181 Ta(30 Si,4n γ) **2008Ha39**

History

Type Author Citation Literature Cutoff Date
Full Evaluation F. G. Kondev, S. Lalkovski NDS 112, 707 (2011) 1-Aug-2010

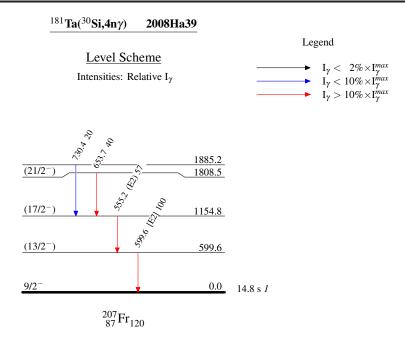
2008Ha39: $E(^{30}Si)=152$ MeV beam delivered by the ATLAS accelerator at ANL. Detectors: GAMMASPHERE array with 98 HPGe detectors in conjunction with the HERCULES evaporation-residue detector. Measured: $E\gamma$, $I\gamma$, $\gamma\gamma$ coin and $\gamma(\theta)$ gated by reaction products detected in HERCULES.

$^{207}\mathrm{Fr}$ Levels

E(level) [†]	$J^{\pi \ddagger}$	T _{1/2}	Comments
0.0#	9/2-	14.8 s <i>1</i>	J^{π} , $T_{1/2}$: From Adopted Levels.
599.6 [#] 5	$(13/2^{-})$		
1154.8 [#] 7	$(17/2^{-})$		
1808.5 [#] 9	$(21/2^{-})$		
1885.2 9			

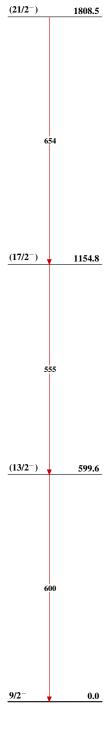
 $^{^{\}dagger}$ From a least-squares fit to E γ .

γ (207Fr)


E_{γ}^{\dagger}	I_{γ}^{\dagger}	$E_i(level)$	\mathbf{J}_i^{π}	E_f J_f^{π}	Mult.‡	Comments
555.2 5	57 5	1154.8	$\overline{(17/2^{-})}$	599.6 (13/2 ⁻)	(E2)	Mult.: A ₂ =+0.67 12.
599.6 5	100	599.6	(13/2-)	0.0 9/2-	[E2]	Mult.: A ₂ =-0.04 4, but the value is inconsistent with the proposed stretched E2 assignment in 2008Ha39, where a possible contamination from a transition of similar energy in ²⁰⁴ At is suggested.
653.7 <i>5</i>	40 8	1808.5	$(21/2^{-})$	1154.8 (17/2 ⁻)		
730.4 5	20 6	1885.2		1154.8 (17/2 ⁻)		

 $^{^{\}dagger}$ From 2008Ha39. The uncertainties in Ey were estimated by the evaluator.

[‡] From 2008Ha39, based on deduced transition multipolarities using $\gamma(\theta)$, unless otherwise specified.


[#] Band(A): Weakly collective structure based on the $(\pi h_{9/2})^{+1}$ configuration.

 $^{^{\}ddagger}$ Based on $\gamma(\theta)$ analysis with A₄ term set to zero.

181 Ta(30 Si,4n γ) 2008Ha39

Band(A): Weakly collective structure based on the $(\pi \ h_{9/2})^{+1}$ configuration

$$^{207}_{87}\mathrm{Fr}_{120}$$