²⁰⁷Rn ε decay 1975ZeZY,1973KeZP

History										
Туре	Author	Citation	Literature Cutoff Date							
Full Evaluation	F. G. Kondev, S. Lalkovski	NDS 112, 707 (2011)	1-Aug-2010							

Parent: ²⁰⁷Rn: E=0; J^{π}=5/2⁻; T_{1/2}=9.25 min 17; Q(ε)=4612 34; % ε +% β ⁺ decay=79 3

1975ZeZY: mass separated ²⁰⁷Rn source was produced in proton spallation reactions on a natural ThO target; E(p)=660 MeV; Detectors: several Ge(Li) and Si(Li); Measured: Eγ, Iγ, γγ coin, ce.
1973KeZP: ²⁰⁷Rn source was produced in ¹⁹⁷Au(¹⁵N,5n) reaction at E(¹⁵N)=95 MeV; Detectors: several Ge(Li), NaI and Si(Li);

1973KeZP: ²⁰⁷Rn source was produced in ¹⁹⁷Au(¹⁵N,5n) reaction at E(¹⁵N)=95 MeV; Detectors: several Ge(Li), NaI and Si(Li); Measured: E γ , I γ , $\gamma\gamma$ coin, ce. Others: 1971KeZZ and 1971KeZH (same collaboration).

²⁰⁷ At Level

E(level) [†]	$J^{\pi \ddagger}$	T _{1/2}	Comments
0	9/2-	1.81 h <i>3</i>	$J^{\pi}, T_{1/2}$: From Adopted Levels.
344.55 4	7/2-		-7- *
643.40 20	$11/2^{-}$		
673.98 4	$(5/2)^{-}$		
747.19 5	$7/2^{-}$		
973.28 8			
976.09 10			
1018.57 6	3/2-,5/2,7/2		
1042.10 10	3/2 ⁻ ,5/2,7/2		
1108.15 25	7/2-		
1114./5/	1/2		
1119.95 8			
1197.95 10			
1224.70 10			
1204.13 13			
1534 80 16			
1539.36 13			
1553.55 20			
1799.43 19			
1823.24 25			
1841.27 15			
1966.59 17			
2038.66 23			
2149.53 17			

 † From a least-squares fit to Ey.

[‡] From deduced transition multipolarities, unless otherwise specified.

ε, β^+ radiations

Because of the large unplaced photon intensity ($\approx 20\%$), and the probable incompleteness of the decay scheme, only $\varepsilon + \beta^+$ branches with intensity >2% are shown.

E(decay)	E(level)	$I\beta^+$ †	$\mathrm{I}\varepsilon^{\dagger}$	Log ft	$\mathrm{I}(\varepsilon + \beta^+)^\dagger$	Comments
$(3.49 \times 10^3 4)$	1119.95	0.33 5	2.3 4	7.11 7	2.6 4	av Eβ=1114 15; εK=0.699 4; εL=0.1317 8; εM+=0.04393 25
$(3.50 \times 10^3 \ddagger 4)$	1114.75?	0.43 6	3.0 4	6.99 7	3.4 5	av Eβ=1117 15; εK=0.699 4; εL=0.1316 8; εM+=0.04390 25
$(3.57 \times 10^3 4)$	1042.10	0.28 6	1.8 <i>3</i>	7.22 9	2.1 4	av E β =1149 15; ε K=0.691 4; ε L=0.1301 8; ε M+=0.0434 3

207 Rn ε decay 1975ZeZY,1973KeZP (continued)

ϵ, β^+ radiations (continued)

E(decay)	E(level)	$I\beta^+$ †	$\mathrm{I}\varepsilon^{\dagger}$	Log ft	$\mathrm{I}(\varepsilon + \beta^+)^{\dagger}$	Comments
$(3.59 \times 10^3 \ 4)$	1018.57	0.43 4	2.68 21	7.06 4	3.11 24	av E β =1159 15; ε K=0.688 4; ε L=0.1295 8; ε M+=0.0432
$(3.64 \times 10^3 \ 4)$	976.09	0.26 6	1.5 3	7.31 10	1.8 4	av E β =1178 15; ε K=0.684 4; ε L=0.1286 8; ε M+=0.0429
$(3.86 \times 10^3 \ 4)$	747.19	5.0 6	23 2	6.19 5	28 3	av E β =1280 16; ε K=0.657 4; ε L=0.1233 9; ε M+=0.0411
$(3.94 \times 10^3 4)$	673.98	2.09 16	8.9 7	6.62 4	11.0 8	av E β =1312 16; ε K=0.648 5; ε L=0.1215 9; ε M+=0.0405
$(4.27 \times 10^3 \ 4)$	344.55	3.9 5	12.2 16	6.56 6	16.1 21	av E β =1459 <i>16</i> ; ε K=0.607 <i>5</i> ; ε L=0.1133 <i>9</i> ; ε M+=0.0377 <i>3</i>
						$I(\varepsilon + \beta^+)$: if the 344.5 γ deexcites only the 344 level.

I($\varepsilon + \beta^+$): if the 344.5 γ deexcites only the E(decay): E(β^+)=3250 100 (1975ZeZY).

[†] Absolute intensity per 100 decays.
[‡] Existence of this branch is questionable.

²⁰⁷Rn ε decay **1975ZeZY**,**1973KeZP** (continued)

$\gamma(^{207}{\rm At})$

Iγ normalization: From the requirement that Σ Ti(γ 's to g.s.)=100 and the assumption that there is no direct feeding to the g.s.. On the basis of energy fits, the following γ 's that were initially placed by 1975ZeZY, were multiply placed by 1984Sc44: 344 γ , 610 γ , 643 γ , 674 γ , 780 γ , 865 γ , and 879 γ .

 $I(\gamma^{\pm})=178 \ l8 \ (1975ZeZY).$

ω

E_{γ}^{\ddagger}	$I_{\gamma}^{\ddagger a}$	E _i (level)	\mathbf{J}_i^{π}	E_f	\mathbf{J}_f^{π}	Mult. [#]	δ#	α^{\dagger}	Comments
188.0 <i>3</i>	5.6 11	1539.36		1351.21					
*233.8 2	15 3	1251 01		1100.15					
242.9 4	3.4 10	1351.21		1108.15					
x295.5.3	8.8.15	1/99.43		1555.55					
308.0^{b} 4	3.7 ^b 8	1284.13		976.09					
308.0 ^b 4	3.7 <mark>b</mark> 8	2149.53		1841.27					
329.45 5	66 7	673.98	(5/2)-	344.55	7/2-	(M1)		0.426	α (K)=0.346 5; α (L)=0.0611 9; α (M)=0.01444 21; α (N+)=0.00465 7
									α (N)=0.00374 6; α (O)=0.000801 <i>12</i> ; α (P)=0.0001106 <i>16</i> Mult.: Assigned M1 in 1975ZeZY, but α (K)exp was not given by the authors.
x337.6 4	2.8 20								
344.53 ^b 5	1000 ^b	344.55	7/2-	0	9/2-	E2+M1	3.1 +19-7	0.115 17	$\alpha(\mathbf{K})=0.074 \ 15; \ \alpha(\mathbf{L})=0.0308 \ 15; \ \alpha(\mathbf{M})=0.0079 \ 4; \ \alpha(\mathbf{N}+)=0.00249 \ 11 \ \alpha(\mathbf{N})=0.00203 \ 9; \ \alpha(\mathbf{M})=0.000414 \ 10; \ \alpha(\mathbf{R})=4.8\times10^{-5} \ 4.5\times10^{-5} \ 4.5\times1$
									$\alpha(N)=0.00205$ 9, $\alpha(O)=0.000414$ 19, $\alpha(r)=4.8\times10^{-1}4$ I _y : Alternate placement from the 1018 level, suggested by 1984Sc44 must have a negligible fraction of the intensity since no 344γ - 344γ coin was reported by the authors. From intensity balance arguments, $I\gamma(344\gamma$ from 1018) must be less than \approx 240. Mult.: $\alpha(K)$ exp=0.075.
344.53 [°] 5	10.2	1018.57	3/2-,5/2,7/2	673.98	(5/2)-				I_{γ} : see comment given with placement from the 344 level.
361.0.4	12.3 2.2.10	2149.55		747 19	7/2-				
367.60 [°] 5	55 6	1114.75?	7/2-	747.19	7/2-	M1		0.316	α (K)=0.257 4; α (L)=0.0452 7; α (M)=0.01069 15; α (N+)=0.00344 5
									α (N)=0.00277 4; α (O)=0.000593 9; α (P)=8.19×10 ⁻⁵ 12
									E_{γ} : Observed in coin with the 344 γ , and placed by the authors from 1041 keV to 747 keV levels, apparently a typing error. 1984Sc44 places this transition from the 1041 keV to 674 keV levels, but this placement is inconsistent with the coin data. The present evaluators suggest a placement from a new level at 1114 keV, which

$^{207} \text{Rn} \varepsilon \text{ decay} \qquad 1975 \text{ZeZY}, 1973 \text{KeZP} \text{ (continued)}$								1973KeZP (continued)
						$\gamma(207)$	⁷ At) (con	tinued)
${\rm E_{\gamma}}^{\ddagger}$	$I_{\gamma}^{\ddagger a}$	E _i (level)	\mathbf{J}_i^{π}	\mathbf{E}_{f}	J_f^π	Mult. [#]	α^{\dagger}	Comments
								accommodates two additional transitions, one of which is now defined as multiply placed. Mult.: $\alpha(K)exp=0.29$.
377.9 2 x380.3 6	15 <i>3</i> 5.8 20	1351.21		973.28				
402.68 5	260 26	747.19	7/2-	344.55	7/2-	M1	0.247	α (K)=0.201 3; α (L)=0.0353 5; α (M)=0.00834 12; α (N+)=0.00269 4 α (N)=0.00216 3; α (O)=0.000463 7; α (P)=6.39×10 ⁻⁵ 9 Mult.: α (K)exp=0.24.
^x 417.7 2 ^x 436.3 3 ^x 443.5 4	10 2 6.5 18 4.2 13							
446.1 <i>1</i>	11.0 22	1119.95		673.98	(5/2)-			
471.4 ^{bc} 7	4.4 ^b 12	1114.75?	$7/2^{-}$	643.40	$11/2^{-}$			
471.4 ^b 7 x475.6 2	4.4 ^b 12 15 4	1823.24		1351.21				
477.8 5	7.8 17	1224.76		747.19	7/2-			
485.0 6	5.2 16	2038.66		1553.55				
^x 486.9 5	6.4 18							
520.2 3	3.0 15	1539.36		1018.57	3/2-,5/2,7/2			
524.2 3	5.0 25	1197.95		673.98	(5/2)-			
535.2 5	7.8 20	1553.55		1018.57	3/2 ⁻ ,5/2,7/2			
537.65	6.2 18	1284.13		/4/.19	1/2			
x553.2.1	7.2.20							
559 2 4	4611	1534.80		976.09				
561.1.2	7.8.16	1534.80		973.28				
566.3 2	6.4 20	1539.36		973.28				
^x 573.4 4	3.8 12							
580.1 <i>3</i>	7.6 20	1553.55		973.28				
599.0 4	5.2 18	1823.24		1224.76				
604.0 4	4.4 11	1351.21		747.19	7/2-			
610.1 ^b 2	8.4 ^b 17	1284.13		673.98	$(5/2)^{-}$			
610.1 ^b 2	8.4 ⁶ 17	2149.53		1539.36				
616.2 4	4.8 12	1841.27		1224.76				
^x 620.7 2	7.0 20							
628.6 1	24 5	973.28		344.55	7/2-			
631.6 <i>I</i>	64 6	976.09		344.55	7/2-			
x636.04	3.0 15							
(42.4h)	3.013	(12 10	11/0-	0	0/2-			
043.4° 2	21° S	043.40	11/2	0	9/2			
$643.4^{\circ} 2$	27 5	1841.27		1197.95				
~04/.2 1 x655.6 A	39 8 1 2 1 5							
055.04	4.2 13							

4

 $^{207}_{85}\mathrm{At}_{122}\text{--}4$

I

 $^{207}_{85}At_{122}\text{-}4$

From ENSDF

	ed)								
					$\frac{\gamma}{\gamma}$	(²⁰⁷ At) (con	tinued)		
${\rm E_{\gamma}}^{\ddagger}$	$I_{\gamma}^{\ddagger a}$	E _i (level)	${ m J}^{\pi}_i$	E_f	J_f^π	Mult. [#]	δ [#]	α^{\dagger}	Comments
^x 660.4 2	19 4								
$^{x}672.03$	14.4	(72.00	(5/2)-	0	0/2-	Eak		0.01716	$(U_{\lambda}) = 0.1270 + 19 + (U_{\lambda}) = 0.0227 + 5 + (M_{\lambda}) = 0.00022 + 12$
674.00° 3	≈180° -	0/3.98	(3/2)	0	9/2	E2**		0.01716	$\alpha(\mathbf{K})=0.01270$ 18; $\alpha(\mathbf{L})=0.00357$ 5; $\alpha(\mathbf{M})=0.000855$ 12; $\alpha(\mathbf{N}+)=0.000266$ 4
									α (N)=0.000215 3; α (O)=4.47×10 ⁻⁵ 7; α (P)=5.59×10 ⁻⁶ 8 Mult.: α (K)exp=0.012.
674.00 ^b 5	≈90 ^{b@}	1018.57	3/2-,5/2,7/2	344.55	7/2-	E1,E2 ^{&}		0.012 6	α (K)=0.009 4; α (L)=0.0021 14 Mult.: α (K)exp=0.012.
^x 685.8 1	27 5								
687.5 2	14 4	2038.66		1351.21					
691.5 5	2.6 10	1799.43	212-512712	1108.15	7/0-				
x700 5 1	52 8 9 7 20	1042.10	5/2 ,5/2,7/2	344.55	1/2				
^x 712.8 2	13.4								
x739.8 5	5.0 17								
747.15 7	310 30	747.19	7/2-	0	9/2-	M1+E2	0.8 4	0.035 9	$\alpha(K)=0.028 \ 8; \ \alpha(L)=0.0051 \ 11; \ \alpha(M)=0.00122 \ 25;$
									$\alpha(N+)=0.00039 \ 8$ $\alpha(N)=0.00032 \ 7; \ \alpha(O)=6.7\times10^{-5} \ 14; \ \alpha(P)=9.1\times10^{-6} \ 20$ Mult : $\alpha(K)\exp=0.029$
^x 751.6 4	10 2								Mult.: u(lt)exp=0.02).
754.2 6	5.9 14	2038.66		1284.13					
763.4 7	2.0 7	1108.15		344.55	7/2-				
768.6 3	6.2 20	1966.59		1197.95	5/0-				
775.30 9	45 6	1119.95		344.55	1/2-				
780.9 ⁰ 4	≈1.5 ⁰	1799.43		1018.57	3/2-,5/2,7/2				
780.9 ⁰ 4	≈1.5 ⁰	1823.24		1042.10	3/2 ⁻ ,5/2,7/2				
788.1 4	4.6 13	1534.80		747.19	7/2-				
792.3 4	5.8 10 4 8 14	1539.30		1042.10	1/2 3/2- 5/2 7/2				
804.3 7	4.4 20	1823.24		1042.10	$3/2^{-}, 5/2, 7/2$				
806.1 5	6.2 23	1553.55		747.19	7/2-				
^x 820.7 4	5.0 20								
823.3 4	4.4 16	1799.43		976.09					
^x 834.8 ^c 3	3.8 13								E_{γ} : Value given by authors is 884.8, but the transition is listed between the 820.7 and 847.5 γ 's.
^x 847.5 3	73								
853.4 1	51 10	1197.95		344.55	$\frac{1}{2^{-1}}$				
801.44	3.2 12	1534.80		0/3.98	(5/2)				
865.4 ⁰ 4	5.0° 23	1539.36		673.98	$(5/2)^{-}$				
865.4 ⁰ 4 *873.5 7	5.0 ⁰ 23 5.3 24	1841.27		976.09					
879.9 ^b 7	4.0 ^b 15	1224.76		344.55	7/2-				

S

From ENSDF

 $^{207}_{85} {\rm At}_{122} \text{-} 5$

L

²⁰⁷₈₅At₁₂₂-5

					KII E	uecay 19	5LeL 1,19	/SREEF (C	Jinninaea)
						$\gamma(207)$	At) (contir	nued)		
${\rm E_{\gamma}}^{\ddagger}$	$I_{\gamma}^{\ddagger a}$	E_i (level)	\mathbf{J}_i^{π}	E_f	J_f^π	E_{γ}^{\ddagger}	$I_{\gamma}^{\ddagger a}$	E_i (level)	E_f	J_f^π
879.9 ^b 7	4.0 ^b 15	1553.55		673.98	$(5/2)^{-}$	x1121.1.5	5.0.20			
^x 884.5 3	6.6 25	1000.00		0,000	(0/=)	^x 1129.7 5	4.4 20			
^x 892.7 7	22 4					^x 1172.0 4				
^x 908.6 1	30 15					1176.3 6		2149.53	973.28	
^x 919.8 3	63					1190.4 5	5.0 20	1534.80	344.55	$7/2^{-}$
923.2 [°] 6	2.8 14	2038.66		1114.75?	7/2-	1224.8 2	13 <i>3</i>	1224.76	0	9/2-
939.4 <i>3</i>	7.6 24	1284.13		344.55	7/2-	^x 1254.6 2	7.4 <i>3</i>			
947.9 <i>4</i>	6.5 20	1966.59		1018.57	3/2-,5/2,7/2	^x 1326.6 7				
951.8 <i>4</i>	8 <i>3</i>	2149.53		1197.95		^x 1474.3 7				
973.35 <i>13</i>	55 10	973.28		0	9/2-	1478.8 7		1823.24	344.55	7/2-
^x 983.0 5	5.2 20					^x 1507.5 6	10 4			
^x 985.8 <i>3</i>	8 <i>3</i>					^x 1522.8 4	15 4			
990.7 <i>3</i>	7.4 25	1966.59		976.09		1539.5 7	13 5	1539.36	0	9/2-
993.2 <i>3</i>	11 3	1966.59		973.28		1799.6 8		1799.43	0	9/2-
^x 9999.2 2	26 4					1806.1 8		2149.53	344.55	$7/2^{-}$
^x 1083.0 7	63					^x 2576.6 3	6.6 20			

6

[†] Additional information 1.
[‡] From 1975ZeZY. Others: 1971KeZH, 1971KeZZ, 1973KeZP.
[#] From α(K)exp data of 1973KeZP. No uncertainties are given by the authors. The evaluator has assigned an uncertainty of 20%. The authors in 1975ZeZY state that data of 1973KeZP give mult (329γ) =M1.

207 Dr a dagay 10757 of V 1072 V of D (continued)

^(a) $I\gamma(674\gamma)=265\ 25$ is given by the authors in their table. The divided intensities shown here are given in the authors' decay scheme and presumably were deduced from $\gamma\gamma$.

 α (K)exp for the doubly placed 674 γ is consistent only with mult=E2 for the more intense component, and with E1 or E2 for the weaker component.

^{*a*} For absolute intensity per 100 decays, multiply by 0.0458 24.

^b Multiply placed with undivided intensity.

^c Placement of transition in the level scheme is uncertain.

 $x \gamma$ ray not placed in level scheme.

²⁰⁷Rn ε decay 1975ZeZY,1973KeZP

²⁰⁷**Rn** ε decay 1975ZeZY,1973KeZP

Decay Scheme (continued)

