²⁰⁷Bi IT decay (182 μ s) 1969Be47,1972Ma24,1978Lo12

History								
Туре	Author	Citation	Literature Cutoff Date					
Full Evaluation	F. G. Kondev, S. Lalkovski	NDS 112, 707 (2011)	1-Aug-2010					

Parent: ²⁰⁷Bi: E=2101.39 *17*; $J^{\pi}=21/2^+$; $T_{1/2}=182 \ \mu s \ 6$; %IT decay=100.0

1978Lo12, 1979Lo04: Pulsed beam, $E(\alpha)=30-43$ MeV, E(d)=25 MeV; γ Ge(Li), ce Si(Li); $\gamma\gamma$ coin, $\gamma(\theta)$, $\gamma(t)$;

1969Be47: Pulsed beam, $E(\alpha)=28$ MeV; Target: 10 mg/cm² ²⁰⁵Tl₂O₃ sandwiched between 100 μ g/cm² thick foils; Detectors: two Ge(Li); Measured: E γ , I γ , γ (t). 1972Ma24: Isomeric state produced in ²⁰⁴Hg(⁷Li,4n γ) reaction; Pulsed beam, E(⁷Li)=41 MeV; Target: 80 mg liquid mercury

enriched to 80% in ²⁰⁴Hg; two planar Ge(Li) detectors, magnet; Measured: E γ , I γ , $\gamma(\theta$,H,t), g-factor.

Others: 1998Pf02, 1979Lo04, 1967Co20. $I(K\alpha x ray)/I(669\gamma)=1.05 (1967Co20).$

²⁰⁷Bi Levels

E(level) [†]	Jπ‡	T _{1/2} ‡	Comments
0.0	9/2-	31.55 y 4	configuration: $\pi(1h_{0/2}^{+1})\otimes 0_1^+$.
669.52 9	$11/2^{-}$		configuration: $\pi(1h_{9/2}^{+1})\otimes 2_1^{+}$.
931.78 <i>11</i>	$13/2^{-}$		configuration: $\pi(1h_{0/2}^{+1})\otimes 2_1^{+}$.
1240.45 12	$13/2^{-}$		configuration: $\pi(1h_{0/2}^{2/f})\otimes 3_1^+$.
1358.04 18	$15/2^{-}$		configuration: $\pi(1h_{0/2}^{4/\Gamma})\otimes 3_1^{+}$.
1645.31 16	$15/2^{-}$		configuration: $\pi(1h_{9/2}^{+1})\otimes \nu(f_{5/2}^{-2})_{3^+}$.
2101.39 17	$21/2^{+}$	182 µs 6	$T_{1/2}$: From $\gamma(t)$ in 1969Be47. Other: 174 μ s 20 (1967Co20).
			μ : +3.43 4 from g=+0.327 4, weighted average of g=+0.325 6 (1972Ma24) and 0.329 5 (1974PrZF).
			configuration: $\pi(1h_{9/2}^{+1}) \otimes \nu(p_{1/2}^{-1}, i_{13/2}^{-1})_{6^-}$.

[†] From a least-squares fit to $E\gamma$.

[‡] From Adopted Levels, unless otherwise stated.

$\gamma(^{207}\text{Bi})$

Iy normalization: From Σ Ti(g.s.)=100. Note that this condition gives Σ Ti(from isomer)=97 12.

E_{γ}^{\dagger}	$I_{\gamma}^{\dagger \#}$	E_i (level)	\mathbf{J}_i^{π}	$E_f \qquad J_f^{\pi}$	Mult. [‡]	δ^{\ddagger}	α@	Comments
117.9 4	2.5 4	1358.04	15/2-	1240.45 13/2-	M1+E2	-0.06 4	6.36 11	$ \begin{aligned} &\alpha(\mathrm{K}) = 5.16 \ 10; \ \alpha(\mathrm{L}) = 0.914 \ 18; \\ &\alpha(\mathrm{M}) = 0.215 \ 5; \ \alpha(\mathrm{N} +) = 0.0676 \ 14 \\ &\alpha(\mathrm{N}) = 0.0551 \ 11; \ \alpha(\mathrm{O}) = 0.01124 \ 22; \\ &\alpha(\mathrm{P}) = 0.001334 \ 24 \end{aligned} $
^x 238 1	2.5 10							E_{γ} : Tentative line, observed in 1969Be47 with $I_{\gamma}=2.5$ 10 and suggested to be a decay branch from the isomeric state in order to account for the intensity imbalance. However, the final state at 1863 keV has not been observed.
262.2 1	23 3	931.78	13/2-	669.52 11/2-	M1+E2	-0.03 2	0.671	α (K)=0.547 8; α (L)=0.0948 14; α (M)=0.0223 4; α (N+)=0.00700 10 α (N)=0.00570 8; α (O)=0.001165 17; α (P)=0.0001387 20
288	≤1	1645.31	15/2-	1358.04 15/2-	[M1]			I_{γ} : From 1972Ma24; shows the 182
308.6 2	2.5 7	1240.45	13/2-	931.78 13/2-	M1(+E2)	-0.03 5	0.429 7	$\alpha(K)=0.350\ 6;\ \alpha(L)=0.0605\ 9;$

Continued on next page (footnotes at end of table)

²⁰⁷Bi IT decay (182 μs) 1969Be47,1972Ma24,1978Lo12 (continued)

$\gamma(^{207}\text{Bi})$ (continued)

E_{γ}^{\dagger}	$I_{\gamma}^{\dagger \#}$	E _i (level)	\mathbf{J}_i^{π}	E_f	\mathbf{J}_f^π	Mult. [‡]	δ^{\ddagger}	α [@]	Comments
405.0 <i>2</i> 426.1 <i>2</i>	4.2 8 14 2	1645.31 1358.04	15/2 ⁻ 15/2 ⁻	1240.45 931.78	13/2 ⁻ 13/2 ⁻	M1+E2 M1+E2	-0.15 <i>4</i> -0.10 <i>5</i>	0.202 <i>4</i> 0.178 <i>3</i>	$\begin{array}{c} \alpha(\mathrm{M})=0.01420\ 21;\\ \alpha(\mathrm{N}+)=0.00446\ 7\\ \alpha(\mathrm{N})=0.00363\ 6;\ \alpha(\mathrm{O})=0.000742\\ 11;\ \alpha(\mathrm{P})=8.84\times10^{-5}\ 13\\ \alpha(\mathrm{K})=0.165\ 3;\ \alpha(\mathrm{L})=0.0285\ 5;\\ \alpha(\mathrm{M})=0.00669\ 11;\\ \alpha(\mathrm{N}+)=0.00210\ 4\\ \alpha(\mathrm{N})=0.00171\ 3;\ \alpha(\mathrm{O})=0.000349\\ 6;\ \alpha(\mathrm{P})=4.16\times10^{-5}\ 7\\ \alpha(\mathrm{K})=0.1455\ 25;\ \alpha(\mathrm{L})=0.0250\ 4;\\ \alpha(\mathrm{M})=0.00586\ 9;\\ \alpha(\mathrm{M})=0.00184\ 2\\ \end{array}$
456.1 1	49 5	2101.39	21/2+	1645.31	15/2-	E3		0.1395	$\alpha(N+)=0.00184 \ 3$ $\alpha(N)=0.001500 \ 23;$ $\alpha(O)=0.000306 \ 5;$ $\alpha(P)=3.65\times10^{-5} \ 6$ $\alpha(K)=0.0662 \ 10; \ \alpha(L)=0.0545 \ 8;$ $\alpha(M)=0.01436 \ 21;$ $\alpha(N+)=0.00445 \ 7$ $\alpha(N)=0.00368 \ 6; \ \alpha(O)=0.000702$ $10; \ \alpha(P)=6 \ 32\times10^{-5} \ 9$
571.0 <i>1</i>	16 2	1240.45	13/2-	669.52	11/2-	M1+E2	-0.20 5	0.0802 17	$\alpha(K) = 0.0656 \ 14; \ \alpha(L) = 0.01121$ 21; $\alpha(M) = 0.00263 \ 5;$
669.5 1	62 6	669.52	11/2-	0.0	9/2-	M1+E2	+0.24 4	0.0523 11	$\alpha(N+)=0.000826 \ 16$ $\alpha(N)=0.000672 \ 13;$ $\alpha(O)=0.000137 \ 3;$ $\alpha(P)=1.63\times10^{-5} \ 4$ $\alpha(K)=0.0427 \ 9; \ \alpha(L)=0.00728 \ 14; \ \alpha(M)=0.00171 \ 3;$ $\alpha(N+)=0.000536 \ 10$ $\alpha(N)=0.000436 \ 8;$
713.5 2	39 4	1645.31	15/2-	931.78	13/2-	M1(+E2)	-0.03 4	0.0460	$\alpha(O)=8.92\times10^{-5} 16; \alpha(P)=1.061\times10^{-5} 20 \alpha(K)=0.0377 6; \alpha(L)=0.00636 9;$
743.30 15	37 4	2101.39	21/2+	1358.04	15/2-	E3		0.0335	$\alpha(M)=0.001490\ 22;\alpha(N+)=0.000468\ 7\alpha(N)=0.000381\ 6;\alpha(O)=7.79\times10^{-5}\ 11;\alpha(P)=9.30\times10^{-6}\ 14\alpha(K)=0.0223\ 4;\ \alpha(L)=0.00844\ 12;\ \alpha(M)=0.00214\ 3;\alpha(N+)=0.000666\ 10\alpha(N)=0.000548\ 8;$
931.8 2	29 <i>3</i>	931.78	13/2-	0.0	9/2-	E2		0.00803 12	α(O)=0.0001070 I5; $α(P)=1.069×10^{-5} I5 $ I _γ : The value I _γ =21 of 1978Lo12 (from I _γ /I _γ (669γ)=0.35) is inconsistent with spectra of 1972Ma24 and 1979Lo04. The authors' value may be a misprint. A ratio of 0.55 would give good agreement. α=0.00803 I2; α(K)=0.00633 9; α(L)=0.001299 I9; α(M)=0.000312 5; $α(N+)=9.72×10^{-5} I4$

Continued on next page (footnotes at end of table)

			²⁰⁷ Bi	IT decay	v (182 μ s	s) 1969	Be47,1972Ma2	24,1978Lo12 (continued)
E_{γ}^{\dagger}	$I_{\gamma}^{\dagger \#}$	E _i (level)	\mathbf{J}_i^{π}	E_f	J_f^π	Mult. [‡]	α@	Comments
975.6 4	72	1645.31	15/2-	669.52	11/2-	E2	0.00734 11	$\alpha(N)=7.95\times10^{-5} \ 12; \ \alpha(O)=1.590\times10^{-5} \ 23; \\ \alpha(P)=1.756\times10^{-6} \ 25 \\ \alpha=0.00734 \ 11; \ \alpha(K)=0.00581 \ 9; \ \alpha(L)=0.001167$
								17; α (M)=0.000279 4; α (N+)=8.71×10 ⁻⁵ 13 α (N)=7.13×10 ⁻⁵ 10; α (O)=1.427×10 ⁻⁵ 20; α (P)=1.586×10 ⁻⁶ 23
1240.9 7	2.3 5	1240.45	13/2-	0.0	9/2-	E2	0.00464 7	$\begin{aligned} &\alpha = 0.00464 \ 7; \ \alpha(K) = 0.00374 \ 6; \ \alpha(L) = 0.000684 \\ & 10; \ \alpha(M) = 0.0001619 \ 23; \ \alpha(N+) = 5.83 \times 10^{-5} \ 9 \\ & \alpha(N) = 4.13 \times 10^{-5} \ 6; \ \alpha(O) = 8.34 \times 10^{-6} \ 12; \\ & \alpha(P) = 9.51 \times 10^{-7} \ 14; \ \alpha(IPF) = 7.74 \times 10^{-6} \ 14 \\ & I_{\gamma}: \ I_{\gamma}(delayed) = 3 \ (1978Lo12) \ and \ 8 \ 5 \ (1969Be47). \\ & Mult.: \ A_2 = 0.23 \ 7, \ A_4 = 0.08 \ 6. \\ & I_{\gamma}: \ From unweighted \ average \ of \ I_{\gamma}/I_{\gamma}(571\gamma) = 0.17 \\ & (1978Lo12 \ prompt \ spectrum) \ and \ 0.12 \\ & (1978Lo12 \ delayed \ spectrum). \ Note \ that \\ & I_{\gamma}/I_{\gamma}(571\gamma) = 0.56 \ 14 \ in \ 1969Be47. \end{aligned}$

[†] From 1969Be47, unless otherwise stated.

[‡] From adopted gammas.

[#] For absolute intensity per 100 decays, multiply by 1.03 *10*.

^(a) Total theoretical internal conversion coefficients, calculated using the BrIcc code (2008Ki07) with Frozen orbital approximation based on γ -ray energies, assigned multipolarities, and mixing ratios, unless otherwise specified.

 $x \gamma$ ray not placed in level scheme.

 $^{207}_{\ 83}{\rm Bi}_{124}$