207 Tl β^- decay 1988Hi14,1967Da10

History									
Туре	Author	Citation	Literature Cutoff Date						
Full Evaluation	F. G. Kondev, S. Lalkovski	NDS 112, 707 (2011)	1-Aug-2010						

Parent: ²⁰⁷Tl: E=0; $J^{\pi}=1/2^+$; $T_{1/2}=4.77 \text{ min } 3$; $Q(\beta^-)=1418 5$; % β^- decay=100.0

1988Hi14: Source: ²⁰⁷Tl produced in decay chain of ²²³Ra. ²²³Ra activity 1.9x10⁷ Bq. Radiochemical separation; Detectors: Ge(Li) with anti-Compton shield of NaI; Measured: Εγ, Ιγ.

1967Da10: Source:²⁰⁷Tl, obtained as a recoil from ²¹¹Bi α -decay and and collected on a 6 mg/cm² aluminum foil; Detectors: Ge(Li), Au-Si (FWHM=15.5 keV at 6 MeV), scintillation detectors; Measured: E(α), E β , E γ .

Others: 1968Br17, 1967Tr01, 1963Ch09, 1961Cu05, 1950Ev03.

²⁰⁷Pb Levels

E(level) [†]	J ^{π‡}	$T_{1/2}$		
0	$1/2^{-}$	stable		
569.64 10	5/2-			
897.76 10	3/2-			

[†] From a least-squares fit to $E\gamma$.

[‡] From the Adopted Levels.

 β^{-} radiations

B(pol) (1961Cu05); spectrum shape (1967Tr01).

E(decay)	E(level)	$I\beta^{-\dagger\ddagger}$	Log ft	Comments
533 6	897.76	0.271 10	6.157 22	av Eβ=155.0 <i>17</i>
				$I\beta^-$: Others: 0.24% in 1967Da10 0.155% 20 in 1963Ch09.
861 [#] 6	569.64	$<8 \times 10^{-5}$	$> 10.5^{1u}$	av E β =273.2 18
				$I\beta^{-}$: From 1988Hi14. Other: $I\beta < 1 \times 10^{-2}$ in 1967Da10.
1431 8	0	99.729 <i>10</i>	5.108 6	av E β =492.5 21
				E(decay): From 1967Da10; Other: 1442 8 (1950Ev03).
				$I\beta^{-}$: Others: 99.76% in 1967Da10 and 99.845% 20 in 1963Ch09.

 † From I($\gamma\text{+ce})$ imbalance at each level, unless otherwise stated.

[‡] Absolute intensity per 100 decays.

[#] Existence of this branch is questionable.

 $\gamma(^{207}\text{Pb})$

Iv normalization: From Iv(897v)/Iv(351v) in ²¹¹Pb source (1988Hi14) and Iv(351v)=12.91% 11 (1991Ar04).

E_{γ}^{\ddagger}	I_{γ} #&	E _i (level)	\mathbf{J}_i^{π}	$E_f J_f^{\pi}$	Mult.@	α^{\dagger}	Comments
328.10 <i>12</i>	0.00142 14	897.76	3/2-	569.64 5/2	- [M1]	0.334	$\begin{aligned} \alpha(\text{K}) = 0.273 \ 4; \ \alpha(\text{L}) = 0.0466 \ 7; \ \alpha(\text{M}) = 0.01090 \ 16; \\ \alpha(\text{N}+) = 0.00338 \ 5 \\ \alpha(\text{N}) = 0.00277 \ 4; \ \alpha(\text{O}) = 0.000552 \ 8; \\ \alpha(\text{P}) = 5.91 \times 10^{-5} \ 9 \\ \text{I}_{\gamma}: \ \text{From} \ I_{\gamma}(328\gamma)/I_{\gamma}(898\gamma) = 0.0054 \ 5 \ (1988\text{Hi}14). \\ \text{Other:} \ 0.0020 \ 2 \ \text{in} \ 1968\text{Br}17. \end{aligned}$

 $^{207}_{82}\text{Pb}_{125}\text{-}2$

207 Tl β^- decay 1988Hi14,1967Da10 (continued)									
γ ⁽²⁰⁷ Pb) (continued)									
E_{γ}^{\ddagger}	Ι _γ #&	E _i (level)	\mathbf{J}_i^{π}	\mathbf{E}_{f}	\mathbf{J}_{f}^{π}	Mult.@	$\delta^{@}$	α^{\dagger}	Comments
569.698 2	0.00185 <i>19</i>	569.64	5/2-	0	1/2-	E2		0.0216	Mult.: $\alpha(\exp)=0.16\ 8\ in\ 1988Hi14\ from$ the determination of the yields of the 328 and 570y's along with the requirement that Ti(328y)=Ti(570y), with $\alpha(570\gamma)=0.0218$. This value of α would lead to mult=E2(+M1) with $\delta>0.86$ and large B(E2)(W.u.) value that is difficult to explain for a nucleus close to the doubly-magic ²⁰⁸ Pb. On the basis of theoretical calculations, 1974Ha34 suggest that $\delta<0.1$. 1988Hi14 also suggest that the E2 component is negligible, and explained the deviation of $\alpha(\exp)$ from theory as most likely due to penetration effect. $\alpha(K)=0.01584\ 23;\ \alpha(L)=0.00439\ 7;$ $\alpha(M)=0.001081\ 16;\ \alpha(N+)=0.000330\ 5$ $\alpha(N)=0.000274\ 4;\ \alpha(O)=5.21\times10^{-5}\ 8;$ $\alpha(P)=4.29\times10^{-6}\ 6$ E _y : 569.62\ 12\ in\ 1988Hi14. L _v : From Ti(328y)=Ti(570y), The
									$I\beta(570) < 8 \times 10^{-5}$ (1988Hi14) contribution has been neglected in the intensity balance
897.77 12	0.263 9	897.76	3/2-	0	1/2-	M1+E2	+0.091 9	0.0233	α(K)=0.0192 3; α(L)=0.00318 5; α(M)=0.000741 11; α(N+)=0.000230 4 α(N)=0.000188 3; α(O)=3.76×10-5 6; α(P)=4.04×10-6 6 Iγ: From Iγ(898γ)/Iγ(351γ)=0.0202 7 (1988Hi14) and Iγ(351γ in 211Bi α decay)=13.02% 12. Note that the authors in 1988Hi14 quoted Ti(898γ)=0.263% 9, using Iγ(351γ)=12.76% with α taken as 0.022 7 (private communication from first author in 1988Hi14, February 1993) leading to the same ratio of Iγ(898γ)/Iγ(351γ)=0.0202 7. Other: 0.270% 25 in 1968Br17.

[†] Additional information 1.
[‡] From adopted gammas.
[#] From 1988Hi14, unless otherwise stated.
[@] From the adopted gammas, unless otherwise stated.
[&] Absolute intensity per 100 decays.

²⁰⁷Tl β^- decay 1988Hi14,1967Da10

Decay Scheme

