²⁰⁷Po ε decay 1978Sc12,1970As01

	His	story	
Туре	Author	Citation	Literature Cutoff Date
Full Evaluation	F. G. Kondev, S. Lalkovski	NDS 112, 707 (2011)	1-Aug-2010

Parent: ²⁰⁷Po: E=0; J^{π}=5/2⁻; T_{1/2}=5.80 h 2; Q(ϵ)=2909 7; % ϵ +% β ⁺ decay=99.979 2

1978Sc12: Facility: Goettingen cyclotron; Source: ²⁰⁷Po produced in ²⁰⁹Bi(d,4n) reaction at E(d)=27 MeV. Detectors: one 100 mm² x 2 mm Si(Li), FWHM = 1.8 keV at 624 keV; one 10%Ge(Li); Measured: $E\gamma$, $I\gamma$, Ice(K). 1970As01: Facility: Uppsala syncro-cyclotron; Source: ²⁰⁷Po from Bi₂O₃(p,3n) reaction at E(p)=34 MeV. ²⁰⁷Po extracted and

deposited on 10 cm² Ag foil; Detectors: $3 \text{ cm}^2 \text{ x } 0.8 \text{ cmGe}(\text{Li})$;

Others: 1986Be07, 1983He09, 1971Sh22, 1969Ho37, 1956St60, 1958Ar56. $\gamma^{\pm}/405.7\gamma = 0.071 \ 3 \ (1971Sh22)$. Others: 1969Ho37, 1956St60.

²⁰⁷Bi Levels

E(level) [†]	$J^{\pi \ddagger}$	T _{1/2} ‡	Comments
0.0	9/2-	31.55 y 4	
669.79 7	$11/2^{-}$		
742.76 7	7/2-		
892.48 7	9/2-		
992.46 7	7/2-		
1148.47 8	$5/2^{-}$		
1211.4 7	9/2-		
1360.47 14	$(7/2)^{-}$		
1372.74 8	$5/2^{-}$		
1680.28 9	$(3/2)^{-}$		
1690.86 11	$5/2^{-}$		
1762.82 11	$5/2^{-}$		
1902.31 9	$1/2^{+}$		
2060.39 9	$3/2^{+}$	103 ps 10	$T_{1/2}$: From 345.2K- γ (t) coin. in 1986Be07.
2120.1 4	$(3/2)^{-}$		
2405.68 11	5/2+		

[†] From a least-squares fit to $E\gamma$.

[‡] From the Adopted Levels, unless otherwise noted.

ε, β^+ radiations

E(decay)	E(level)	Iβ ⁺ †#	$\mathrm{I}\varepsilon^{\ddagger\#}$	Log ft	$I(\varepsilon + \beta^+)^{\#}$	Comments
(503 7)	2405.68		3.12 9	6.676 19	3.12 9	εK=0.7526 11; εL=0.1841 8; εM+=0.0632 3
(789 7)	2120.1		0.176 6	8.368 18	0.176 6	εK=0.7766 4; εL=0.1671 3; εM+=0.05633 10
(849 7)	2060.39		21.2 5	6.357 13	21.2 5	εK=0.7793 3; εL=0.16512 22; εM+=0.05555 9
(1007 7)	1902.31		0.30 7	8.89 ¹ <i>u</i> 11	0.30 7	εK=0.7518 5; εL=0.1846 4; εM+=0.06364 15
(1146 7)	1762.82		0.06 5	9.2 4	0.06 5	εK=0.7883 2; εL=0.1587 1; εM+=0.05299 5
(1536 7)	1372.74		0.18 9	8.98 22	0.18 9	εK=0.7939; εL=0.15424 7; εM+=0.05121 3
(1549 7)	1360.47		0.047 24	9.57 23	0.047 24	εK=0.7940; εL=0.15413 7; εM+=0.05116 3
(1761 7)	1148.47	< 0.001	<0.4	>8.8	<0.4	av E β =354.0 31; ε K=0.7944; ε L=0.15232 6; ε M+=0.05046 3
1915 <i>10</i>	992.46	0.371 14	63.7 14	6.632 11	64.1 <i>14</i>	av Eβ=422.4 33; εK=0.79324 9; εL=0.15100 6; εM+=0.04997 3
						E(decay): from E β +=893 10 (1958Ar56).
2162 12	742.76	0.153 10	10.9 7	7.51 3	11.1 7	av Eβ=531.9 <i>31</i> ; εK=0.7884 <i>2</i> ; εL=0.14868 <i>7</i> ; εM+=0.04913 <i>3</i>
						E(decay): From $E\beta +=1140 \ 12 \ (1958Ar56)$.

$^{207}\mathbf{Po}\,\varepsilon$ decay 1978Sc12,1970As01 (continued)

ε, β^+ radiations (continued)

[†] Iβ(893)/Iβ(1140)=2.1, Iβ⁺/ce(K)(406)=0.29 *3* (1958Ar56).
[‡] From an intensity imbalance at each level.
[#] For absolute intensity per 100 decays, multiply by 0.99979 *2*.

$\gamma(^{207}\text{Bi})$

Iγ normalization: From Σ Ti(to g.s.)=99.979 2. The $\varepsilon + \beta^+$ branch to the g.s. is second forbidden and is expected to have a negligible intensity.

ω

${\rm E_{\gamma}}^{\ddagger}$	Ι _γ ‡ &	E _i (level)	\mathbf{J}_i^{π}	E_f	\mathbf{J}_f^{π}	Mult. [@]	δ	α^{\dagger}	Comments
99.954 7	8.2 8	992.46	7/2-	892.48	9/2-	M1+E2	0.32 3	9.88 15	α (K)=7.55 <i>17</i> ; α (L)=1.76 <i>6</i> ; α (M)=0.428 <i>16</i> ; α (N+)=0.133 <i>5</i> α (N)=0.109 <i>4</i> ; α (O)=0.0218 <i>8</i> ; α (P)=0.00236 <i>5</i> I _{γ} : From Ice(L1)=9.8 <i>10</i> (1958Ar56) and α . δ : from L12/L3=8.2 <i>12</i> (1958Ar56).
139.7	0.028	1902.31	1/2+	1762.82	5/2-	[M2]		24.5	$\alpha(K)=16.65\ 24;\ \alpha(L)=5.86\ 9;\ \alpha(M)=1.502\ 21;\ \alpha(N+)=0.477\ 7$ $\alpha(N)=0.390\ 6;\ \alpha(O)=0.0784\ 11;\ \alpha(P)=0.00877\ 13$ $I_{\gamma}:$ From Ice(K)=0.46 (1958Ar56) if mult=M2. I γ not measured directly.
149.6 [#] 2	7.4 4	892.48	9/2-	742.76	7/2-	M1(+E2)	<0.6	3.0 3	$\begin{aligned} &\alpha(\text{K})=2.3 \ 3; \ \alpha(\text{L})=0.50 \ 4; \ \alpha(\text{M})=0.120 \ 12; \ \alpha(\text{N}+)=0.037 \ 4 \\ &\alpha(\text{N})=0.031 \ 3; \ \alpha(\text{O})=0.0061 \ 5; \ \alpha(\text{P})=0.000679 \ 13 \\ &\text{Mult.,} \delta: \ \alpha(\text{K})\text{exp}=2.4 \ 4 \ (\text{Ice}(\text{K})=12.0 \ 15 \ \text{in} \ 1958\text{Ar56}) \\ &(1970\text{As01}). \ \text{Other:} \ \text{L}12/\text{L}3\geq16 \ (1958\text{Ar56}). \end{aligned}$
156.1 [#] 1	3.2 3	1148.47	5/2-	992.46	7/2-	M1(+E2)	<0.3	2.79 9	 α(K)=2.25 9; α(L)=0.416 11; α(M)=0.099 3; α(N+)=0.0309 10 α(N)=0.0252 8; α(O)=0.00512 13; α(P)=0.000597 9 I_γ: From Ice(K)=7.2 7 (1958Ar56) and α. Mult.,δ: K/L=5.8 6 (1958Ar56). K/L determines mult=E1 or M1(+E2). If E1, then Iγ=63 and such a γ-ray would be a prominent line in the spectrum.
158.084 7	24.5 12	2060.39	3/2+	1902.31	1/2+	M1+E2	4.5 +15-8	1.14 <i>4</i>	α(K)=0.37 5; α(L)=0.571 9; α(M)=0.1504 25; α(N+)=0.0460 8 α(N)=0.0383 7; α(O)=0.00712 12; α(P)=0.000576 8 α(N)=0.0379 7; α(O)=0.00706 12; α(P)=0.000576 8 Mult.: α(K)exp=0.37 4 (Ice(K)=11.5 1 in 1958Ar56) (1970As01). δ: From α(K)exp. K/L=0.75 8 (1958Ar56) gives δ≈4.8.
^x 177.7 [#]	1.3 6					M1(+E2)	<0.7	1.77 22	$\alpha(K)=1.39\ 24$; $\alpha(L)=0.293\ 12$; $\alpha(M)=0.070\ 5$; $\alpha(N+)=0.0220\ 13$ $\alpha(N)=0.0180\ 11$; $\alpha(O)=0.00361\ 16$; $\alpha(P)=0.000402\ 12$ Mult.: From $\alpha(K)exp>2.0$ (Ice(K)=2), K/L1=7.1 (1958Ar56). I _{γ} : From Ice(K)=1.8 8 (1978Sc12) and α .
^x 205.2 [#] 2	1.04 6					M1(+E2)	<0.6	1.21 13	α(K)=0.96 13; α(L)=0.188 3; α(M)=0.0449 10; α(N+)=0.0141 3 α(N)=0.01147 24; α(O)=0.00231 4; α(P)=0.000264 12 Mult.,δ: K/L=5.1 7 (1958Ar56) consistent with M1(+E2) or E1. If E1, Iγ=19.7 (from Ice(K)=1.2 2 (1958Ar56)) and such a γ-ray would have been observed. Iγ: From Ice(K)(K)=1.00 6 (1978Sc12) and α. Photon peak masked in spectrum.
^x 214.4 [#]	<2					M1+E2		0.8 5	$\alpha(K)=0.54; \alpha(L)=0.1616; \alpha(M)=0.040011; \alpha(N+)=0.0124122$ $\alpha(N)=0.01023; \alpha(O)=0.002006; \alpha(P)=0.000204$
222.030 7	74.4 22	1902.31	1/2+	1680.28	(3/2)-	E1		0.0620	$\alpha(K)=0.0504\ 7;\ \alpha(L)=0.00893\ 13;\ \alpha(M)=0.00210\ 3;$

					20	⁰⁷ Po ε decay	1978Sc12,197	70As01 (cont	tinued)
							$\gamma(^{207}\text{Bi})$ (contin	ued)	
E_{γ}^{\ddagger}	Ι _γ ‡&	E _i (level)	\mathbf{J}_i^{π}	E_f	\mathbf{J}_f^{π}	Mult. [@]	δ	α^{\dagger}	Comments
222 690 9	525	892.48	9/2-	669 79	11/2-	M1(+F2)	<0.51	0.98.8	$\alpha(N+)=0.000648 \ 9$ $\alpha(N)=0.000531 \ 8; \ \alpha(O)=0.0001051 \ 15; \ \alpha(P)=1.137\times10^{-5} \ 16$ Mult.: $\alpha(K)\exp=0.041 \ +15-10 \ (Ice(K)=3.5 \ 8 \ in \ 1958Ar56) \ (1970As01).$ $\alpha(K)=0.79 \ 8; \ \alpha(L)=0.148 \ 3; \ \alpha(M)=0.0351 \ 5; \ \alpha(N+)=0.01101$
222.090 9	5.2 5	072.10	72	007.17	11/2	WI (122)	_0.01	0.90 0	$a(R)=0.00898$ 13; $\alpha(O)=0.00182$ 3; $\alpha(P)=0.000210$ 9 β : From L 12/L 3>15 (1058 4756)
224.270 7	11.7 6	1372.74	5/2-	1148.47	5/2-	M1(+E2)	<0.5	0.96 8	α(N)=0.00880 13; α(D)=0.0178 3; α(M)=0.0344 5; α(N+)=0.01078 16 α(N)=0.00880 13; α(O)=0.00178 3; α(P)=0.000206 9 Mult,δ: From K/L=5.5 9 (1958Ar56) and L12/L3≥15 (1958Ar56) lead to δ<0.62 and δ≤0.5, respectively; α(K)exp=0.44 7 from Lec(K)=5.2 8 in 1958Ar56 and Ly=11.7
249.745 10	94 5	992.46	7/2-	742.76	7/2-	M1		0.768	
^x 288.0 [#] 3	2.4 5					M1(+E2)	<0.7	0.46 7	$\alpha(K)=0.37$ 6; $\alpha(L)=0.069$ 5; $\alpha(M)=0.0164$ 9; $\alpha(N+)=0.0051$ 3 $\alpha(N)=0.00419$ 22; $\alpha(O)=0.00085$ 6; $\alpha(P)=9.8\times10^{-5}$ 10 Mult., δ : From $\alpha(K)exp>0.28$ and K/L=5.6 8 (1958Ar56).
297.63 9	57.2 16	2060.39	3/2+	1762.82	5/2-	E1		0.0310	$\alpha'(\mathbf{X})=0.0253 \ 4; \ \alpha(\mathbf{L})=0.00434 \ 6; \ \alpha(\mathbf{M})=0.001017 \ 15; \ \alpha(\mathbf{N}+)=0.000315 \ 5 \ \alpha(\mathbf{N})=0.000258 \ 4; \ \alpha(\mathbf{O})=5.14\times10^{-5} \ 8; \ \alpha(\mathbf{P})=5.68\times10^{-6} \ 8 \ Mult.: \ From \ \alpha(\mathbf{K})exp=0.0206 \ 17 \ (Ice(\mathbf{K})=1.37 \ 8) \ (1978Sc12); \ Other: \ \alpha(\mathbf{L})exp=0.005 \ (Ice(\mathbf{L}1)=0.3 \ in \ 1958Ar56) \ (1970A \ sol)$
307.81 <i>10</i>	35.1 11	1680.28	(3/2)-	1372.74	5/2-	M1+E2	0.23 +8-11	0.416 <i>14</i>	$\alpha(K)=0.338 \ 12; \ \alpha(L)=0.0597 \ 13; \ \alpha(M)=0.0141 \ 3; \\ \alpha(N+)=0.00442 \ 9 \\ \alpha(N)=0.00360 \ 7; \ \alpha(O)=0.000733 \ 15; \ \alpha(P)=8.66\times10^{-5} \ 22 \\ \alpha(N)=0.00364 \ 6; \ \alpha(O)=0.000744 \ 12; \ \alpha(P)=8.84\times10^{-5} \ 15 \\ \text{Mult.: From } \alpha(K)\exp=0.338 \ 11 \ (\text{Ice}(K)=12.23 \ 5) \ (1978\text{Sc12}); \\ \text{Other: } \alpha(K)\exp=0.39 \ 4 \ (\text{Ice}(K)=14 \ 1 \ \text{in } 1958\text{Ar56}) \\ (1970\text{As01}). \\ \delta: \text{ From } \alpha(K)\exp. \ L12/L3\geq18 \ (1958\text{Ar56}) \ \text{and } K/L=5.6 \ 6 \\ (1958\text{Ar56}) \ \text{lead to } \delta<0.65 \ \text{and } <0.63, \ \text{respectively.} \end{cases}$
330.39 12	13.9 5	1690.86	5/2-	1360.47	(7/2)-	M1+E2	0.35 10	0.328 17	$\alpha(K)=0.265 \ 15; \ \alpha(L)=0.0478 \ 15; \ \alpha(M)=0.0113 \ 3;$

4

 $^{207}_{83}\mathrm{Bi}_{124}\text{-}4$

						207 Po ε decay	1978Sc12,197	70As01 (co	ntinued)
							γ ⁽²⁰⁷ Bi) (contin	ued)	
E_{γ}^{\ddagger}	Ι _γ ‡&	E _i (level)	\mathbf{J}_i^{π}	E_f	\mathbf{J}_f^{π}	Mult.@	δ	α^{\dagger}	Comments
345.32 9	119 3	2405.68	5/2+	2060.39	3/2+	M1(+E2)	0.30 6	0.297 9	$\begin{aligned} &\alpha(\text{N}+)=0.00354 \ 10 \\ &\alpha(\text{N})=0.00289 \ 8; \ \alpha(\text{O})=0.000587 \ 18; \ \alpha(\text{P})=6.9\times10^{-5} \ 3 \\ &\alpha(\text{N})=0.00290 \ 13; \ \alpha(\text{O})=0.00059 \ 3; \ \alpha(\text{P})=6.9\times10^{-5} \ 5 \\ &\text{Mult.:} \ \alpha(\text{K})\text{exp}=0.265 \ 13 \ (\text{Lce}(\text{K})=3.81 \ 5) \ (1978\text{Sc12}); \ \text{Other:} \\ &\alpha(\text{K})\text{exp}=0.32 \ 6 \ (\text{Lce}(\text{K})=4.2 \ 5 \ \text{in} \ 1958\text{Ar56}) \ (1970\text{As01}). \\ &\delta: \ \text{From} \ \alpha(\text{K})\text{exp}. \\ &\alpha(\text{K})=0.241 \ 8; \ \alpha(\text{L})=0.0428 \ 9; \ \alpha(\text{M})=0.01009 \ 20; \\ &\alpha(\text{N}+)=0.00317 \ 7 \\ &\alpha(\text{N})=0.00258 \ 5; \ \alpha(\text{O})=0.000525 \ 11; \ \alpha(\text{P})=6.19\times10^{-5} \ 15 \\ &\alpha(\text{N})=0.00265 \ 5; \ \alpha(\text{O})=0.000541 \ 9; \ \alpha(\text{P})=6.43\times10^{-5} \ 12 \\ &\text{Mult.:} \ \alpha(\text{K})\text{exp}=0.241 \ 6 \ (\text{Lce}(\text{K})=29.57 \ 6); \ \text{K/L}=4.85 \ 7; \end{aligned}$
369.51 8	99.1 25	2060.39	3/2+	1690.86	5/2-	E1		0.0190	L/M+=3.3 6 (1978Sc12); Other: $\alpha(K)\exp=0.31 3$ (Ice(K)=34 3 in 1958Ar56) (1970As01). δ : From $\alpha(K)\exp$. L12/L3≥90 (1958Ar56) gives δ <0.2. $\alpha(K)=0.01557 22$; $\alpha(L)=0.00261 4$; $\alpha(M)=0.000610 9$; $\alpha(N+)=0.000189 3$ $\alpha(N)=0.0001548 22$; $\alpha(O)=3.10\times10^{-5} 5$; $\alpha(P)=3.47\times10^{-6} 5$ Mult.: $\alpha(K)\exp=0.016 3$ (Ice(K)=1.7 3 in 1958Ar56)
380.10 <i>10</i> 390.10 <i>18</i>	3.5 <i>3</i> 9.4 <i>14</i>	2060.39 1762.82	3/2 ⁺ 5/2 ⁻	1680.28 1372.74	(3/2) ⁻ 5/2 ⁻	E1+M2 M1+E2	0.32 +11-15 <1.1	0.18 5	(1970As01); Note that M1/E2 assigned in 1978Sc12, based on α (K)exp=0.139 8 (Ice(K)=1.37 8) (1978Sc12). Mult., δ : From α (K)exp=0.07 4 (Ice(K)=0.25 12) (1978Sc12). α (K)=0.14 4; α (L)=0.027 5; α (M)=0.0065 10; α (N+)=0.0020
402.4 [#] 4	7.7 8	1762.82	5/2-	1360.47	(7/2)-	(M1+E2)	<1.1	0.17 5	$\alpha(N)=0.00167 \ 25; \ \alpha(O)=0.00034 \ 6; \ \alpha(P)=3.9\times10^{-5} \ 8$ I _{\gamma} : Other: <6.3 (1971Sh22). Mult.,\delta: \alpha(K)\exp>0.11 (Ice(K)=0.65 in 1958Ar56) (1970As01). \alpha(K)=0.13 \ 4; \ \alpha(L)=0.025 \ 5; \ \alpha(M)=0.0060 \ 9; \ \alpha(N+)=0.0019 \ 3 \alpha(N)=0.00153 \ 24; \ \alpha(O)=0.00031 \ 5; \ \alpha(P)=3.6\times10^{-5} \ 8
405.78 8	563	1148.47	5/2-	742.76	7/2-	M1		0.205	$\begin{aligned} &\alpha(N) = 0.0015 \ 3; \ \alpha(O) = 0.00030 \ 7; \ \alpha(P) = 3.4 \times 10^{-5} \ 10 \\ &I_{\gamma}: \ From \ Ice(K)(K) = 0.92 \ 10 \ (1958Ar56) \ and \ \alpha. \\ &Mult., \delta: \ From \ K/L = 5 \ 1 \ (1958Ar56). \\ &\alpha(K) = 0.1672 \ 24; \ \alpha(L) = 0.0287 \ 4; \ \alpha(M) = 0.00673 \ 10; \\ &\alpha(N+) = 0.00211 \ 3 \\ &\alpha(N) = 0.001720 \ 25; \ \alpha(O) = 0.000352 \ 5; \ \alpha(P) = 4.19 \times 10^{-5} \ 6 \end{aligned}$
×466.44 13	5.7 <i>3</i>	1211 4	0/2-	740 76	7/2-	(E1,E2)		0 1304	Mult.: From $\alpha(K)\exp=0.168$ (Ice(K)=100); K/L=5.56 8; L/M+=3.3 6 (1978Sc12). Other: $\alpha(K)\exp=0.18$ 2 (Ice(K)=100 in 1958Ar56) (1970As01). δ : <0.01 from A ₂ =0.069 6 and A ₄ =0 using $\gamma(\theta,T)$ in 1983He09; <0.055 from L12/L3 (1958Ar56). Mult.: $\alpha(K)\exp<0.035$ based on the evaluator's estimate of Ice(K)(K)<0.2 for a possible 466 γ ce(K) line. $\alpha(K)=0.1139.46$; $\alpha(L)=0.0195.3$; $\alpha(M)=0.00456.7$;
-100.J	~1.0	1211.4	\mathcal{I}_{\perp}	1-12.10	112	[1411]		0.1374	$a_{(12)}=0.1157$ 10, $a_{(12)}=0.0175$ 3, $a_{(14)}=0.00450$ /,

S

From ENSDF

					207 Po ε decay	1978Sc12	2,1970As01 (c	continued)
						γ (²⁰⁷ Bi) (co	ntinued)	
E_{γ}^{\ddagger}	I_{γ} ^{‡&}	E _i (level)	\mathbf{J}_i^π	$\mathbf{E}_f = \mathbf{J}_f^{\pi}$	Mult. [@]	δ	α^{\dagger}	Comments
503.33 10	9.8 5	2405.68	5/2+	1902.31 1/2	+ (E2)		0.0302	$\begin{aligned} &\alpha(\text{N}+)=0.001434\ 20\\ &\alpha(\text{N})=0.001167\ 17;\ \alpha(\text{O})=0.000239\ 4;\ \alpha(\text{P})=2.84\times10^{-5}\ 4\\ &\text{I}_{\gamma}:\ \text{From Ice}(\text{K})=0.20\ (1958\text{Ar56}),\ \text{I}_{\gamma}=1.8\ \text{if M1, and 8.1 if E2.}\\ &\text{Non observation in the photon spectrum suggests mult=M1.}\\ &\alpha(\text{K})=0.0212\ 3;\ \alpha(\text{L})=0.00682\ 10;\ \alpha(\text{M})=0.001705\ 24;\\ &\alpha(\text{N}+)=0.000528\ 8\\ &\alpha(\text{N})=0.000435\ 6;\ \alpha(\text{O})=8.45\times10^{-5}\ 12;\ \alpha(\text{P})=8.35\times10^{-6}\ 12\end{aligned}$
531.65 10	20.0 7	1680.28	(3/2)-	1148.47 5/2	- M1+E2	0.45 10	0.087 5	Mult.: $\alpha(K)\exp=0.026 \ 13 \ (Ice(K)=0.26 \ in \ 1958Ar56) \ (1970As01).$ $\alpha(K)=0.071 \ 5; \ \alpha(L)=0.0125 \ 6; \ \alpha(M)=0.00295 \ 13; \ \alpha(N+)=0.00092 \ 4$
629.80 <i>9</i>	78.0 20	1372.74	5/2-	742.76 7/2	- M1(+E2)	<0.12	0.0635 10	$\begin{aligned} &\alpha(N) = 0.00075 \ 4; \ \alpha(O) = 0.000153 \ 7; \ \alpha(P) = 1.81 \times 10^{-5} \ 9 \\ &\text{Mult.: From } \alpha(K) \exp = 0.071 \ 4 \ (\text{Ice}(K) = 1.47 \ 5); \ \text{K/L} = 5.2 \ 6 \\ &(1978\text{Sc}12); \ \text{Other: } \alpha(K) \exp = 0.049 \ 24 \ (\text{Ice}(K) = 1.6 \ 3 \ \text{in} \\ &1958\text{Ar56}) \ (1970\text{As01}). \end{aligned}$ $\delta: \ \text{From } \alpha(K) \exp, \\ &\alpha(K) = 0.0520 \ 8; \ \alpha(L) = 0.00881 \ 13; \ \alpha(M) = 0.00206 \ 3; \\ &\alpha(N+) = 0.000648 \ 10 \end{aligned}$
669.78 11	36.8 11	669.79	11/2-	0.0 9/2	⁻ M1+E2	+0.24 4	0.0522 11	$\begin{aligned} &\alpha(\text{N})=0.000528 \ 8; \ \alpha(\text{O})=0.0001079 \ 16; \ \alpha(\text{P})=1.287\times10^{-5} \ 19 \\ &\text{Mult.: From } \alpha(\text{K})\text{exp}=0.0536 \ 19 \ (\text{Ice}(\text{K})=4.32 \ 4); \ \text{K/L}=5.8 \ 3; \\ &\text{L/M}+=2.9 \ 6 \ (1978\text{Sc}12); \ \text{Other: } \alpha(\text{K})\text{exp}=0.055 \ 8 \ (\text{Ice}(\text{K})=4.5 \ 5 \ \text{in } 1958\text{Ar56}) \ (1970\text{As01}). \\ &\delta: \ \text{From } \alpha(\text{K})\text{exp. } \text{L}12/\text{L}3\geq30 \ (1958\text{Ar56}) \ \text{and } \text{K/L}=5.8 \ 3 \ (1958\text{Ar56}) \ \text{lead to } \delta<0.97 \ \text{and } <0.76, \ \text{respectively.} \\ &\alpha(\text{K})=0.0427 \ 9; \ \alpha(\text{L})=0.00727 \ 14; \ \alpha(\text{M})=0.00170 \ 3; \\ &\alpha(\text{N}+)=0.000536 \ 10 \end{aligned}$
687.53 10	105 <i>3</i>	2060.39	3/2+	1372.74 5/2	[–] E1		0.00524 8	$\begin{aligned} \alpha(N) &= 0.000436 \ 8; \ \alpha(O) &= 8.91 \times 10^{-5} \ 16; \ \alpha(P) &= 1.060 \times 10^{-5} \ 20 \\ \text{Mult.: From } \alpha(K) &\exp &= 0.0366 \ 16 \ (\text{Ice}(K) &= 1.39 \ 2) \ (1978\text{Sc12}). \\ \text{Other: } \alpha(K) &\exp &= 0.061 \ 11 \ (\text{Ice}(K) &= 1.7 \ 2 \ \text{in } 1958\text{Ar56}) \\ (1970\text{As01}). \\ \delta: \ \text{From adopted gammas.} \\ \alpha &= 0.00524 \ 8; \ \alpha(K) &= 0.00434 \ 6; \ \alpha(L) &= 0.000686 \ 10; \\ \alpha(M) &= 0.0001593 \ 23; \ \alpha(N +) &= 4.97 \times 10^{-5} \ 7 \\ \alpha(N) &= 4.05 \times 10^{-5} \ 6; \ \alpha(O) &= 8.20 \times 10^{-6} \ 12; \ \alpha(P) &= 9.50 \times 10^{-7} \ 14 \\ \text{Model} &= 0.0001593 \ 10^{-7} \ 14 \end{aligned}$
698.33 <i>23</i>	4.6 <i>3</i>	1690.86	5/2-	992.46 7/2	- M1(+E2)	<0.5	0.045 4	Mult.: From $\alpha(K)\exp=0.0041 \ 3 \ (Ice(K)=0.44 \ 2) \ (19/8Sc12);$ Other: $\alpha(K)\exp=0.0042 \ 8 \ (Ice(K)=0.48 \ 8 \ in \ 1958Ar56) \ (1970As01).$ $\alpha(K)=0.037 \ 3; \ \alpha(L)=0.0063 \ 5; \ \alpha(M)=0.00148 \ 10; \ \alpha(N+)=0.00047 \ 3 \ \alpha(N)=0.000380 \ 25; \ \alpha(O)=7.8\times10^{-5} \ 5; \ \alpha(P)=9.2\times10^{-6} \ 7 \ \alpha(N)=0.000403 \ 6; \ \alpha(O)=8.25\times10^{-5} \ 12; \ \alpha(D)=0.95\times10^{-6} \ 14$
742.72 15	1649 <i>35</i>	742.76	7/2-	0.0 9/2	- M1+E2	+0.334 10	0.0386	$\begin{array}{l} \alpha(1)=0.000405\ 0,\ \alpha(0)=0.25\times10^{-1}\ 12,\ \alpha(r)=9.05\times10^{-1}\ 14\\ \text{Mult.,}\delta:\ \alpha(\text{K})\text{exp}>0.033\ (\text{Ice}(\text{K})=0.20\ \text{in}\ 1958\text{Ar56})\ (1970\text{As01}).\\ \alpha(\text{K})=0.0316\ 5;\ \alpha(\text{L})=0.00538\ 8;\ \alpha(\text{M})=0.001262\ 19;\\ \alpha(\text{N}+)=0.000396\ 6 \end{array}$

6

					2	⁰⁷ Po ε decay	1978Sc12	2,1970As01 (continued)
							γ ⁽²⁰⁷ Bi) (co	ontinued)	
E_{γ}^{\ddagger}	I_{γ} ^{‡&}	E _i (level)	\mathbf{J}_i^{π}	E_f	\mathbf{J}_f^{π}	Mult. [@]	δ	α^{\dagger}	Comments
770.7 4	22.2 6	1762.82	5/2-	992.46	7/2-	M1+E2	0.66 11	0.0298 19	
									$\begin{aligned} &\alpha(N) = 0.000256 \ 14; \ \alpha(O) = 5.2 \times 10^{-3} \ 3; \ \alpha(P) = 6.1 \times 10^{-6} \ 4 \\ &\alpha(N) = 0.000260 \ 17; \ \alpha(O) = 5.3 \times 10^{-5} \ 4; \ \alpha(P) = 6.2 \times 10^{-6} \ 5 \\ &I_{\gamma}: \ Others: \ <35 \ (1970As01), \ 46 \ 6 \ (1971Sh22). \ The value \ of \\ &1971Sh22 \ leads \ to \ \delta > 1.9, \ in \ disagreement \ with \ K/L. \\ &Mult.: \ From \ \alpha(K)exp = 0.0240 \ 15 \ (Ice(K) = 0.55 \ 2); \ K/L = 6.9 \ 15 \\ &(1978Sc12); \ Other: \ \alpha(K)exp > 0.018 \ (Ice(K) = 0.74 \ 10 \ in \\ &1958Ar56) \ (1970As01). \end{aligned}$
892.4 <i>3</i>	20.9 5	892.48	9/2-	0.0	9/2-	E2+M1	1.4 2	0.0145 13	δ: From α(K)exp; K/L=6.9 15 (1978Sc12) gives δ<1.1. $α(K)=0.0117 11; α(L)=0.00215 16; α(M)=0.00051 4;α(N+)=0.000159 12$
									α (N)=0.000130 9; α (O)=2.63×10 ⁻⁵ 19; α (P)=3.03×10 ⁻⁶ 24 Mult.: From α (K)exp=0.0121 7 (Ice(K)=0.26 1) (1978Sc12). Other: α (K)exp=0.011 3 (Ice(K)=0.26 5 in 1958Ar56) (1970As01).
911.77 23	985 18	2060.39	3/2+	1148.47	5/2-	E1		0.00308 5	α =0.00308 5; α (K)=0.00256 4; α (L)=0.000397 6; α (M)=9.19×10 ⁻⁵ 13; α (N+)=2.87×10 ⁻⁵ 4
									$\alpha(N)=2.34\times10^{-5}$ 4; $\alpha(O)=4.75\times10^{-6}$ 7; $\alpha(P)=5.57\times10^{-7}$ 8 Mult.: From $\alpha(K)\exp=0.00245$ 7 (Ice(K)=2.49 2) (1978Sc12); Other: $\alpha(K)\exp=0.0026$ 2 (Ice(K)=2.6 2 in 1958Ar56) (1970As01).
947.9 <i>3</i>	69.3 14	1690.86	5/2-	742.76	7/2-	M1(+E2)	<0.59	0.0202 19	$\alpha(K) = 0.0166 \ 16; \ \alpha(L) = 0.00280 \ 24; \ \alpha(M) = 0.00066 \ 6; \ \alpha(N+) = 0.00206 \ 17$
*955.6 4	5.54.22								$\begin{aligned} \alpha(\text{N}) = 0.000168 \ 14; \ \alpha(\text{O}) = 3.4 \times 10^{-5} \ 3; \ \alpha(\text{P}) = 4.1 \times 10^{-6} \ 4 \\ \alpha(\text{N}) = 0.000169 \ 12; \ \alpha(\text{O}) = 3.5 \times 10^{-5} \ 3; \ \alpha(\text{P}) = 4.1 \times 10^{-6} \ 4 \\ \text{Mult.,} \delta: \ \text{From } \alpha(\text{K}) \exp = 0.018 \ 3 \ (\text{Ice}(\text{K}) = 1.24 \ 16) \ (1989\text{Sc}12). \\ \text{K/L1} = 3.2 \ 6 \ (1958\text{Ar56}) \ \text{and} \ \text{K/L} = 4.44 \ 21 \ (1978\text{Sc}12) \ \text{are} \\ \text{inconsistent with } \text{M1}(+\text{E2}) \ (6.0 \ \text{and} \ 5.96 \ \text{for } \text{M1}, \ \text{and} \ 6.8 \ \text{and} \\ 4.90 \ \text{for } \text{E2}, \ \text{respectively}). \ \text{Other:} \ \alpha(\text{K}) \exp = 0.022 \ 2 \ (\text{Ice}(\text{K}) = 1.3 \ 1 \ \text{in} \ 1958\text{Ar56}) \ (1970\text{As01}). \end{aligned}$
992.39 20	3437 62	992.46	7/2-	0.0	9/2-	M1+E2	-0.109 5	0.0195	α (K)=0.01597 23; α (L)=0.00267 4; α (M)=0.000624 9; α (N+)=0.000196 3 α (N)=0.0001596 23; α (O)=3.27×10 ⁻⁵ 5; α (P)=3.90×10 ⁻⁶ 6

 \neg

 $^{207}_{83}{
m Bi}_{124}$ -7

						²⁰⁷ Po ε decay	y 197	8Sc12,1970A	s01 (continued)
							γ (²⁰⁷ E	Bi) (continued	
E_{γ}^{\ddagger}	Ι _γ ‡&	E _i (level)	\mathbf{J}_i^{π}	E_{f}	\mathbf{J}_f^{π}	Mult.@	δ	α^{\dagger}	Comments
									Mult.: From α (K)exp=0.0164 (Ice(K)=54.29 6); K/L=5.94 9; L/M+=3.1 8 (1978Sc12). Other: α (K)exp=0.016 1 (Ice(K)=54 4 in 1958Ar56) (1970As01).
1020.3 5	8.2 2	1762.82	5/2-	742.76	7/2-	(M1)		0.0183	δ: From A ₂ =-0.005 4 and A ₄ =0.0012 using $\gamma(\theta,T)$ (1983He09). $\alpha(K)$ =0.01498 21; $\alpha(L)$ =0.00250 4; $\alpha(M)$ =0.000585 9; $\alpha(N+)$ =0.000184 3 $\alpha(N)$ =0.0001405 21; $\alpha(O)$ =2.06×10 ⁻⁵ 5; $\alpha(D)$ =2.66×10 ⁻⁶ 6
×1029.2.6	212								$\alpha(N)=0.0001495\ 21;\ \alpha(O)=5.00\times10^{-5}\ 5;\ \alpha(P)=5.00\times10^{-5}\ 0$ Mult.: $\alpha(L1)\exp\approx 0.005$ (Ice(L1)=0.05 in 1958Ar56) compared with 0.0023 (M1).
1038.3 0 1148.47 <i>21</i>	337 6	1148.47	5/2-	0.0	9/2-	E2		0.00536 8	α =0.00536 8; α (K)=0.00430 6; α (L)=0.000809 12; α (M)=0.000192 3; α (N+)=6.09×10 ⁻⁵ 9
									$\begin{aligned} \alpha(\text{N}) = 4.90 \times 10^{-5} \ 7; \ \alpha(\text{O}) = 9.8 \times 10^{-6} \ 14; \ \alpha(\text{P}) = 1.11 \times 10^{-6} \ 16; \\ \alpha(\text{IPF}) = 9.26 \times 10^{-7} \ 15 \end{aligned}$ Mult.: From $\alpha(\text{K}) \exp = 0.00394 \ 10 \ (\text{Ice}(\text{K}) = 1.37 \ 1); \ \text{K/L} = 5.13 \ 21; \\ \text{L/M} + = 4.0 \ 7 \ (1978\text{Sc}12). \text{ Other: } \alpha(\text{K}) \exp = 0.0033 \ 7 \ (\text{Ice}(\text{K}) = 1.50 \ 15) \end{aligned}$
1211.4 7	3.9 2	1211.4	9/2-	0.0	9/2-	M1		0.01176	in 1958Ar56) (1970As01). $\alpha(K)=0.00965 \ 14; \ \alpha(L)=0.001603 \ 23; \ \alpha(M)=0.000375 \ 6; \ \alpha(N+)=0.0001265 \ 18$
									$\alpha(N) = 9.58 \times 10^{-5} 14; \ \alpha(O) = 1.96 \times 10^{-5} 3; \ \alpha(P) = 2.35 \times 10^{-6} 4; \ \alpha(IPF) = 8.81 \times 10^{-6} 17 \ I_{\gamma}: Others: 7.4 12 (1971Sh22), <7 (1970As01).$ Mult : $\alpha(K) = 0.016 \ (log(K) = 0.13, 2 in 1958 Ar56) \ (1970As01)$
1317.3 5	5.3 4	2060.39	3/2+	742.76	7/2-	[M2]		0.0224	compared with 0.0097 (M1); E0 admixtures are possible. $\alpha(K)=0.0181 \ 3; \ \alpha(L)=0.00327 \ 5; \ \alpha(M)=0.000774 \ 11;$ $\alpha(N+)=0.000253 \ 4$
									α (N)=0.000198 3; α (O)=4.05×10 ⁻⁵ 6; α (P)=4.81×10 ⁻⁶ 7; α (IPF)=9.14×10 ⁻⁶ 14 L ₂ ,Mult: α (K)exp>0.0026 (1958Ar56) is consistent with mult=E2
									$(\alpha(K)=0.0034)$; however, the transition is placed from $(3/2)^+$ to $7/2^-$. Ice(K) ≈ 0.013 (1958Ar56) leads to I $\gamma = 0.72$ (M2) and 1.9 (E3). Note that 1970As01 report I $\gamma < 5.0$.
1360.5 <i>3</i>	30.2 6	1360.47	(7/2) ⁻	0.0	9/2-	M1(+E2)	<0.5	0.0083 5	$ \begin{array}{l} \alpha = 0.0083 \ 5; \ \alpha(\text{K}) = 0.0068 \ 5; \ \alpha(\text{L}) = 0.00113 \ 7; \ \alpha(\text{M}) = 0.000263 \ 15; \\ \alpha(\text{N}+) = 0.000128 \ 7 \\ \alpha(\text{N}) = 6.7 \times 10^{-5} \ 4; \ \alpha(\text{O}) = 1.38 \times 10^{-5} \ 8; \ \alpha(\text{P}) = 1.64 \times 10^{-6} \ 10; \end{array} $
									$\alpha(\text{IPF})=4.55\times10^{-5}\ 23$ $\alpha(\text{N})=6.3\times10^{-5}\ 8;\ \alpha(\text{O})=1.30\times10^{-5}\ 16;\ \alpha(\text{P})=1.54\times10^{-6}\ 20;$ $\alpha(\text{IPF})=4\ 3\times10^{-5}\ 5$
1372.5 4	70.6 14	1372.74	5/2-	0.0	9/2-	E2		0.00386 6	Mult., δ : From α (K)exp=0.0077 14 (Ice(K)=0.24 4) (1978Sc12). Other: α (K)exp=0.0066 10 (Ice(K)=0.23 3 in 1958Ar56) (1970As01). α =0.00386 6; α (K)=0.00311 5; α (L)=0.000553 8; α (M)=0.0001304 19:
			- / ·		-,-				$\alpha(N+)=6.98\times10^{-5} \ 10$ $\alpha(N)=3.33\times10^{-5} \ 5; \ \alpha(O)=6.73\times10^{-6} \ 10; \ \alpha(P)=7.74\times10^{-7} \ 11;$ $\alpha(IPF)=2.90\times10^{-5} \ 5$

 ∞

 $^{207}_{83}{
m Bi}_{124}$ -8

							207 Po ε de	cay 1978Sc1	2,1970As01 (continued)
								γ ⁽²⁰⁷ Bi) (c	ontinued)
	${\rm E_{\gamma}}^{\ddagger}$	Ι _γ ‡&	E _i (level)	\mathbf{J}_i^π	E_f	\mathbf{J}_f^{π}	Mult. [@]	α^{\dagger}	Comments
	1377.3 4	10.2 3	2120.1	(3/2)-	742.76	7/2-	[E2]	0.00384 6	Mult.: From α (K)exp=0.0036 6 (Ice(K)=0.26 4) (1978Sc12); Other: α (K)exp=0.0033 4 (Ice(K)=0.25 3 in 1958Ar56) (1970As01). α =0.00384 6; α (K)=0.00309 5; α (L)=0.000549 8; α (M)=0.0001294 19; α (N+)=7.06×10 ⁻⁵ 10 α (N)=3.30×10 ⁻⁵ 5; α (Q)=6.68×10 ⁻⁶ 10; α (P)=7.69×10 ⁻⁷ 11;
	^x 1586.8 5	3.1 2					(M1)	0.00606 9	$\begin{array}{l} \alpha(\mathrm{IV})=3.50\times10^{-5} \ 5 \\ \alpha=0.00606 \ 9; \ \alpha(\mathrm{K})=0.00485 \ 7; \ \alpha(\mathrm{L})=0.000800 \ 12; \ \alpha(\mathrm{M})=0.000187 \ 3; \\ \alpha(\mathrm{N}+)=0.000219 \ 3 \end{array}$
									$\alpha(N)=4.77 \times 10^{-5} 7; \alpha(O)=9.77 \times 10^{-6} 14; \alpha(P)=1.171 \times 10^{-6} 17; \alpha(IPF)=0.0001605 23$ Mult.: From $\alpha(K)$ exp=0.0056 22 (1978Sc12). Other: $\alpha(K)$ exp>0.0025
	^x 1613 1662.9 <i>4</i>	<0.4 16.5 9	2405.68	5/2+	742.76	7/2-	E1	0.001366 20	(1938A130). $\alpha = 0.001366\ 20;\ \alpha(K) = 0.000906\ 13;\ \alpha(L) = 0.0001360\ 19;\ \alpha(M) = 3.14 \times 10^{-5}\ 5;$ $\alpha(N+) = 0.000293$
									$\alpha(111.) = 0.000253$ $\alpha(N) = 7.99 \times 10^{-6} 12; \ \alpha(O) = 1.630 \times 10^{-6} 23; \ \alpha(P) = 1.94 \times 10^{-7} 3; \ \alpha(IPF) = 0.000283 4$ Mult: $\alpha(K) \approx n = 0.0010 3 (Ice(K) = 0.022 4 in 1958 Ar56) (1970 As01)$
9	^x 1747.4 6	2.2 5						0.00487 7	$\alpha = 0.00487 7; \alpha(K) = 0.00379 6; \alpha(L) = 0.000624 9; \alpha(M) = 0.0001457 21; \alpha(N+) = 0.000309 5$ $\alpha(N+) = 0.000309 5$
	1763.3 4	12.1 10	1762.82	5/2-	0.0	9/2-	E2	0.00258 4	α (IPF)=0.000263 4 α =0.00258 4; α (K)=0.00198 3; α (L)=0.000333 5; α (M)=7.79×10 ⁻⁵ 11; α (M)=0.00184 2
									$\alpha(N=1.9=0.000184.5)$ $\alpha(N)=1.99\times10^{-5}.3; \ \alpha(O)=4.04\times10^{-6}.6; \ \alpha(P)=4.73\times10^{-7}.7; \ \alpha(IPF)=0.0001593$
	^x 1798.7 6	0.8 2						0.00458 7	Mult.: From α (K)exp=0.0019 3 (lce(K)=0.024 6) (1978Sc12); Other: α (K)exp=0.0019 5 (lce(K)=0.027 5 in 1958Ar56) (1970As01). α =0.00458 7; α (K)=0.00352 5; α (L)=0.000579 9; α (M)=0.0001352 19;
									$\alpha(N+)=0.0003415$ $\alpha(N)=3.46\times10^{-5} 5; \alpha(O)=7.08\times10^{-6} 10; \alpha(P)=8.49\times10^{-7} 12;$ $\alpha(IPF)=0.000298 5$
	^x 1846.8 [#] 2	19.4 <i>11</i>					E1	0.001327 19	Mult.: α (K)exp \approx 0.0066 compared with 0.0038 (M1). α =0.001327 <i>19</i> ; α (K)=0.000762 <i>11</i> ; α (L)=0.0001139 <i>16</i> ; α (M)=2.62×10 ⁻⁵ <i>4</i> ; α (N+)=0.000425
									$\alpha(N)=6.68\times10^{-6} \ 10; \ \alpha(O)=1.365\times10^{-6} \ 20; \ \alpha(P)=1.629\times10^{-7} \ 23; \\ \alpha(IPF)=0.000417 \ 6 \\ \alpha(N)=6.68\times10^{-6} \ 11; \ \alpha(O)=1.365\times10^{-6} \ 22; \ \alpha(P)=1.63\times10^{-7} \ 3;$
	^x 1926	< 0.3							α (IPF)=0.000417 <i>9</i> Mult.: α (K)exp=0.00084 22 (Ice(K)=0.016 <i>4</i> in 1958Ar56) (1970As01).
	x1953 2060.8 4	<0.2 71 <i>3</i>	2060.39	3/2+	0.0	9/2-	(E3)	0.00372 6	α =0.00372 6; α (K)=0.00285 4; α (L)=0.000527 8; α (M)=0.0001251 18;

			²⁰⁷ Po ε decay 1978Sc12,1970As01 (continued)								
			$\gamma(^{207}\text{Bi})$ (continued)								
Eγ [‡]	I_{γ} ^{‡&}	E _i (level)	Comments								
Y 2 (00)			$\alpha(N+)=0.000213 \ 3$ $\alpha(N)=3.20\times10^{-5} \ 5; \ \alpha(O)=6.47\times10^{-6} \ 9; \ \alpha(P)=7.48\times10^{-7} \ 11; \ \alpha(IPF)=0.0001741 \ 25$ Mult.: $\alpha(K)\exp=0.0025 \ 4$ (Ice(K)=0.18 2) (1978Sc12) is consistent with mult=M1 (0.0025), or E3 (0.0029). The γ is placed from (3/2) ⁺ to 9/2 ⁻ .								
*2600	<0.8		I_{γ} : <4 in 19/0As01.								
[†] Add [‡] From [#] From	 [†] Additional information 1. [‡] From 1978Sc12, unless otherwise noted. [#] From 1958Ar56. 										
[@] From	m ce data	of 1958Ar5	6 and 1978Sc12, normalized to Ice(K)(K)=100 for the 405.75 γ , unless otherwise stated.								
^α For	absolute	intensity per	100 decays, multiply by 0.01724 22.								
^a Plac	cement of	transition in	the level scheme is uncertain.								

 $x \gamma$ ray not placed in level scheme.

L

²⁰⁷₈₃Bi₁₂₄-10

From ENSDF

=

²⁰⁷Bi₁₂₄-11

From ENSDF