha(PF) = 0.0001594 \ 23
^x 1493.23 <i>12</i>	5.7 6				- /			
1506.97 9 1510.89 ^{haf} 8	14.3 9 11.7 ^h 8	2414.24 1511.07	(9/2 ⁺ ,11/2 ⁻) 7/2 ⁻	907.046 0	7/2 ⁻ 5/2 ⁻	[M1]	0.00732 11	α =0.00732 <i>11</i> ; α (K)=0.00591 <i>9</i> ; α (L)=0.000987 <i>14</i> ; α (M)=0.000231 <i>4</i> ; α (N+)=0.000193 <i>3</i>

From ENSDF

²⁰⁷₈₄Po₁₂₃-15

 $^{207}_{84}\mathrm{Po}_{123}$ -15

			2	⁰⁷ At ε deca	y 1981Ch38,1	981Ch39 (0	continued)	
					γ (²⁰⁷ Po) (cont	inued)		
${\rm E_{\gamma}}^{\ddagger}$	$I_{\gamma}^{\ddagger g}$	E _i (level)	J_i^π	E_f	\mathbf{J}_f^π	Mult. [@]	α^{\dagger}	Comments
1510.89 ^{hdaf} 8	11.7 ^h 8	2099.00	3/2 ⁻ ,5/2 ⁻ ,7/2 ⁻	588.323	7/2-	[M1]	0.00732 11	$\begin{aligned} \alpha(N) &= 5.95 \times 10^{-5} \ 9; \ \alpha(O) = 1.248 \times 10^{-5} \ 18; \\ \alpha(P) &= 1.621 \times 10^{-6} \ 23; \ \alpha(IPF) = 0.0001195 \ 17 \\ \alpha &= 0.00732 \ 11; \ \alpha(K) = 0.00591 \ 9; \ \alpha(L) = 0.000987 \\ 14; \ \alpha(M) &= 0.000231 \ 4; \ \alpha(N+) = 0.000193 \ 3 \\ \alpha &= 0.001231 \ \alpha(D) = 0.0001231 \ 4; \ \alpha(D) &= 0.000193 \ 3 \\ \alpha &= 0.001231 \ \alpha(D) = 0.0001231 \ 4; \ \alpha(D) &= 0.000193 \ 3 \\ \alpha &= 0.001231 \ \alpha(D) = 0.0001231 \ 4; \ \alpha(D) &= 0.0001231 \ 4; \ \alpha(D) &= 0.000193 \ 3 \\ \alpha &= 0.0001231 \ \alpha(D) &= 0.0001231 \ 4; \ \alpha(D) &= 0.0001233 \ 4; \ \alpha(D) &= 0.0001231 \ 4; \ \alpha(D) &= 0.0001231 \ 4; \ \alpha(D) &= 0.0001233 \ 4; \ \alpha$
								$\alpha(N)=5.95\times10^{-3}$ 9; $\alpha(O)=1.248\times10^{-3}$ 18; $\alpha(P)=1.621\times10^{-6}$ 23; $\alpha(IPF)=0.0001195$ 17
1548.21 ^{<i>f</i>} 8 ^{<i>x</i>} 1552.48 <i>13</i>	26.1 <i>16</i> 7.2 <i>5</i>	1548.21	(7/2 ⁻ ,9/2 ⁻)	0	5/2-			
1556.54 ^{<i>f</i>} 11 ^x 1574.64 11	6.2 7 3.7 <i>4</i>	2887.94	(9/2)	1331.53?				
1589.19 ^f 15 1598.31 ^f 18	3.8 <i>4</i> 2 9 3	2870.99 3380.46	(7/2 ⁻ ,9/2 ⁻ ,11/2 ⁻)	1281.67 1781.77	$(7/2,9/2,11/2)^{-}$ $(7/2,9/2)^{-}$			
1631.16^{f} 20	2.9 3	3179.37	$(9/2^+)$	1548.21	$(7/2^{-}, 9/2^{-})$			
1641.82 6	21.1 12	2230.244	9/2+	588.323	7/2-	[E1]	0.001420 20	$\alpha = 0.001420 \ 20; \ \alpha(K) = 0.000964 \ 14; \alpha(L) = 0.0001461 \ 21; \ \alpha(M) = 3.38 \times 10^{-5} \ 5; \alpha(N+) = 0.000276 \alpha(N) = 8.66 \times 10^{-6} \ 13; \ \alpha(O) = 1.81 \times 10^{-6} \ 3; \alpha(P) = 2.34 \times 10^{-7} \ 4; \ \alpha(PE) = 0.000265 \ 4$
1676.50 <i>10</i>	68 4	1676.65	7/2,9/2-	0	5/2-			Mult.: $\alpha(K)$ exp>0.003 (1971Jo20) is consistent with mult=M1(+E2), or with E1+M2 with s > 0.40
1684.07 <i>18</i>	2.6 3	2958.09	(7/2 ⁻ ,9/2 ⁻)	1274.11	13/2-	[E2]	0.00290 4	$\alpha = 0.00290 \ 4; \ \alpha(K) = 0.00226 \ 4; \ \alpha(L) = 0.000389 \ 6;$ $\alpha(M) = 9.15 \times 10^{-5} \ 13; \ \alpha(N+) = 0.0001560 \ 22$ $\alpha(N) = 2.35 \times 10^{-5} \ 4; \ \alpha(O) = 4.88 \times 10^{-6} \ 7;$ $\alpha(P) = 6.20 \times 10^{-7} \ 9; \ \alpha(IPF) = 0.0001270 \ 18$
1697.0 ^{<i>f</i>} 4	1.20 12	3245.68	$(5/2^+, 7/2)$	1548.21	(7/2 ⁻ ,9/2 ⁻)			
1712.60 9	29.8 <i>18</i> 20 9 <i>12</i>	2827.68 2887.94	$9/2^+,11/2^+$	1115.071	$\frac{13}{2^+}$			
1719.1 4	4.2 6	3300.90	(9/2)	1582.191	9/2 ⁺			
1730.76 ^f 6	84 5	2845.88	(9/2+,11/2+)	1115.071	13/2+	[E2]	0.00278 4	
1736.7^{f}_{f} 4	1.5 6	2961.91		1225.600	5/2-			
1745.32^{J} 7	15.6 9	2860.42	$9/2^+, 11/2$	1115.071	13/2+		0.00070.4	
1768.07 5	1.6 3	2583.02	(5/2-)	814.422	9/2-	[E2]	0.00270 4	α =0.002/0 4; α (K)=0.0020/3; α (L)=0.000353 5; α (M)=8.29×10 ⁻⁵ 12; α (N+)=0.000186 3

From ENSDF

				207 At ε d	lecay	1981Ch38	,1981Ch39 (con	ntinued)
					<u>γ</u>	(²⁰⁷ Po) (co	ntinued)	
E_{γ}^{\ddagger}	$I_{\gamma}^{\ddagger g}$	E _i (level)	J_i^π	E_{f}	\mathbf{J}_f^{π}	Mult.@	α^{\dagger}	Comments
1770 77 7	15.0.0	2887.04	(0/2)	1115 071	12/2+			α (N)=2.13×10 ⁻⁵ 3; α (O)=4.43×10 ⁻⁶ 7; α (P)=5.63×10 ⁻⁷ 8; α (IPF)=0.0001602 23
1772.777 1781.67 ^f 7	12.1 8	2887.94 1781.77	(9/2) $(7/2,9/2)^{-}$	0	13/2 ⁻ 5/2 ⁻	[M1]	0.00501 7	α =0.00501 7; α (K)=0.00387 6; α (L)=0.000645 9; α (M)=0.0001510 22; α (N+)=0.000341 5 α (N)=3.89×10 ⁻⁵ 6; α (O)=8.15×10 ⁻⁶ 12; α (P)=1.059×10 ⁻⁶ 15;
1786.57 7	19.3 <i>11</i>	2958.09	(7/2 ⁻ ,9/2 ⁻)	1171.586	7/2-	[M1]	0.00498 7	α (IPF)=0.000293 4 α =0.00498 7; α (K)=0.00384 6; α (L)=0.000640 9; α (M)=0.0001500 21; α (N+)=0.000344 5 α (N)=3.86×10 ⁻⁵ 6; α (O)=8.09×10 ⁻⁶ 12; α (P)=1.051×10 ⁻⁶ 15; α (IPF)=0.000296 5
1805.25 <i>6</i>	16.4 12	2393.48		588.323	7/2-			
1811.42 23	8 5 5.3 12	3036.98?	(5/2 ⁺)	1225.600	5/2-	[E1]	0.001369 20	α =0.001369 20; α (K)=0.000819 12; α (L)=0.0001237 18; α (M)=2.86×10 ⁻⁵ 4; α (N+)=0.000397 α (N)=7.33×10 ⁻⁶ 11; α (O)=1.532×10 ⁻⁶ 22; α (P)=1.98×10 ⁻⁷ 3; α (PE)=0.000388 6
1825.52 18	4.3 7	2414.24	$(9/2^+, 11/2^-)$	588.323	7/2-			
1854.54 ^f 9	12.1 9	3080.12		1225.600	$5/2^{-}$			
1867.97 ^f 25	1.7 5	3449.87	$(7/2^{-}, 9/2^{-})$	1582.191	9/2+			
1875.74 [†] 15 ^x 1881.2 3 ^x 1887.47 15 ^x 1891.87 11	7.2 5 2.0 3 4.0 6 6.8 8	3457.87	(9/2)	1582.191	9/2+			
1897.0 ^{<i>f</i>} 5	1.3 4	2583.02	(5/2 ⁻)	685.755	5/2-	[M1]	0.00439 7	$ \begin{array}{l} \alpha = 0.00439 \ 7; \ \alpha(\mathrm{K}) = 0.00330 \ 5; \ \alpha(\mathrm{L}) = 0.000548 \ 8; \\ \alpha(\mathrm{M}) = 0.0001284 \ 18; \ \alpha(\mathrm{N}+) = 0.000417 \ 6 \\ \alpha(\mathrm{N}) = 3.30 \times 10^{-5} \ 5; \ \alpha(\mathrm{O}) = 6.92 \times 10^{-6} \ 10; \ \alpha(\mathrm{P}) = 9.00 \times 10^{-7} \ 13; \\ \alpha(\mathrm{IPF}) = 0.000376 \ 6 \end{array} $
1908.22 ^{<i>f</i>} 25	3.3 5	3080.12		1171.586	$7/2^{-}$			
1993.7 ^{<i>f</i>} 5	2.0 4	2230.244	9/2+	236.472	3/2-	[E3]	0.00416 6	$ \begin{array}{l} \alpha = 0.00416 \ 6; \ \alpha(\mathrm{K}) = 0.00321 \ 5; \ \alpha(\mathrm{L}) = 0.000610 \ 9; \\ \alpha(\mathrm{M}) = 0.0001455 \ 21; \ \alpha(\mathrm{N}+) = 0.000198 \ 3 \\ \alpha(\mathrm{N}) = 3.74 \times 10^{-5} \ 6; \ \alpha(\mathrm{O}) = 7.76 \times 10^{-6} \ 11; \ \alpha(\mathrm{P}) = 9.74 \times 10^{-7} \ 14; \\ \alpha(\mathrm{IPF}) = 0.0001520 \ 22 \end{array} $
^x 2006.6 3	1.8 3							
2016.25 ^J 10	16.0 11	2016.34?		0	5/2-			
2026.78^{J} 18	4.2 4	3300.90	(9/2)	1274.11	13/2-			
2046.2^{J} 3	3.0 5	2860.42	9/2+,11/2	814.422	9/2 ⁻			
2053.0^{j} 3	6.6 8	2641.40?	$(3/2^{-}, 5/2^{-})$	588.323	1/2-			
2056.2^{j} 3	3.5 6	2870.99	$(1/2^{-},9/2^{-},11/2^{-})$	814.422	9/2 ⁻			
2064.5 3	4.1 4	3179.37	(9/21)	1115.071	13/2*			

²⁰⁷₈₄Po₁₂₃-17

L

²⁰⁷₈₄Po₁₂₃-17

From ENSDF

γ ⁽²⁰⁷Po) (continued)</sup>

E_{γ}^{\ddagger}	$I_{\gamma}^{\ddagger g}$	E _i (level)	\mathbf{J}_i^{π}	E_f	\mathbf{J}_{f}^{π}	Mult. [@]	$lpha^{\dagger}$	Comments
x2071.6 3	2.1 4	3300.90	(9/2)	1225 600	5/2-			
2099.5 ^f 5	3.0 10	2099.00	3/2 ⁻ ,5/2 ⁻ ,7/2 ⁻	0	5/2 ⁻	[M1]	0.00362 5	$ \begin{array}{l} \alpha = 0.00362 \ 5; \ \alpha(\mathrm{K}) = 0.00254 \ 4; \ \alpha(\mathrm{L}) = 0.000422 \ 6; \\ \alpha(\mathrm{M}) = 9.87 \times 10^{-5} \ 14; \ \alpha(\mathrm{N} +) = 0.000557 \ 8 \\ \alpha(\mathrm{N}) = 2.54 \times 10^{-5} \ 4; \ \alpha(\mathrm{O}) = 5.32 \times 10^{-6} \ 8; \ \alpha(\mathrm{P}) = 6.93 \times 10^{-7} \ 10; \\ \alpha(\mathrm{IPF}) = 0.000525 \ 8 \end{array} $
x2134.10 20 2143.57 12	2.5 <i>4</i> 3.6 <i>4</i>	2958.09	(7/2 ⁻ ,9/2 ⁻)	814.422	9/2-	[M1]	0.00349 5	α =0.00349 5; α (K)=0.00241 4; α (L)=0.000400 6; α (M)=9.36×10 ⁻⁵ 13; α (N+)=0.000588 9 α (N)=2.41×10 ⁻⁵ 4; α (O)=5.05×10 ⁻⁶ 7; α (P)=6.56×10 ⁻⁷ 10; α (IPF)=0.000558 8
2188.79 25	2.8 4	3095.97?	(7/2+,9/2+)	907.046	7/2-	[E1]	0.001374 20	$ \begin{array}{l} \alpha = 0.001374 \ 20; \ \alpha(\mathrm{K}) = 0.000602 \ 9; \ \alpha(\mathrm{L}) = 9.03 \times 10^{-5} \ 13; \\ \alpha(\mathrm{M}) = 2.08 \times 10^{-5} \ 3; \ \alpha(\mathrm{N}+) = 0.000661 \ 10 \\ \alpha(\mathrm{N}) = 5.34 \times 10^{-6} \ 8; \ \alpha(\mathrm{O}) = 1.118 \times 10^{-6} \ 16; \ \alpha(\mathrm{P}) = 1.451 \times 10^{-7} \ 21; \\ \alpha(\mathrm{IPF}) = 0.000655 \ 10 \end{array} $
^x 2197.0 5	2.4 7							
2293.81 ^J 25	1.50 24	2294.21	(9/2)+	0	5/2-	[M2]	0.00629 9	$\alpha = 0.00629 \; 9; \; \alpha(K) = 0.00486 \; 7; \; \alpha(L) = 0.000837 \; 12; \\ \alpha(M) = 0.000197 \; 3; \; \alpha(N+) = 0.000401 \; 6 \\ \alpha(N) = 5.07 \times 10^{-5} \; 8; \; \alpha(O) = 1.063 \times 10^{-5} \; 15; \; \alpha(P) = 1.378 \times 10^{-6} \; 20; $
2303.5 <i>3</i>	1.33 20	2303.301	9/2+	0	5/2-	[M2]	0.00624 9	$\alpha(\text{IPF})=0.000339 \ 5$ $\alpha=0.00624 \ 9; \ \alpha(\text{K})=0.00481 \ 7; \ \alpha(\text{L})=0.000828 \ 12;$ $\alpha(\text{M})=0.000195 \ 3; \ \alpha(\text{N}+)=0.000405 \ 6$ $\alpha(\text{N})=5.02\times10^{-5} \ 7; \ \alpha(\text{O})=1.052\times10^{-5} \ 15; \ \alpha(\text{P})=1.364\times10^{-6} \ 19;$ $\alpha(\text{IPF})=0.000343 \ 5$
2342.65 ^f 10	16.3 12	3457.87	(9/2)	1115.071	$13/2^{+}$			
2365.45 ^f 20	1.60 22	3272.58	(7/2,9/2)	907.046	$7/2^{-}$			
2373.45 ^f 25	0.90 14	2961.91		588.323	7/2-			
x2380.42 15 2393.04 15 x2426.5 3 x2444.3 5 x2450.8 3	1.46 <i>13</i> 3.2 <i>3</i> 1.0 <i>3</i> 0.85 <i>25</i> 1.7 <i>4</i>	2393.48		0	5/2-			
2457.6 ^f 4	3.7 3	3272.58	(7/2,9/2)	814.422	9/2-			
2473.69 ^{<i>f</i>} 25	2.02 25	3380.46		907.046	7/2-			
2486.6 4	3.2 3	3300.90	(9/2)	814.422	9/2-			
2514.30 ^{<i>f</i>} 15	1.2 3	2583.02	(5/2 ⁻)	68.556	1/2-	[E2]	0.00183 3	$ \begin{array}{l} \alpha = 0.00183 \ 3; \ \alpha(\mathrm{K}) = 0.001101 \ 16; \ \alpha(\mathrm{L}) = 0.0001778 \ 25; \\ \alpha(\mathrm{M}) = 4.15 \times 10^{-5} \ 6; \ \alpha(\mathrm{N}+) = 0.000512 \ 8 \\ \alpha(\mathrm{N}) = 1.065 \times 10^{-5} \ 15; \ \alpha(\mathrm{O}) = 2.23 \times 10^{-6} \ 4; \ \alpha(\mathrm{P}) = 2.87 \times 10^{-7} \ 4; \\ \alpha(\mathrm{IPF}) = 0.000498 \ 7 \end{array} $
^x 2526.5 3	0.90 20							
2535.57 ^f 25	1.74 17	3442.60		907.046	7/2-			

18

				207	At ε d	ecay 198	31Ch38,1981Ch	39 (continued)
						$\gamma(^{207})$	Po) (continued)	
E_{γ}^{\ddagger}	$I_{\gamma}^{\ddagger g}$	E _i (level)	\mathbf{J}_i^{π}	E_f	\mathbf{J}_{f}^{π}	Mult. [@]	a^{\dagger}	Comments
x2545.38 18	3.7 5							
*2558.42 <i>12</i>	6.4 6	2200 16		014 400	0/2-			
2566.10^{j} 13	6.3 6	3380.46		814.422	9/2			
2572.85^{j} 20	2.0 3	2641.40?	(3/2,5/2)	68.556	1/2	0.01	0.000(0.4	0.000(0.4(X) 0.001400.01(X) 0.000045.4(X) 5.55.10-5
2582.47 4	0.63 6	2583.02	(5/2)	0	5/2	[M1]	0.00269 4	$ \begin{array}{l} \alpha = 0.00269 \ 4; \ \alpha(\text{K}) = 0.001493 \ 21; \ \alpha(\text{L}) = 0.000247 \ 4; \ \alpha(\text{M}) = 5.77 \times 10^{-5} \\ 8; \ \alpha(\text{N}+) = 0.000893 \ 13 \\ \alpha(\text{N}) = 1.485 \times 10^{-5} \ 21; \ \alpha(\text{O}) = 3.11 \times 10^{-6} \ 5; \ \alpha(\text{P}) = 4.05 \times 10^{-7} \ 6; \\ \alpha(\text{IPF}) = 0.000875 \ 13 \end{array} $
2591.30^{f} 15 x2627.36 15	4.3 <i>4</i> 3.13 <i>25</i>	3179.37	(9/2+)	588.323	7/2-			
2684.21 ^{<i>f</i>} 15	2.94 25	3272.58	(7/2,9/2)	588.323	$7/2^{-}$			
^x 2691.2 ^J 3	0.76 20				- 12			E_{γ} : listed as 2591.2 by 1981Ch38 (probably a typographic error).
2712.50 <i>15</i> 2721.3 <i>5</i>	0.90 20	3300.90 2958.09	(9/2) (7/2 ⁻ ,9/2 ⁻)	588.323 236.472	3/2-	[M3]	0.00669 10	α =0.00669 <i>10</i> ; α (K)=0.00513 <i>8</i> ; α (L)=0.000918 <i>13</i> ; α (M)=0.000217 <i>3</i> ; α (N+)=0.000418 <i>6</i> α (N)=5.60×10 ⁻⁵ 8; α (O)=1.172×10 ⁻⁵ <i>17</i> ; α (P)=1.513×10 ⁻⁶ 22;
								$\alpha(\text{IPF})=0.000349\ 5$
2772.7 <mark>5</mark> 4	2.1 3	3457.87	(9/2)	685.755	5/2-			
2792.5 <i>f</i> 4	0.70 20	3380.46		588.323	7/2-			
2800.6 4	≈1	3036.98?	(5/2+)	236.472	3/2-	[E1]	0.001516 22	$ \begin{array}{l} \alpha = 0.001516 \ 22; \ \alpha(\mathrm{K}) = 0.000406 \ 6; \ \alpha(\mathrm{L}) = 6.05 \times 10^{-5} \ 9; \\ \alpha(\mathrm{M}) = 1.395 \times 10^{-5} \ 20; \ \alpha(\mathrm{N}+) = 0.001036 \ l \\ \alpha(\mathrm{N}) = 3.58 \times 10^{-6} \ 5; \ \alpha(\mathrm{O}) = 7.49 \times 10^{-7} \ 11; \ \alpha(\mathrm{P}) = 9.75 \times 10^{-8} \ 14; \\ \alpha(\mathrm{IPF}) = 0.001031 \ 15 \end{array} $
2854.7 <i>f</i> 3	1.20 20	3442.60		588.323	7/2-			
2861.8 ^{<i>f</i>} 3 ^x 2877.0 7	1.20 <i>20</i> 0.60 <i>15</i>	3449.87	(7/2-,9/2-)	588.323	7/2-			
2888.1 ^{<i>f</i>} 4	1.00 25	2887.94	(9/2)	0	$5/2^{-}$			
2962.5 ^{<i>f</i>} 6	0.60 10	2961.91		0	5/2-			
2968.5 5	0.50 10	3036.98?	(5/2 ⁺)	68.556	1/2-	[M2]	0.00383 6	$ \begin{array}{l} \alpha = 0.00383 \ 6; \ \alpha(\mathrm{K}) = 0.00260 \ 4; \ \alpha(\mathrm{L}) = 0.000439 \ 7; \ \alpha(\mathrm{M}) = 0.0001032 \\ 15; \ \alpha(\mathrm{N}+) = 0.000686 \ 10 \\ \alpha(\mathrm{N}) = 2.65 \times 10^{-5} \ 4; \ \alpha(\mathrm{O}) = 5.57 \times 10^{-6} \ 8; \ \alpha(\mathrm{P}) = 7.23 \times 10^{-7} \ 11; \\ \alpha(\mathrm{IPF}) = 0.000653 \ 10 \end{array} $
3008.9 <i>f</i> 5	1.06 21	3245.68	$(5/2^+, 7/2)$	236.472	3/2-			
$3080.4^{f} 6$	0.40 12	3080.12		0	$5/2^{-}$			
3096.5 7	0.59 15	3095.97?	$(7/2^+, 9/2^+)$	0	5/2-			
3179.2 ^J 5	0.80 12	3179.37	$(9/2^{+})$	0	5/2-			
3272.1 ^J 5	0.42 7	3272.58	(7/2,9/2)	0	5/2-			
3458.3 ^J 7	≈0.5	3457.87	(9/2)	0	5/2-			

²⁰⁷₈₄Po₁₂₃-19

 γ ⁽²⁰⁷Po) (continued)

[†] Additional information 1.

[‡] From 1981Ch38 and 1981Ch39, unless otherwise specified.

[#] From 1981Ch38.

[@] From $\alpha(K)$ exp based and I γ and Ice of 1981Ch38 and subshell ratios, unless otherwise specified.

[&] From measured $\alpha(K)$ exp and subshell ratios in 1981Ch38 using the BrICCmixing program.

^{*a*} Not included in determining the excitation energy.

^{*b*} Seen only in ce- γ coin.

^{*c*} From ce- γ coin.

^d 1984Sc44 suggests placement from the 1511 and 2099 levels. Absence of coin with 588γ (1971Jo20) argues against dominant placement from the 2099 level; however, expected coin intensity would be near authors' sensitivity limit.

^{*e*} coin with ce(K)(191 γ) implies that the 641 γ feeds the 1773 level either directly or via single- γ cascades. The coin intensity leads to I γ (641 γ from 2414)=12 4, leaving I γ <8 for alternate placements. 1984Sc44 suggests alternate placements from the 1548 and/or the 2871 levels since the energy fit from the 2414 level is poor; however, the placement from the 1548 level is inconsistent with the observed coin with ce(K)(191 γ) and the absence of coin with ce(K)(221 γ).

^f Placement made by 1984Sc44.

^g For absolute intensity per 100 decays, multiply by 0.0451 15.

^{*h*} Multiply placed with undivided intensity.

^{*i*} Multiply placed with intensity suitably divided.

^{*j*} Placement of transition in the level scheme is uncertain.

 $x \gamma$ ray not placed in level scheme.

Decay Scheme

Intensities: $I_{(\gamma+ce)}$ per 100 parent decays

Decay Scheme (continued)

Decay Scheme (continued)

Decay Scheme (continued)

 $^{207}_{\ 84} Po_{123}$