205 Tl(α ,2n γ), 208 Pb(d,3n γ) 1978Lo12,1979Lo04,1969Be47

History									
Туре	Author	Citation	Literature Cutoff Date						
Full Evaluation	F. G. Kondev, S. Lalkovski	NDS 112, 707 (2011)	1-Aug-2010						

1978Lo12, 1979Lo04: Pulsed beam, $E(\alpha)$ =30-43 MeV, E(d)=25 MeV; γ Ge(Li), ce Si(Li); $\gamma\gamma$ coin, $\gamma(\theta)$, $\gamma(t)$; 1969Be47: Pulsed beam, $E(\alpha)$ =28 MeV; Target: 10 mg/cm² ²⁰⁵Tl₂O₃ sandwiched between 100 μ g/cm² thick foils; Detectors: two Ge(Li); Measured: E γ , I γ , $\gamma(t)$.

²⁰⁷Bi Levels

E(level) [†]	$J^{\pi \ddagger}$	T _{1/2}	Comments
0.0	9/2-	31.55 y 4	$J^{\pi}, T_{1/2}$: From Adopted Levels.
		-	configuration: $\pi(1h_{9/2}^{+1})\otimes 0_1^+$.
669.52 9	$11/2^{-}$		configuration: $\pi(1h_{0/2}^{+1})\otimes 2_1^+$.
931.78 <i>11</i>	$13/2^{-}$		configuration: $\pi(1h_{\alpha/2}^{4/2})\otimes 2_1^+$.
1240.45 12	$13/2^{-}$		configuration: $\pi(1h_{9/2}^{4/f})\otimes 3_1^{+}$.
1358.04 18	$15/2^{-}$		configuration: $\pi(1h_{q/2}^{4'})\otimes 3_1^+$.
1607.3 5	$13/2^{+}$		configuration: $\pi(1i_{13/2}^{+1^{\prime}})\otimes 0_{1}^{+}$.
1645.31 <i>16</i>	$15/2^{-}$		configuration: $\pi(1h_{9/2}^{+1}) \otimes \nu(f_{5/2}^{-2})_{3^+}$.
2101.39 17	$21/2^{+}$	182 µs 6	$T_{1/2}$: From $\gamma(t)$ in 1969Be47. Other: 174 μ s 20 (1967Co20).
			configuration: $\pi(1h_{9/2}^{+1}) \otimes \nu(p_{1/2}^{-1}, i_{13/2}^{-1})_{6^{-}}$.
2180.2 6	$17/2^{-}$		configuration: $\pi(1h_{9/2}^{+1}) \otimes \nu(p_{3/2}^{-1}, f_{5/2}^{-1})_{4^+}$.
2601.1 6	$25/2^+$		configuration: $\pi(1h_{9/2}^{+\Gamma}) \otimes \nu(f_{5/2}^{-\Gamma}, i_{13/2}^{-\Gamma})_{8^-}$.
3500.4 8	$27/2^{+}$		configuration: $\pi(1h_{9/2}^{4\Gamma}) \otimes \nu(f_{5/2}^{-\Gamma}, i_{13/2}^{-\Gamma})_{9}$.
3887.2 9	29/2-	12.7 ns 9	$T_{1/2}$: Weighted average of 11 ns 7 (499.7 γ (t)), 13 ns 1 (899.3 γ (t) and 14 ns 1 (386.8 γ (t))
			in 1979Lo04.
			configuration: $\pi(1h_{9/2}^{+1}) \otimes \nu(i_{13/2}^{-2})_{12^+}$.
4559.7 11	$(31/2^{-})$		configuration: $\pi(1h_{9/2}^{+1}) \otimes \nu(i_{13/2}^{-2})_{12^+}$.

[†] From a least-squares fit to $E\gamma$, unless otherwise stated.

[‡] From deduced transition multipolarities using $\gamma(\theta)$ and $\alpha(K)$ exp, unless otherwise stated.

$\gamma(^{207}\text{Bi})$

E_{γ} ‡	Ιγ &	E _i (level)	\mathbf{J}_i^{π}	E_f	\mathbf{J}_f^{π}	Mult. ^a	$\delta^{\boldsymbol{b}}$	α^{\dagger}	Comments
117.9 4	3	1358.04	15/2-	1240.45	13/2-	M1+E2	-0.06 4	6.36 11	$ \begin{array}{l} \hline \alpha(\text{K}) = 5.16 \ 10; \ \alpha(\text{L}) = 0.914 \ 18; \ \alpha(\text{M}) = 0.215 \\ 5; \ \alpha(\text{N}+) = 0.0676 \ 14 \\ \alpha(\text{N}) = 0.0551 \ 11; \ \alpha(\text{O}) = 0.01124 \ 22; \\ \alpha(\text{P}) = 0.001334 \ 24 \\ \textbf{I}_{\gamma}: \ \textbf{I}_{\gamma}(\text{delayed}) = 4 \ (1978\text{Lo12}) \ \text{and} \ 4.0 \ 6 \\ (1969\text{Be47}). \\ \hline \text{Mult.: } \ A_2 = -0.09 \ 4, \ A_4 = -0.03 \ 6. \end{array} $
×238 1 262.2 1	24	931.78	13/2-	669.52	11/2-	M1+E2	-0.03 2	0.671	E _γ : Tentative line, observed in 1969Be47 with I _γ =2.5 10 and suggested to be a decay branch from the isomeric state in order to account for the intensity imbalance. However, the final state at 1863 keV has not been observed. $\alpha(K)=0.547 \ 8; \ \alpha(L)=0.0948 \ 14; \ \alpha(M)=0.0223 \ 4; \ \alpha(N+)=0.00700 \ 10$ $\alpha(N)=0.00570 \ 8; \ \alpha(O)=0.001165 \ 17; \ \alpha(P)=0.0001387 \ 20$ E _γ : E _γ =261.7 1 from E(ce(K)) in 1978Lo12. I _γ : I _γ (delayed)=33 (1978Lo12) and 37 5

²⁰⁵Tl(*α*,2n*γ*),²⁰⁸Pb(d,3n*γ*) 1978Lo12,1979Lo04,1969Be47 (continued)

$\gamma(^{207}\text{Bi})$ (continued)

E _y ‡	$I_{\gamma}^{\&}$	E _i (level)	\mathbf{J}_i^{π}	E_f	\mathbf{J}_{f}^{π}	Mult. ^a	δ^{b}	α^{\dagger}	Comments
288 308.6 2	≤1 4	1645.31 1240.45	15/2 ⁻ 13/2 ⁻	1358.04 931.78	15/2 ⁻ 13/2 ⁻	M1(+E2)	-0.03 5	0.429 7	(1969Be47). Mult.: A ₂ =-0.11 2, A ₄ =-0.03 3; α (K)exp=0.4 2. E _{γ} ,I _{γ} : From adopted gammas. α (K)=0.350 6; α (L)=0.0605 9; α (M)=0.01420 21; α (N+)=0.00446 7 α (N)=0.00363 6; α (O)=0.000742 11; α (P)=8.84×10 ⁻⁵ 13 L: b ² (delayed)=5 (1978L 012) and 4 1
386.8 5	11	3887.2	29/2-	3500.4	27/2+	E1+M2	-0.05 3	0.019 3	(1969Be47). Mult.: $A_2 = -0.05 \ 5, \ A_4 = -0.03 \ 5.$ $\alpha(K) = 0.0155 \ 22; \ \alpha(L) = 0.0027 \ 5;$ $\alpha(M) = 0.00063 \ 13; \ \alpha(N+) = 0.00020 \ 4$ $\alpha(N) = 0.00016 \ 4; \ \alpha(O) = 3.2 \times 10^{-5} \ 7;$ $\alpha(P) = 3.6 \times 10^{-6} \ 8$ $E_{\gamma}: \ E_{\gamma} = 388.3 \ 8 \ from \ E(ce(K)) \ in$
405.0 2	4	1645.31	15/2-	1240.45	13/2-	M1+E2	-0.15 4	0.202 4	1979Lo04. Mult.: $A_2=-0.175$, $A_4=+0.127$; $\alpha(K)\exp=0.02412$ (1979Lo04). $\alpha(K)=0.1653$; $\alpha(L)=0.02855$; $\alpha(M)=0.0066911$; $\alpha(N+)=0.002104$ $\alpha(N)=0.001713$; $\alpha(O)=0.0003496$; $\alpha(P)=4.16\times10^{-5}7$ L: $V_1(delayed)=8(1978Lo12)$ and 6.8
426.1 2	18	1358.04	15/2-	931.78	13/2-	M1+E2	-0.10 5	0.178 <i>3</i>	Fy: I7(defayed)=0 (17)(52012) and 0.0 I3 (1969Be47). Mult.: A ₂ =0.00 4, A ₄ =-0.00 6. α (K)=0.1455 25; α (L)=0.0250 4; α (M)=0.00586 9; α (N+)=0.00184 3 α (N)=0.001500 23; α (O)=0.000306 5; α (P)=3.65×10 ⁻⁵ 6 E _y : Ey=426.2 <i>I</i> from E(ce(K)) in
456.1 <i>1</i>	34	2101.39	21/2+	1645.31	15/2-	E3		0.1395	1978Lo12. I_{γ} : $I_{\gamma}(delayed)=22$ (1978Lo12) and 23 3 (1969Be47). Mult.: $A_2=-0.05$ 3, $A_4=-0.02$ 4; $\alpha(K)=0.0662$ 10; $\alpha(L)=0.0545$ 8; $\alpha(M)=0.01436$ 21; $\alpha(N+)=0.00445$ 7 $\alpha(N)=0.00368$ 6; $\alpha(O)=0.000702$ 10; $\alpha(P)=6.32\times10^{-5}$ 9 E_{γ} : $E_{\gamma}=456.2$ 1 from E(ce(K)) in 1978Lo12.
499.7 [@] 5	29	2601.1	25/2+	2101.39	21/2+	E2		0.0307	$I_{\gamma}: I_{\gamma}(\text{delayed})=73 (1978\text{Lo12}) \text{ and 79 8} (1969Be47).$ Mult.: A ₂ =0.09 2, A ₄ =0.01 3; α(K)exp=0.067 6. δ: 0.01 3 in 1978Lo12. α(K)=0.0215 3; α(L)=0.00698 10; α(M)=0.00174 3; α(N+)=0.000540 8 α(N)=0.000445 7; α(O)=8.64×10 ⁻⁵ 13; α(P)=8.52×10 ⁻⁶ 13 E _γ : E _γ =499.9 7 from E(ce(K)) in 1979Lo04. Mult.: A ₂ =0.29 2, A ₄ =-0.06 3 ; α(K)exp=0.020 6 (1979Lo04).

²⁰⁷₈₃Bi₁₂₄-3

			205 Tl(α ,2n γ), 208 Pb(d,3n γ)			1978Lo12	ontinued)			
γ ⁽²⁰⁷ Bi) (continued)										
E_{γ}^{\ddagger}	Ιγ ^{&}	E _i (level)	\mathbf{J}_i^{π}	E_f	\mathbf{J}_f^{π}	Mult. ^a	$\delta^{\boldsymbol{b}}$	α^{\dagger}	Comments	
571.0 <i>I</i>	24	1240.45	13/2-	669.52	11/2-	M1+E2	-0.20 5	0.0802 17	$\alpha(K)=0.0656\ 14;\ \alpha(L)=0.01121\ 21;\alpha(M)=0.00263\ 5;\alpha(N+)=0.000826\ 16\alpha(N)=0.000672\ 13;\ \alpha(O)=0.0001373;\ \alpha(P)=1.63\times10^{-5}\ 4E_{\gamma}:\ E_{\gamma}=571.2\ 1\ from\ E(ce(K))\ in\ 1978Lo12.I_{\gamma}:\ I_{\gamma}(delayed)=25\ (1978Lo12)\ and\ 26\ 3\ (1969Be47).$ Mult:: A ₂ =0.12\ 4, A ₄ =-0.03\ 6; \alpha(K) avp=0.031\ 2	
669.5 1	100	669.52	11/2-	0.0	9/2-	M1+E2	+0.24 4	0.0523 11	$\begin{aligned} \alpha(\mathbf{K}) &= 0.0427 \ 9; \ \alpha(\mathbf{L}) = 0.00728 \ 14; \\ \alpha(\mathbf{M}) &= 0.00171 \ 3; \\ \alpha(\mathbf{N}) &= 0.000536 \ 10 \\ \alpha(\mathbf{N}) &= 0.000436 \ 8; \ \alpha(\mathbf{O}) &= 8.92 \times 10^{-5} \\ 16; \ \alpha(\mathbf{P}) &= 1.061 \times 10^{-5} \ 20 \\ \mathbf{E}_{\gamma}: \ \mathbf{E}_{\gamma} &= 669.0 \ 1 \ \text{from E}(\text{ce}(\mathbf{K})) \ \text{in} \\ 1978\text{Lo12.} \\ \mathbf{I}_{\gamma}: \ \mathbf{I}_{\gamma}(\text{delayed}) &= 100 \\ (1978\text{Lo12, 1969Be47}). \\ \text{Mult.: } \ \mathbf{A}_2 &= -0.30 \ 2, \ \mathbf{A}_4 &= -0.03 \ 3; \\ \alpha(\mathbf{K}) &= \mathbf{x}_0 &= 0.23 \ 2. \end{aligned}$	
672.5 [@] 5 713.5 2	<10 39	4559.7 1645.31	(31/2 ⁻) 15/2 ⁻	3887.2 931.78	29/2 ⁻ 13/2 ⁻	M1(+E2)	-0.03 4	0.0460	$\alpha(K)=0.0377 \ 6; \ \alpha(L)=0.00636 \ 9;$ $\alpha(M)=0.001490 \ 22;$ $\alpha(N+)=0.000468 \ 7$ $\alpha(N)=0.000381 \ 6; \ \alpha(O)=7.79\times10^{-5} \ 11; \ \alpha(P)=9.30\times10^{-6} \ 14$ E _y : E _Y =712.9 I from E(ce(K)) in 1978Lo12. I _Y : I _Y (delayed)=63 (1978Lo12) and 63 7 (1969Be47). Mult.: A ₂ =-0.12 4, A ₄ =0.02 6; $\alpha(K)exp=0.020 \ 2.$	
743.30 15	26	2101.39	21/2+	1358.04	15/2-	E3		0.0335	$\begin{aligned} &\alpha(K) = 0.0223 \ 4; \ \alpha(L) = 0.00844 \ 12; \\ &\alpha(M) = 0.00214 \ 3; \\ &\alpha(N+) = 0.000666 \ 10 \\ &\alpha(N) = 0.000548 \ 8; \ \alpha(O) = 0.0001070 \\ \ 15; \ \alpha(P) = 1.069 \times 10^{-5} \ 15 \\ E_{\gamma}: \ E_{\gamma} = 743.7 \ 2 \ \text{from E(ce(K)) in} \\ &1978Lo12. \\ I_{\gamma}: \ I_{\gamma}(\text{delayed}) = 34 \ (1978Lo12) \ \text{and} \\ &60 \ 6 \ (1969Be47). \\ &\text{Mult:} \ \alpha(K) \text{exp} = 0.025 \ 3. \ \text{Angular} \\ &\text{distributions were isotropic.} \end{aligned}$	
822.2 [#] 5	12	2180.2	17/2-	1358.04	15/2-	M1(+E2)	-0.02 4	0.0319	$\begin{aligned} &\alpha(\mathbf{K}) = 0.0261 \ 4; \ \alpha(\mathbf{L}) = 0.00439 \ 7; \\ &\alpha(\mathbf{M}) = 0.001027 \ 15; \\ &\alpha(\mathbf{N}+) = 0.000323 \ 5 \\ &\alpha(\mathbf{N}) = 0.000263 \ 4; \ \alpha(\mathbf{O}) = 5.37 \times 10^{-5} \\ & 8; \ \alpha(\mathbf{P}) = 6.42 \times 10^{-6} \ 10 \\ \mathbf{E}_{\gamma}: \ \mathbf{E}_{\gamma} = 823.2 \ 5 \ \text{from E(ce(\mathbf{K})) in} \\ & 1978 \text{Lol2.} \\ & \text{Mult.: } \mathbf{A}_2 = -0.15 \ 4, \ \mathbf{A}_4 = -0.04 \ 6; \\ &\alpha(\mathbf{K}) \text{exp} = 0.012 \ 4. \end{aligned}$	
899.3 [@] 5	19	3500.4	27/2+	2601.1	25/2+	M1+E2	-0.05 3	0.0252	$\alpha(K)=0.0207 \ 3; \ \alpha(L)=0.00347 \ 5;$	

Continued on next page (footnotes at end of table)

			²⁰⁵ Tl(α ,2n γ), ²⁰	⁸ Pb(d,3	n γ) 197	8Lo12,1979	9Lo04,1969Be4	47 (continued)
$\gamma(^{207}\text{Bi})$ (continued)									
E_{γ}^{\ddagger}	Iγ ^{&}	E _i (level)	\mathbf{J}_i^{π}	\mathbf{E}_{f}	\mathbf{J}_f^{π}	Mult. ^a	$\delta^{\boldsymbol{b}}$	α^{\dagger}	Comments
	_								$\begin{array}{l} \alpha(M)=0.000811\ 12;\\ \alpha(N+)=0.000255\ 4\\ \alpha(N)=0.000207\ 3;\ \alpha(O)=4.24\times10^{-5}\ 6;\\ \alpha(P)=5.07\times10^{-6}\ 8\\ E_{\gamma}:\ E_{\gamma}=899.9\ 9\ from\ E(ce(K))\ in\\ 1979Lo04.\\ Mult:\ A_{\gamma}=-0.16\ 4,\ A_{\gamma}=-0.02\ 6\\ \vdots\end{array}$
931.8 2	36	931.78	13/2-	0.0	9/2-	E2		0.00803 12	$\begin{array}{l} \alpha(\mathrm{K}) = -0.104, \ \mathrm{K}_{4} = -0.026, \\ \alpha(\mathrm{K}) = -0.0145 (1979 \pm 0.04). \\ \alpha = -0.00803 \ 12; \ \alpha(\mathrm{K}) = -0.00633 \ 9; \\ \alpha(\mathrm{L}) = -0.001299 \ 19; \ \alpha(\mathrm{M}) = -0.000312 \\ 5; \ \alpha(\mathrm{N} +) = 9.72 \times 10^{-5} \ 14 \\ \alpha(\mathrm{N}) = 7.95 \times 10^{-5} \ 12; \end{array}$
									α (O)=1.590×10 ⁻⁵ 23; α (P)=1.756×10 ⁻⁶ 25 E _{γ} : E γ =931.2 10 from E(ce(K)) in 1978Lo12. I _{γ} : I γ (delayed)=43 (1978Lo12) and 47 5 (1969Be47).
									Mult.: $A_2=0.20 4$, $A_4=-0.01 4$; $\alpha(K)\exp=0.004 2$.
937.8 [#] 5	9	1607.3	13/2+	669.52	11/2-	E1+M2	+0.16 5	0.0042 10	$\alpha = 0.0042 \ 10; \ \alpha(K) = 0.0035 \ 8; \alpha(L) = 0.00058 \ 14; \ \alpha(M) = 0.00014 \ 4; \alpha(N+) = 4.2 \times 10^{-5} \ 11 \alpha(N) = 3.4 \times 10^{-5} \ 9; \ \alpha(Q) = 7.0 \times 10^{-6} \ 18; $
									α (P)=8.3×10 ⁻⁷ 21 E _{γ} : E γ =937.1 10 from E(ce(K)) in 1978Lo12.
									I_{γ} : Line in γ spectrum in 19/8L012 is admixed with a ¹⁹ F impurity line. Mult.: A ₂ =-0.18 4, A ₄ =-0.02 6; α (K)exp=0.002 1.
975.6 4	7	1645.31	15/2-	669.52	11/2-	E2		0.00734 11	$\alpha = 0.00734 \ 11; \ \alpha(K) = 0.00581 \ 9; \alpha(L) = 0.001167 \ 17; \ \alpha(M) = 0.000279 4; \ \alpha(N+) = 8.71 \times 10^{-5} \ 13$
									α (N)=7.13×10 ⁻⁵ 10; α (O)=1.427×10 ⁻⁵ 20; α (P)=1.586×10 ⁻⁶ 23 I _{γ} : I γ (delayed)=13 (1978Lo12) and 11
									3 (1969Be47). Mult.: A ₂ =0.26 3, A ₄ =-0.09 4; α (K)exp=0.020 2.
1240.9 7	4	1240.45	13/2-	0.0	9/2-	E2		0.00464 7	$\begin{aligned} &\alpha = 0.00464 \ 7; \ \alpha(\text{K}) = 0.00374 \ 6; \\ &\alpha(\text{L}) = 0.000684 \ 10; \ \alpha(\text{M}) = 0.0001619 \\ &23; \ \alpha(\text{N}+) = 5.83 \times 10^{-5} \ 9 \\ &\alpha(\text{N}) = 4.13 \times 10^{-5} \ 6; \ \alpha(\text{O}) = 8.34 \times 10^{-6} \\ &12; \ \alpha(\text{P}) = 9.51 \times 10^{-7} \ 14; \\ &\alpha(\text{IPF}) = 7.74 \times 10^{-6} \ 14 \end{aligned}$
									$I_{\gamma}: I_{\gamma}(\text{delayed})=3 (1978\text{Lo12}) \text{ and } 8 5 (1969\text{Be47}).$ Mult.: A ₂ =0.23 7, A ₄ =0.08 6.

[†] Additional information 1.

Continued on next page (footnotes at end of table)

205 Tl(α ,2n γ), 208 Pb(d,3n γ) 1978Lo12,1979Lo04,1969Be47 (continued)

$\gamma(^{207}\text{Bi})$ (continued)

- [‡] From 1969Be47, unless otherwise stated. The authors in 1978Lo12 also quote E(ce(K)) data, with uncertainties; however, these values do not agree, within the quoted uncertainty, with data from 1969Be47, or with $E\gamma=669\gamma$ from ε decay.
- [#] From 1978Lo12. $\Delta E\gamma$ assigned by the evaluators.
- [@] From 1979Lo04. $\Delta E\gamma$ assigned by the evaluators.
- & From data at $E(\alpha)=33$ MeV in 1978Lo12, unless otherwise stated. Delayed intensities in 1969Be47 were normalized to $I\gamma(669.5\gamma)=100$.
- ^{*a*} From $\alpha(K)\exp p$ and $\gamma(\theta)$ in 1978Lo12, unless otherwise stated. The $\alpha(K)\exp p$ values given by 1978Lo12 are based on relative I γ and Ice(K) data normalized to $\alpha(K)(456\gamma)=0.067$ (E3 theory). Note, however, that the authors quote incorrect theory values for M1, and the deduced $\alpha(K)\exp p$ values do not support their multipolarity conclusions for M1 transitions. If one renormalizes the authors' I γ and Ice(K) scales using $\alpha(K)(699\gamma)=0.0448$ 6, based on the authors' δ value and mult=M1+E2 from ε decay, one gets consistency between the $\alpha(K)\exp p$ and δ values, except for the 456 and 744 γ 's. For these transitions one obtains $\alpha(K)\exp p$ values larger than the theory values for E3, the expected mult. For the 456 γ , for example, $\alpha(K)\exp/\alpha(K)\exp(669\gamma)=2.9$ 4, which leads to $\alpha(K)(456\gamma)=0.13$ 2, compared with the theory value of 0.067. The reason for the discrepancy is not known. From RUL, one expects B(M4)(W.u.)<10, which leads to $\delta < 8 \times 10^{-4}$. Such a small M4 component will have a negligible affect on $\alpha(K)$. The evaluators adopts mult=E3 for the 456 and 744 γ 's. $\alpha(K)\exp p$ data of 1979Lo04 are also normalized to $\alpha(K)(456\gamma)=0.067$. A renormalization to $\alpha(K)(456\gamma)=0.13$ would not invalidate the authors' conclusions (based on $\gamma(\theta)$) since the $\alpha(K)\exp p$ values have large uncertainties.
- ^{*b*} From $\gamma(\theta)$ in 1978Lo12, unless otherwise stated.
- $x \gamma$ ray not placed in level scheme.

6