Adopted Levels, Gammas

			Туре	Author		History Citation	Literature Cuto	ff Date					
		Full 1	Evaluation	F. G. Kond	lev	NDS 201,346 (2025)	21-Jan-202	25					
$Q(\beta^{-})=1532.$ S(2n)=14049	2 6; S .9 6, S	(n)=6503.8 <i>4</i> ; S(p S(2p)=16440 <i>200</i>)=7255 <i>4</i> ; ((syst) (2021	$Q(\alpha) = -325$ 2 Wa16).	23	2021Wa16							
						²⁰⁶ Tl Levels							
For results	from 1	theoretical calcula	tions and ex	spected confi	igurat	ions see 2025Ci01, 198	5To20, 1971KuZ	ZM and 1972Se27.					
				Cro	ss Rei	ference (XREF) Flags							
		A 206H B 210Bi C 210Bi D 206Tl	$g \beta^-$ decay α decay (5 α decay (3 IT decay	.012 d) .04×10 ⁶ y)	E F G H	⁹ Be(²⁰⁸ Pb,Xγ) ²⁰⁵ Tl(n,γ) E=th ²⁰⁵ Tl(d,p) ²⁰⁷ Pb(μ^{-} ,nγ), ²⁰⁵ Tl(1)	Ι J	$^{207}_{208} Pb(t,\alpha)$					
E(level) [†]	\mathbf{J}^{π}	T _{1/2}	XREF				Comments						
0.0	0-	4.202 min <i>14</i>	ABCDEFG	IIJ $\%\beta^-=$ J ^{π} : Fr from T _{1/2} : min 5 (1 and Domin	$ \frac{\%\beta^{-}=100}{J^{\pi}} $ From atomic-beam magnetic resonance (1969Cu09,1968Ro12,1969Fu11); π from L=1 in ²⁰⁸ Pb(d,α), L=1 in ²⁰⁵ Tl(d,p), and L=0 in ²⁰⁷ Pb(t,α). T _{1/2} : Weighted average of 4.23 min 3 (1941Fa04), 4.19 min 2 (1953Sa11), 4.29 min 5 (1959Po64), 4.27 min 5 (1970F112), 4.183 min 17 (1971Pe03), 4.14 mir 5 (1972CoYX), and 4.27 min 5 (1972Wi18). Others: 4.2 min 2 (1972Gr01) and 4.2 min (1961Lv01). Define the form (1961Lv01) = 100 (1972Wi18). The second secon								
265.833 5	2-	2.29 ns 14	ABCDEFG	IIJ J^{π} : 26 $T_{1/2}$: (3.0 Domin	J ^{π} : 265.862 γ E2 to 0 ⁻ ; L=3 in ²⁰⁸ Pb(d, α) and L=2 in ²⁰⁷ Pb(t, α). T _{1/2} : From 1984Bh06 [²⁰⁵ Tl(d, $p\gamma$)] using the p- γ delayed coincidences and the centroid-shift analysis. Other: 1.25 ns 20 from α - γ (t) in ²¹⁰ Bi α decay (3.04×10 ⁶ y) (1961Ru02).								
304.896 6	1-	4.2 ps 14	ABC FGF	IIJ $J^{\pi}: 30$ in^{20} $T_{1/2}:$ Domin	J^{π} : 304.896y M1 to 0 ⁻ ; L=1 in ²⁰⁵ Tl(d,p) and ²⁰⁸ Pb(d, α), and L=0 in ²⁰⁷ Pb(t, α). T _{1/2} : From ²⁰⁵ Tl(¹⁷ O, ¹⁶ O γ) (1975Do12) using the recoil distance technique.								
635.03 4	2-	4.0 ps 9	C FGI	I J J^{π} : 33 205 $T_{1/2}$:	Dominant configuration= $\pi(s_{1/2}) \otimes \nu(p_{1/2})$. J ^π : 330.13γ M1 to 1 ⁻ , 369.18γ M1 to 2 ⁻ ; L=1 in ²⁰⁸ Pb(d,α) and L=(1) in ²⁰⁵ Tl(d,p). T _{1/2} : From ²⁰⁵ Tl(¹⁷ O, ¹⁶ Oγ) (1975Do12) using recoil distance technique.								
649.42 <i>4</i>	1-		A C FG	IIJ J ^π : 64	9.42γ	$^{\prime}$ M1 to 0 ⁻ ; L=(1) in ²⁰	$^{(1)}_{8} Pb(d,\alpha)$ and L=	2 in 207 Pb(t, α).					
801.36 4	3-	2.4 ps 7	CD FG	$\begin{array}{c} \text{IIJ} & J^{\pi}: 53 \\ & & 207 \text{I} \\ & & T_{1/2}: \\ & & & \end{array}$	5.53 γ Pb(t, α From	$ \frac{1}{\gamma} 1$	$(p_{1/2})$. $3 \text{ in }^{208} \text{Pb}(d, \alpha) \text{ a}$ Do12) using the	nd ²⁰⁵ Tl(d,p), and L=2 in recoil distance technique.					
952.17 6	4-	42 ps 10	CDE H	Domin I J J^{π} : 68 $T_{1/2}$:	hant c 6.31γ From	onfiguration= $\pi(s_{1/2}) \otimes v(s_{1/2}) \otimes v(s$	$I_{5/2}$). (α) . Do12) using reco	pil distance technique.					
998.20 5	2-		C FGI	IIJ J ^{<i>π</i>} : 99 ²⁰⁷ I Domin	Pb(t, α	E2 $[\gamma\gamma(\theta)]$ to 0 ⁻ , 196.8). onfigurations= $\pi(d_{3/2}^{-1})\otimes \pi$	$\gamma \text{ to } 3^{-}; \text{ L=3 in}$ $\gamma(p_{1/2}^{-1}) + \pi(s_{1/2}^{-1}) $	205 Tl(d,p) and L=2 in $\mathfrak{D}v(f_{5/2}^{-1}).$					

Continued on next page (footnotes at end of table)

²⁰⁶Tl Levels (continued)

E(level) [†]	\mathbf{J}^{π}	T _{1/2}	XREF	Comments
1079.6 7	(1-,2)		F	J ^{π} : 278.2 γ to 3 ⁻ ; 5423 γ , primary γ ray from thermal neutron-capture state $(J^{\pi}=0^{+}1^{+})$
1116.84 5	1-		C FGHIJ	J^{π} : 1116.9 γ M1 [$\gamma\gamma(\theta)$] to 0 ⁻ , 481.8 γ to 2 ⁻ ; L=2 in ²⁰⁷ Pb(t, α).
<u>л</u>				Dominant configuration= $\pi(d_{3/2}^{-1})\otimes \nu(f_{5/2}^{-1})$.
1257? ⁺ 10			I	J^{π} : L=(0,5) in ^{20/} Pb(t, α) would suggest J^{π} =0 ⁻ ,1 ⁻ or 5 ⁺ ,6 ⁺ .
1331.84 5	1-		FG IJ	J ^{<i>a</i>} : I331.87 MI [$\gamma\gamma(\theta)$] to 0 ⁻ ; L=1 in ²⁰⁰ Pb(d, α) and L=2 in ²⁰⁷ Pb(t, α).
1360.16 6	0^{-}		FHJ	J^{π} : 1055.3 γ M1 [$\gamma\gamma(\theta)$] to 1 ⁻ ; L=1 in ²⁰⁸ Pb(d, α).
1000 50 10	2-		_	Dominant configuration= $\pi(d_{3/2}^{-1})\otimes v(p_{3/2}^{-1})$.
1399.53 13	2		F	J [*] : 598.2 γ M1+E2 [$\gamma\gamma(\theta)$] to 3; 5103 γ , primary γ ray from thermal neutron-conture state ($I^{\pi}-0^{+}$ 1 ⁺)
				Dominant configuration= $\pi(d_{-1}^{-1})\otimes v(f_{-n}^{-1})$.
1405.47 7	(5)+	78 ns 1	DE HIJ	μ =4.27 6
				J ^{π} : L=4 in ²⁰⁸ Pb(d, α) and L=5 in ²⁰⁷ Pb(t, α).
				$T_{1/2}$: From $\gamma(t)$ in 1976Ha44 [²⁰⁰ Tl IT decay]. Other: 71 ns 4 from sum of
				$266\gamma(t), 453\gamma(t)$ and $686\gamma(t)$ in 2011St21 [$^{2}Be(^{200}Pb,x\gamma)$].
				using the time-differential, perturbed-angular distribution technique. The value
				is corrected for diamagnetism and Knight shift.
				Dominant configuration= $\pi(h_{11/2}^{-1}) \otimes \nu(p_{1/2}^{-1})$.
1473 [#] 4			J	L=(3,4) in 208 Pb(d, α).
1486.52 5	(1^{-})		FiJ	XREF: $i(1485)J(1483)$ I^{π} : 837 loc M1 + E2 [$am(4)$] to 1^{-} 126y to 0^{-} 851 by to 2^{-} : L = 2 in
				J . 657.17 M1+E2 [$\gamma\gamma(\theta)$] to 1 , 1207 to 0 , 651.27 to 2 , L=2 III 207 Pb(t, α)
				Dominant configuration= $\pi(d_{2\rho}^{-1}) \otimes \nu(p_{2\rho}^{-1})$.
1621.70 <i>11</i>	$(7)^{+}$	10.1 ns 6	DHJ	$\mu < 2.45$
				XREF: $J(1623)$
				J ^{**} : 210.26 γ to (5) [*] ; L=0 in ²⁰⁰ PD(d, α).
				μ ; g-factor < 0.35 in 1976Ha44 [²⁰⁶ T] IT decay] using the time-differential.
				perturbed-angular distribution technique.
				Dominant configuration= $\pi(s_{1/2}^{-1}) \otimes \nu(i_{13/2}^{-1})$ with small
щ				$\pi(h_{11/2}^{-1}) \otimes \nu(p_{3/2}^{-1})$ admixtures.
1630?#	(2^{-})		J	J^{π} : L=(3) in ²⁰⁸ Pb(d, α).
1647.86 /	(2)		F IJ	XKEF : $I(1053)J(1049)$ I^{π} , 998 4y and 1343 0y to 1 ⁻ : 4855y, primary y ray from thermal
				neutron-capture state $(J^{\pi}=0^+,1^+)$; L=(1) in ²⁰⁸ Pb(d, $\alpha)$ and L=2 in
				207 Pb(t, α).
1510 52 10				Dominant configuration= $\pi(d_{3/2}^{-1})\otimes \nu(p_{3/2}^{-1})$.
1710.53 18	(6)		D IJ	XREF: $I(1/1/)J(1/12)$ I^{π} , 88 5 α to (7) ⁺ : 304 0 α to (5) ⁺ : I = 6 in ²⁰⁸ Pb(d α) and I = 5 in ²⁰⁷ Pb(t α)
				Dominant configuration= $\pi(h_{-1,\alpha}^{-1})\otimes \nu(p_{-\alpha}^{-1})$.
1800 [#] 5	(3^{+})		J	J^{π} : L=(4+2) in ²⁰⁸ Pb(d, α).
1843.41 5	2-		F IJ	XREF: I(1852)J(1845)
				J^{π} : 1843.4 γ (E2) to 0 ⁻ , 1042.1 γ M1(+E2) to 3 ⁻ ; L=2 in ²⁰⁷ Pb(t, α).
1000# 5	(=).±			Dominant configuration= $\pi(d_{5/2}^{-1})\otimes \nu(p_{1/2}^{-1})$.
1983" 6	(5)+		IJ	XREF: $I(1985)$ I^{π} , $I = (4, 3)$ in ²⁰⁸ Db(d, a) and $I = 5$ in ²⁰⁷ Db(t, a)
2058 [#] 6	2- 2-		тт	J . $L = (4, 3)$ III $r u(u, \alpha)$ and $L = 3$ III $r u(t, \alpha)$. XREF I(2061)
2050 0	2,5		13	J^{π} : L=3 in ²⁰⁸ Pb(d, α); L=2 in ²⁰⁷ Pb(t, α).
2078.90 18	(8)+		DHJ	XREF: J(2080)

Continued on next page (footnotes at end of table)

²⁰⁶Tl Levels (continued)

E(level) [†]	J^{π}	T _{1/2}	XREF	Comments
				J^{π} : 368.2 γ to (6) ⁺ , 457.2 γ to (7) ⁺ ; L=8 in ²⁰⁸ Pb(d, α).
				Dominant configuration= $\pi(h_{11/2}^{-1})\otimes \nu(f_{5/2}^{-1})$ with $\pi(d_{3/2}^{-1})\otimes \nu(i_{13/2}^{-1})$ admixtures.
2126 [#] 6	5+,6+		IJ	XREF: I(2128) J^{π} : L=5 in ²⁰⁷ Pb(t, α).
2170 [#] 7			J	
2189.7 3	(2 ⁻)		F	J^{π} : 1540.3 γ to 1 ⁻ ; 4313 γ , primary γ ray from thermal neutron-capture state ($J^{\pi}=0^+,1^+$).
~~~~ <del>#</del> =	o- 1-			Dominant configurations= $\pi(d_{5/2}^{-1}) \otimes \nu(t_{5/2}^{-1}) + \pi(d_{3/2}^{-1}) \otimes \nu(t_{7/2}^{-1}).$
2217"7 2241.24 <i>16</i>	3,4 (1 ⁻ )		F	J [*] : L=3 in ²⁰⁰ Pb(d, $\alpha$ ). J [#] : 1591.8 $\gamma$ M1+E2 [ $\gamma\gamma(\theta)$ ] to 1 ⁻ , 841.8 $\gamma$ to 2 ⁻ ; 4262 $\gamma$ , primary $\gamma$ ray from thermal neutron-capture state ( $J^{\pi}=0^+,1^+$ ). Dominant configurations= $\pi(d^{-1})\otimes\nu(f^{-1}) + \pi(h^{-1})\otimes\nu(f^{-1})$
2243 [#] 7	$(5^+ 6^+ 7^+)$		1	$I^{\pi}$ : L=6 in ²⁰⁸ Pb(d $\alpha$ )
$2264^{\ddagger}$ 10	(3 ⁺ ,0 ⁺ ,7 ⁺ ) 5 ⁺ ,6 ⁺		IJ	XREF: J(2250?) $I^{\pi}: I = 5 in 2^{207} Pb(t, \alpha)$
2326.16 19	(8+)		D J	XREF: J(2328) $J^{\pi}$ : 616.3 $\gamma$ to (6) ⁺ , 242.7 $\gamma$ to (8) ⁺ . Dominant configuration= $\pi(h_{11/2}^{-1}) \otimes v(f_{5/2}^{-1})$ with $\pi(d_{3/2}^{-1}) \otimes v(i_{13/2}^{-1})$ admixtures
2347 <mark>#</mark> 7			1	admixtures.
2380.64 8	(0 ⁻ )		F	J ^π : 1048.8γ, 1263.8γ and 2075.7γ M1 [γγ(θ)] to 1 ⁻ , 1382.3γ to 2 ⁻ . Dominant configuration= $\pi(d_{-1}^{-1}) \otimes \nu(f_{-1}^{-1})$ .
2411 [#] 7	(5 ⁺ ,6 ⁺ )		J	$J^{\pi}$ : L=(6) in ²⁰⁸ Pb(d, $\alpha$ ).
$2442^{m}$ / 2462 [#] 7	2- 3-		ע דו	XREF: I(2464)
2402 /	2,5		15	$J^{\pi}$ : L=2 in 207 Pb(t, $\alpha$ ).
2494.71 <i>17</i>	(1-)		FIJ	XREF: I(2506) $J^{\pi}$ : 1378.0 $\gamma$ to 1 ⁻ , 1496.1 $\gamma$ to 2 ⁻ ; 4008 $\gamma$ , primary $\gamma$ ray from thermal neutron-capture state ( $J^{\pi}$ =0 ⁺ ,1 ⁺ ); L=1 in ²⁰⁸ Pb(d, $\alpha$ ) and L=2 in ²⁰⁷ Ter ( $c$ )
				207 Pb(t, $\alpha$ ).
2520# 8				Dominant configurations= $\pi(u_{5/2}) \otimes v(1_{5/2}) + \pi(n_{11/2}) \otimes v(1_{13/2}).$
$2530^{-8}$	$(5^{+})$		G	$I^{\pi}$ . From the analysis of ²⁰⁵ Tl(d p) reaction data
2301 7	(5)		U	Probable configuration= $\pi(s_{1/2}^{-1}) \otimes \nu(s_{0/2}^{+1})$ (1965Er02.1969Wh05).
2594 [@] 7	(4 ⁺ )		G	$J^{\pi}$ : From analysis of ²⁰⁵ Tl(d,p) reaction data.
				Probable configuration= $\pi(s_{1/2}^{-1}) \otimes \nu(g_{9/2}^{+1})$ (1965Er02,1969Wh05).
2617 [#] 8	$(4^+, 5^+)$		J	$J^{\pi}: L=(4) \text{ in } {}^{208}Pb(d,\alpha).$
2643.10 18	(12)	3.74 min 3	DHJ	%11=100 $J^{\pi}$ : L=11 in ²⁰⁸ Pb(d, $\alpha$ ) for a level reported at 2610 (1977Fr11); 316.8 $\gamma$ , 564.2 $\gamma$ M4 to (8) ⁺
				$T_{1/2}$ : Weighted average of 3.6 min 2 (1976Be44), 3.76 min 4 (1976Ha44), and 3.73 min 4 (1978Ur01). Other: 3.77 min 2 in 1977UrZY, superseded by the value in 1978Ur01.
<del>//</del> .				Dominant configuration= $\pi(h_{11/2}^{-1})\otimes \nu(i_{13/2}^{-1})$ .
2646 ^{<b>"</b>} 8	$(4^+,5^+)$		]	$J^{\alpha}$ : L=(4) in ²⁰⁰ Pb(d, $\alpha$ ).
2708" 8	(1,2,3) ⁻		IJ	XREF: $I(2/17)$ J ^{$\pi$} : L=2 in ²⁰⁷ Pb(t, $\alpha$ ).
2728 [#] 8 2803.75 8	(2 ⁻ )		J F IJ	XREF: I(2813)J(2807)

Continued on next page (footnotes at end of table)

# ²⁰⁶Tl Levels (continued)

E(level) [†]	$J^{\pi}$	XREF	Comments
			$J^{\pi}$ : 2154.4 $\gamma$ to 1 ⁻ , 2002.4 $\gamma$ to 3 ⁻ ; 3699 $\gamma$ , primary $\gamma$ ray from thermal neutron-capture
			state $(J^{\pi}=0^+,1^+)$ ; L=2 in ²⁰⁷ Pb(t, $\alpha$ ).
0			Dominant configuration= $\pi(d_{5/2}^{-1}) \otimes \nu(f_{5/2}^{-1})$ .
2828 ^{^w} 7		G	
2872 <b>"</b> 7	4+,5+	GJ	XREF: G(2868) $I_{\pi}$ , I 4 in 208 pb (d. c)
2801# 0		<b>C</b> 1	$J^{**} L=4 \text{ In } {}^{-\infty} PD(0, \alpha).$
$2026^{\#}$ 0	(6+7+)	ر ی ر	$M_{\rm L} = (6) in \frac{208}{10} b(d o)$
2930 9	(0,7)	J	$J : L=(0) III \longrightarrow PO(\mathbf{u}, u).$
3002.7 5	$(2^{-})$	FG J	XREF: G(3014)J(3008)
	(- )		$J^{\pi}$ : 1642.3 $\gamma$ to 0 ⁻ , 2353.3 $\gamma$ to 1 ⁻ ; 3500 $\gamma$ , primary $\gamma$ ray from thermal neutron-capture
			state $(J^{\pi}=0^+,1^+)$ .
щ			Dominant configuration= $\pi(d_{5/2}^{-1}) \otimes \nu(p_{1/2}^{-1})$ .
3024# 9		IJ	XREF: I(3022)
30/11 12 27	$(1^{-})$	<b>F</b> 1	$J^{n}$ : L=(4,3) in ²⁰⁸ Pb(d, $\alpha$ ) would suggest $J^{n}=3^{-},4^{-}$ or $4^{+},5^{+}$ .
5041.12 21	(1)	r J	$J^{\pi}$ : 2406.0v to 2 ⁻ , 3041.1v to 0 ⁻ : 3462v, primary v ray from thermal neutron-capture
			state $(J^{\pi}=0^+,1^+)$ ; L=1 in ²⁰⁸ Pb(d, $\alpha$ ).
			Dominant configuration= $\pi(d_{5/2}^{-1}) \otimes \nu(p_{3/2}^{-1})$ .
3106 [#] 9		J	
3123 [#] 9		J	
3181 [#] 10		J	
3225 [#] 10		J	
3278 [#] 10		J	L=9,10 in ²⁰⁸ Pb(d, $\alpha$ ) would suggest $J^{\pi}$ =9 ⁻ ,10 ⁻ or 10 ⁺ ,11 ⁺ .
3330 [#] 10	$(4^+, 5^+)$	J	$J^{\pi}$ : L=(4) in ²⁰⁸ Pb(d, $\alpha$ ).
3363 [@] 7		G	
3424 7		G	
3452 [@] 7		G	
3538 7		G	
3564 7		G	
3638 7		G	
3717 ^{^w} 7		G	
3784 ^{^w} 7		G	
3874 [©] 7	(3-,4-)	GI	XREF: I(3865) $J^{\pi}$ : L=(4) in ²⁰⁷ Pb(t, $\alpha$ ).
3900 [@] 7		G	
3938 [@] 7		G	
3976 [@] 7		G	
4126 [@] 7		G	
4200 [@] 7		G	
4238 [@] 7	(3+)	G	J ^{$\pi$} : From analysis of ²⁰⁵ Tl(d,p) reaction data. Probable configuration= $\pi(s_{1,0}^{-1}) \otimes \nu(d_{s,0}^{+1})$ (1965Er02).
4273 [@] 7	(2 ⁺ )	G	$J^{\pi}$ : From analysis of ²⁰⁵ Tl(d,p) reaction data.
4416.3 4	(1 ⁻ )	F	$J^{\pi}$ : 4150.8 $\gamma$ to 2 ⁻ , 4416.2 $\gamma$ to 0 ⁻ ; 2087 $\gamma$ , primary $\gamma$ ray from thermal neutron-capture state ( $J^{\pi}$ =0 ⁺ ,1 ⁺ ).

## ²⁰⁶Tl Levels (continued)

E(level)	†	$\mathbf{J}^{\pi}$	XREF	Comments
4426 [@]	7	(1+)	G	Dominant configuration= $\pi(g_{7/2}^{-1}) \otimes \nu(f_{5/2}^{-1})$ . J ^{$\pi$} : From analysis of ²⁰⁵ Tl(d,p) reaction data. Probable configuration= $\pi(s_{1-2}^{-1}) \otimes \nu(s_{1-2}^{+1})$ (1965Er02).
4491 [@]	7	$(0^{+})$	G	J ^{$\pi$} : From analysis of ²⁰⁵ Tl(d,p) reaction data. Probable configuration= $\pi(s_{1/2}^{-1}) \otimes v(s_{1/2}^{+1})$ (1965Er02).
4555 [@]	7		G	
4622 [@]	7		G	
4680 [@]	7		G	
4739 [@]	7		G	
4775 [@]	7		G	
4879 [@]	7		G	
4904 [@]	7		G	
4941 [@]	7		G	
5015 [@]	7		G	
5055 [@]	7		G	
5091 [@]	7		G	
5140 [@]	7		G	

[†] From a least-square fit to  $E\gamma$ , unless otherwise stated. [‡] From ²⁰⁷Pb(t, $\alpha$ ). [#] From ²⁰⁸Pb(d, $\alpha$ ). [@] From ²⁰⁵Tl(d,p).

## $\gamma(^{206}{\rm Tl})$

E _i (level)	$\mathbf{J}_i^{\pi}$	$E_{\gamma}^{\dagger}$	$I_{\gamma}^{\dagger}$	$E_f$	$J_f^{\pi}$	Mult.	α ^{&amp;}	Comments
265.833	2-	265.832 5	100	0.0	0-	E2	0.1603 22	B(E2)(W.u.)=2.22 <i>14</i> $\alpha(K)=0.0855$ <i>12</i> ; $\alpha(L)=0.0561$ <i>8</i> ; $\alpha(M)=0.01440$ <i>20</i> $\alpha(N)=0.00361$ <i>5</i> ; $\alpha(O)=0.000639$ <i>9</i> ; $\alpha(P)=3.09\times10^{-5}$ <i>4</i> Mult.: $\alpha(K)\exp=0.092$ , $\alpha(L)\exp=0.057$ and $\alpha(M)\exp=0.013$ (1976TuZY); $\alpha(K)\exp=0.092$ , $\alpha(L)\exp=0.057$ and $\alpha(M)\exp=0.013$ (1976TuZY);
304.896	1-	304.896 6	100	0.0	0-	M1	0.375 5	$\alpha(K)\exp=0.15 \ \delta \ \text{and} \ K/L=1.5 \ 3 \ (1961Ru02) \ \text{in} \ ^{210}\text{Bi} \ \alpha \ \text{decay} \ (3.04 \times 10^{\circ} \ \text{y}).$ B(M1)(W.u.)=0.13 5 $\alpha(K)=0.308 \ 4; \ \alpha(L)=0.0519 \ 7; \ \alpha(M)=0.01211 \ 17$ $\alpha(N)=0.00306 \ 4; \ \alpha(O)=0.000594 \ 8; \ \alpha(P)=5.62 \times 10^{-5} \ 8$ Mult.: $\alpha(K)\exp=0.37, \ \alpha(L)\exp=0.060 \ \text{and} \ \alpha(M)\exp=0.017 \ (1976\text{TuZY});$
635.03	2-	330.13 6	100 20	304.896	1-	M1	0.302 4	$\alpha$ (K)exp=0.26 <i>I</i> and K/L=6.3 <i>I</i> (1961Ru02) in ²¹⁰ Bi $\alpha$ decay (3.04×10 ⁶ y). $\alpha$ (K)=0.2478 35; $\alpha$ (L)=0.0417 6; $\alpha$ (M)=0.00973 <i>I</i> 4 $\alpha$ (N)=0.002458 34; $\alpha$ (O)=0.000478 7; $\alpha$ (P)=4.52×10 ⁻⁵ 6 B(M1)(W.u.)=0.067 <i>I</i> 6 I _{$\gamma$} : From ²¹⁰ Bi $\alpha$ decay (3.04×10 ⁶ y). Mult.: $\alpha$ (K)exp=0.29 and $\alpha$ (L)exp=0.074 (1976TuZY) in ²¹⁰ Bi $\alpha$ decay (3.04×10 ⁶ )
		369.18 7	80 7	265.833	2-	M1	0.2234 <i>31</i>	y). $\alpha(K)=0.1833\ 26;\ \alpha(L)=0.0308\ 4;\ \alpha(M)=0.00718\ 10$ $\alpha(N)=0.001812\ 25;\ \alpha(O)=0.000352\ 5;\ \alpha(P)=3.33\times10^{-5}\ 5$ B(M1)(W.u.)=0.038\ 10 I _{\gamma} : From ²¹⁰ Bi $\alpha$ decay (3.04×10 ⁶ y). Others: 95 14 in ²⁰⁵ Tl(n, $\gamma$ )E=th. Mult.: $\alpha(K)exp=0.18$ and $\alpha(L)exp=0.038\ (1976TuZY)$ in ²¹⁰ Bi $\alpha$ decay (3.04×10 ⁶ y)
		635 [‡]	1.3 [‡]	0.0	0-	[E2]	0.01621 23	$\alpha(K)=0.01224 \ 17; \ \alpha(L)=0.00301 \ 4; \ \alpha(M)=0.000733 \ 10$ $\alpha(N)=0.0001844 \ 26; \ \alpha(O)=3.43\times10^{-5} \ 5; \ \alpha(P)=2.56\times10^{-6} \ 4$ B(E2)(W.u.)=0.11 \ 4 E _{\alpha} : Only reported in ²¹⁰ Bi \ \alpha \ decay (3.0\times10 ⁶ \ y).
649.42	1-	344.5 [@] 1	25.8 [@] 24	304.896	1-	M1	0.269 4	$\begin{aligned} \alpha(N) = 0.002188 \ 31; \ \alpha(O) = 0.000425 \ 6; \ \alpha(P) = 4.02 \times 10^{-5} \ 6\\ \alpha(K) = 0.2208 \ 31; \ \alpha(L) = 0.0371 \ 5; \ \alpha(M) = 0.00866 \ 12\\ I_{\gamma}: Weighted average \ 23.6 \ 42 \ in \ ^{205} Tl(n, \gamma)E = th., \ 27.6 \ 35 \ in \ ^{210}Bi \ \alpha \ decay\\ (3.04 \times 10^6 \ y) \ and \ 25 \ 5 \ in \ ^{206}Hg \ \beta^- \ decay. \end{aligned}$ Mult.: $\alpha(K) exp = 0.15 \ and \ \alpha(L) exp = 0.033 \ (1976TuZY) \ in \ ^{210}Bi \ \alpha \ decay \ (3.04 \times 10^6 \ y). \end{aligned}$
		384 [‡]	0.19 [‡]	265.833	2-	[M1]	0.2010 28	$\alpha(K)=0.1649\ 23;\ \alpha(L)=0.0277\ 4;\ \alpha(M)=0.00645\ 9$
		649.42 <i>5</i>	100 10	0.0	0-	M1	0.0501 7	$\begin{aligned} \alpha(K) = 0.0412 \ 6; \ \alpha(L) = 0.00681 \ 10; \ \alpha(M) = 0.001585 \ 22 \\ \alpha(N) = 0.00400 \ 6; \ \alpha(O) = 7.78 \times 10^{-5} \ 11; \ \alpha(P) = 7.38 \times 10^{-6} \ 10 \\ I_{\gamma}: \ From \ ^{206}Hg \ \beta^{-} \ decay \ (1970As05). \\ Mult.: \ \alpha(K)exp = 0.029 \ (1976TuZY) \ in \ ^{210}Bi \ \alpha \ decay \ (3.04 \times 10^{6} \ y); \ \gamma\gamma(\theta) \ in \ ^{205}Tl(n,\gamma)E=th. \end{aligned}$

## $\gamma$ (²⁰⁶Tl) (continued)

E _i (level)	$\mathbf{J}_i^{\pi}$	$E_{\gamma}^{\dagger}$	$I_{\gamma}^{\dagger}$	$\mathbf{E}_f = \mathbf{J}_f^{\pi}$	Mult.	δ	α <b>&amp;</b>	Comments
801.36	3-	535.53 4	100	265.833 2-	M1(+E2)	<0.06	0.0829 12	B(M1)(W.u.)=0.055 <i>16</i> ; B(E2)(W.u.)<0.19 $\alpha$ (K)=0.0681 <i>10</i> ; $\alpha$ (L)=0.01132 <i>16</i> ; $\alpha$ (M)=0.00264 <i>4</i> $\alpha$ (N)=0.000666 <i>9</i> : $\alpha$ (O)=0.0001294 <i>18</i> : $\alpha$ (P)=1.227×10 ⁻⁵ <i>17</i>
952.17	4-	149 686.31 <i>6</i>	100	801.36 3 ⁻ 265.833 2 ⁻	[E2]		0.01368 19	Mult., $\delta$ : From $\gamma\gamma(\theta)$ in ²⁰⁵ Tl( $n,\gamma$ ) E=th. E _{$\gamma$} : Only reported in ²⁰⁵ Tl( $^{17}O$ , $^{16}O\gamma$ ) (1975Do12). B(E2)(W.u.)=1.2 <i>3</i> $\alpha(K)=0.01047$ <i>15</i> ; $\alpha(L)=0.002442$ <i>34</i> ; $\alpha(M)=0.000591$ <i>8</i> $\alpha(N)=0.000486$ <i>21</i> : $\alpha(O)=2.78\times10^{-5}$ <i>4</i> : $\alpha(P)=2.132\times10^{-6}$ <i>30</i>
998.20	2-	196.8 [@] 1	3.4 [@] 7	801.36 3-	[M1+E2]		0.8 4	$\alpha(K)=0.0001460 \ 21, \ \alpha(G)=2.78\times10^{-4}, \ \alpha(F)=2.132\times10^{-5} \ 30^{-6}$ $\alpha(K)=0.64; \ \alpha(L)=0.1849; \ \alpha(M)=0.0455$ $\alpha(N)=0.011411; \ \alpha(Q)=0.002099; \ \alpha(P)=1.4\times10^{-4}5$
		348.8 [@] 1	6.7 [@] 13	649.42 1-	[M1+E2]		0.17 9	$\alpha(K) = 0.017 4; \ \alpha(C) = 0.0023 3; \ \alpha(L) = 0.0067 16$ $\alpha(K) = 0.0017 4; \ \alpha(C) = 3.2 \times 10^{-4} 9; \ \alpha(P) = 2.6 \times 10^{-5} 13$
		732.34 7	100	265.833 2-	M1+E2	0.18 3	0.0359 6	$\alpha(K)=0.0295 \ 5; \ \alpha(L)=0.00488 \ 8; \ \alpha(M)=0.001135 \ 17 \\ \alpha(N)=0.000287 \ 4; \ \alpha(O)=5.57\times10^{-5} \ 9; \ \alpha(P)=5.28\times10^{-6} \ 8$
		998.2 [@] 1	2.0 [@] 4	0.0 0-	E2		0.00636 9	Mult., $\delta$ : From $\gamma\gamma(\theta)$ in ²⁰⁵ Tl(n, $\gamma$ ) E=th. $\alpha(K)=0.00509\ 7$ ; $\alpha(L)=0.000972\ 14$ ; $\alpha(M)=0.0002303\ 32$ $\alpha(N)=5.80\times10^{-5}\ 8$ ; $\alpha(O)=1.103\times10^{-5}\ 15$ ; $\alpha(P)=9.36\times10^{-7}\ 13$ Mult.: From $\gamma\gamma(\theta)$ in ²⁰⁵ Tl(n, $\gamma$ ) E=th.
1079.6	$(1^{-},2)$	278.2 [@] 7	100 [@]	801.36 3-			0.08.4	a(W) = 0.064, $a(U) = 0.0124$ , $a(W) = 0.0028$ , 10
1110.64	1	407.4 1	20.2 55	049.42 1	[WII+E2]		0.08 4	$\alpha(\mathbf{N})=0.004, \ \alpha(\mathbf{L})=0.0124, \ \alpha(\mathbf{M})=0.002810$ $\alpha(\mathbf{N})=7.1\times10^{-4}25; \ \alpha(\mathbf{O})=1.4\times10^{-4}5; \ \alpha(\mathbf{P})=1.2\times10^{-5}6$
		481.8 <i>1</i>	77 11	635.03 2-	[M1+E2]		0.07 4	$\alpha(K)=0.056\ 34;\ \alpha(L)=0.011\ 4;\ \alpha(M)=0.0026\ 9$ $\alpha(N)=6\ 5\times10^{-4}\ 23;\ \alpha(O)=1\ 2\times10^{-4}\ 5;\ \alpha(P)=1\ 1\times10^{-5}\ 6$
		812.0 <i>1</i>	26.6 33	304.896 1-	[M1+E2]		0.019 9	$\alpha(K) = 0.015 \ 8; \ \alpha(L) = 0.0027 \ 11; \ \alpha(M) = 6.3 \times 10^{-4} \ 25$
		850.4 <i>3</i>	6.9 10	265.833 2-	[M1+E2]		0.017 8	$\alpha(N)=1.6\times10^{-4} 6; \ \alpha(O)=3.1\times10^{-5} 13; \ \alpha(P)=2.8\times10^{-6} 13 \\ \alpha(K)=0.014 7; \ \alpha(L)=0.0024 \ 10; \ \alpha(M)=5.6\times10^{-4} \ 22$
		1116.9 <i>1</i>	100 10	0.0 0-	M1		0.01242 17	$\begin{aligned} \alpha(N) &= 1.4 \times 10^{-4} \ 6; \ \alpha(O) &= 2.7 \times 10^{-5} \ 11; \ \alpha(P) &= 2.5 \times 10^{-6} \ 12 \\ \alpha(K) &= 0.01025 \ 14; \ \alpha(L) &= 0.001665 \ 23; \ \alpha(M) &= 0.000387 \ 5 \\ \alpha(N) &= 9.75 \times 10^{-5} \ 14; \ \alpha(O) &= 1.898 \times 10^{-5} \ 27; \ \alpha(P) &= 1.809 \times 10^{-6} \ 25; \\ \alpha(PE) &= 5.53 \times 10^{-7} \ 8 \end{aligned}$
1331.84	1-	682.4 [@] 1	30 [@] 5	649.42 1-	M1+E2	0.03 2	0.0440 6	Mult.: From $\gamma\gamma(\theta)$ in ²⁰⁵ Tl(n, $\gamma$ ) E=th. $\alpha(K)=0.0362 \ 5; \ \alpha(L)=0.00598 \ 8; \ \alpha(M)=0.001390 \ 20$ $\alpha(N)=0.000351 \ 5; \ \alpha(O)=6.82\times10^{-5} \ 10; \ \alpha(P)=6.48\times10^{-6} \ 9$ Mult. $\delta$ : From $\gamma\gamma(\theta)$ in ²⁰⁵ Tl(n, $\gamma$ ) E=th.
		696.8 [@] 1	15.1 [@] 22	635.03 2-	[M1+E2]		0.027 14	$\alpha(K)=0.022 \ 12; \ \alpha(L)=0.0040 \ 17; \ \alpha(M)=9$ $\alpha(K)=2.4\times10^{-4} \ 0; \ \alpha(Q)=4.6\times10^{-5} \ 10; \ \alpha(D)=4.1\times10^{-6} \ 20$
		1027.0 [@] 1	54 [@] 8	304.896 1-	M1(+E2)	< 0.07	0.01536 22	$\alpha(K) = 2.4 \times 10^{-9}$ ; $\alpha(C) = 4.0 \times 10^{-19}$ ; $\alpha(F) = 4.1 \times 10^{-2}$ 20 $\alpha(K) = 0.01267$ 18; $\alpha(L) = 0.002063$ 29; $\alpha(M) = 0.000479$ 7

7

 $^{206}_{81}\mathrm{Tl}_{125}$ -7

						Adopted	Levels, Ga	ammas (contir	nued)
							$\gamma$ ⁽²⁰⁶ Tl) (c	continued)	
E _i (level)	$\mathbf{J}_i^{\pi}$	$E_{\gamma}^{\dagger}$	$I_{\gamma}^{\dagger}$	$E_f$	$\mathbf{J}_f^{\pi}$	Mult.	δ	α ^{&amp;}	Comments
1331.84	1-	1331.8 [@] 1	100 [@] 15	0.0	0-	M1		0.00797 11	$\alpha(N)=0.0001209 \ 17; \ \alpha(O)=2.353\times10^{-5} \ 33; \ \alpha(P)=2.241\times10^{-6} \ 32$ Mult., $\delta$ : From $\gamma\gamma(\theta)$ in ²⁰⁵ Tl(n, $\gamma$ ) E=th. $\alpha(K)=0.00656 \ 9; \ \alpha(L)=0.001060 \ 15; \ \alpha(M)=0.0002459 \ 34$ $\alpha(N)=6.21\times10^{-5} \ 9; \ \alpha(O)=1.208\times10^{-5} \ 17; \ \alpha(P)=1.152\times10^{-6} \ 16; \ \alpha(IPF)=3.62\times10^{-5} \ 5$
1360.16	0-	243.3 [@] 1	1.7 [@] 4	1116.84	1-	[M1]		0.697 10	Mult.: From $\gamma\gamma(\theta)$ in ²⁰³ II( $n,\gamma$ ) E=th. $\alpha(K)=0.571 \ 8; \ \alpha(L)=0.0968 \ 14; \ \alpha(M)=0.02260 \ 32$
		710.7 [@] 1	56 [@] 8	649.42	1-	M1		0.0396 6	$\alpha(N)=0.005713; \alpha(O)=0.00110876; \alpha(P)=0.000104875$ $\alpha(K)=0.03265; \alpha(L)=0.005388; \alpha(M)=0.00125078$ $\alpha(N)=0.0003164; \alpha(O)=6.14\times10^{-5}9; \alpha(P)=5.83\times10^{-6}8$ Mult.: From $\gamma\gamma(\theta)$ in 205 Tl(n, $\gamma$ ) E=th.
		1055.3 [@] 1	100 [@] 14	304.896	1-	M1		0.01435 20	$\alpha(K)=0.01184 \ 17; \ \alpha(L)=0.001926 \ 27; \ \alpha(M)=0.000447 \ 6 \\ \alpha(N)=0.0001129 \ 16; \ \alpha(O)=2.197 \times 10^{-5} \ 31; \ \alpha(P)=2.093 \times 10^{-6} \ 29 \\ Mult.: From \ \gamma\gamma(\theta) \ in \ ^{205}Tl(n,\gamma) E=th.$
1399.53	2-	598.2 [@] 2	100 [@] 18	801.36	3-	M1+E2	0.17 3	0.0609 10	$\alpha(K)=0.0500 \ 8; \ \alpha(L)=0.00832 \ 13; \ \alpha(M)=0.001937 \ 29$ $\alpha(N)=0.000489 \ 7; \ \alpha(O)=9.50\times10^{-5} \ 15; \ \alpha(P)=8.99\times10^{-6} \ 14$ Mult., $\delta$ : From $\gamma\gamma(\theta)$ in ²⁰⁵ Tl(n, $\gamma$ ) E=th.
		1094.8 [@] 3	92 [@] 15	304.896	1-	[M1+E2]		0.009 4	$\alpha(K)=0.0075 \ 33; \ \alpha(L)=0.0013 \ 5; \ \alpha(M)=3.0\times10^{-4} \ 11$ $\alpha(K)=7.5\times10^{-5} \ 28; \ \alpha(O)=1.4\times10^{-5} \ 6; \ \alpha(D)=1.2\times10^{-6} \ 6$
1405.47	(5)+	453.28 5	100 5	952.17	4-	[E1]		0.01136 <i>16</i>	$\begin{aligned} \alpha(N) &= 7.5 \times 10^{-5} \ 2.8; \ \alpha(O) &= 1.4 \times 10^{-6} \ 6; \ \alpha(F) &= 1.5 \times 10^{-6} \ 6 \\ \alpha(K) &= 0.00940 \ 13; \ \alpha(L) &= 0.001508 \ 21; \ \alpha(M) &= 0.000349 \ 5 \\ \alpha(N) &= 8.76 \times 10^{-5} \ 12; \ \alpha(O) &= 1.672 \times 10^{-5} \ 23; \ \alpha(P) &= 1.438 \times 10^{-6} \ 20 \\ B(E1)(W.u.) &= 2.45 \times 10^{-8} \ 6 \\ I_{\gamma}: \ From \ ^{206}T1 \ IT \ decay. \end{aligned}$
		604.3 [#] 2	1.1 [#] 8	801.36	3-	[M2]		0.1664 23	$\alpha(K)=0.1318 \ 18; \ \alpha(L)=0.0263 \ 4; \ \alpha(M)=0.00629 \ 9$ $\alpha(N)=0.001595 \ 22; \ \alpha(O)=0.000309 \ 4; \ \alpha(P)=2.84\times10^{-5} \ 4$ B(M2)(W.u.)=0.0014 \ 10
		1139.9 [#] 3	6.3 [#] 22	265.833	2-	[E3]		0.01089 15	$\alpha(K)=0.00831 \ 12; \ \alpha(L)=0.001960 \ 27; \ \alpha(M)=0.000476 \ 7$ $\alpha(N)=0.0001200 \ 17; \ \alpha(O)=2.264\times10^{-5} \ 32; \ \alpha(P)=1.848\times10^{-6}$ $26; \ \alpha(IPF)=1.952\times10^{-7} \ 35$ B(E3)(W.u.)=0.14 5
1486.52	(1 ⁻ )	126.0 ^{@a} 10	0.5 [@] 3	1360.16	0-	[M1]		4.44 12	$\alpha$ (K)=3.63 <i>10</i> ; $\alpha$ (L)=0.622 <i>17</i> ; $\alpha$ (M)=0.145 <i>4</i> $\alpha$ (N)=0.0367 <i>10</i> ; $\alpha$ (O)=0.00713 <i>19</i> ; $\alpha$ (P)=0.000673 <i>18</i>
		370.4 [@] 10	<11@	1116.84	1-	[M1+E2]		0.14 8	$\alpha(K)=0.11$ 7; $\alpha(L)=0.023$ 7; $\alpha(M)=0.0056$ 15 $\alpha(N)=0.0014$ 4; $\alpha(O)=2.7\times10^{-4}$ 8; $\alpha(P)=2.2\times10^{-5}$ 11
		488.3 [@] 5	3.8 [@] 9	998.20	2-	[M1+E2]		0.07 4	$\alpha$ (K)=0.054 33; $\alpha$ (L)=0.011 4; $\alpha$ (M)=0.0025 9 $\alpha$ (N)=6.3×10 ⁻⁴ 22; $\alpha$ (O)=1.2×10 ⁻⁴ 5; $\alpha$ (P)=1.0×10 ⁻⁵ 5

 $\infty$ 

# From ENSDF

 $^{206}_{81}\mathrm{Tl}_{125}$ -8

						Adopted	Levels, Gar	nmas (continu	1ed)
						- -	$\gamma(^{206}\text{Tl})$ (co	ntinued)	
E _i (level)	$\mathbf{J}_i^{\pi}$	$E_{\gamma}^{\dagger}$	$I_{\gamma}^{\dagger}$	$E_f$	$\mathbf{J}_{f}^{\pi}$	Mult.	δ	α ^{&amp;}	Comments
1486.52	(1 ⁻ )	837.1 [@] 1	14.6 [@] 28	649.42	1-	M1+E2	-0.03 1	0.0260 4	$\alpha(K)=0.02139 \ 30; \ \alpha(L)=0.00351 \ 5; \ \alpha(M)=0.000815 \ 11 \ \alpha(N)=0.0002057 \ 29; \ \alpha(O)=4.00\times10^{-5} \ 6; \ \alpha(P)=3.80\times10^{-6} \ 5 \ Mult.,\delta: From \ \gamma\gamma(\theta) \ in \ ^{205}Tl(n,\gamma) \ E=th.$
		851.5 [@] 1	100 [@] 19	635.03	2-	[M1+E2]		0.017 8	$\alpha(K)=0.014\ 7;\ \alpha(L)=0.0024\ 10;\ \alpha(M)=5.6\times10^{-4}\ 22$ $\alpha(N)=1.4\times10^{-4}\ 6;\ \alpha(O)=2.7\times10^{-5}\ 11;\ \alpha(P)=2.5\times10^{-6}\ 12$
		1181.6 [@] 1	62 [@] 12	304.896	1-	[M1+E2]		0.0077 31	$\alpha(K) = 0.0063 \ 26; \ \alpha(L) = 0.0011 \ 4; \ \alpha(M) = 2.5 \times 10^{-4} \ 9$ $\alpha(N) = 6.2 \times 10^{-5} \ 22; \ \alpha(O) = 1.2 \times 10^{-5} \ 4; \ \alpha(P) = 1.1 \times 10^{-6} \ 5;$ $\alpha(IPF) = 3.5 \times 10^{-6} \ 10$
		1220.7 [@] 1	3.4 [@] 6	265.833	2-	[M1+E2]		0.0071 28	$\alpha(K) = 0.0058 \ 23; \ \alpha(L) = 9.7 \times 10^{-4} \ 35; \ \alpha(M) = 2.3 \times 10^{-4} \ 8$ $\alpha(N) = 5.7 \times 10^{-5} \ 20; \ \alpha(O) = 1.1 \times 10^{-5} \ 4; \ \alpha(P) = 1.0 \times 10^{-6} \ 4;$ $\alpha(IPF) = 8.0 \times 10^{-6} \ 21$
1621.70	(7)+	216.26 8	100	1405.47	(5)+	[E2]		0.313 4	B(E2)(W.u.)=1.25 7 $\alpha$ (K)=0.1404 20; $\alpha$ (L)=0.1292 18; $\alpha$ (M)=0.0335 5 $\alpha$ (N)=0.00839 12; $\alpha$ (O)=0.001471 21; $\alpha$ (P)=6.36×10 ⁻⁵ 9
1647.86	(2 ⁻ )	998.4 [@] 1	100 [@] 20	649.42	1-	[M1+E2]		0.011 5	$\alpha$ (K)=0.009 4; $\alpha$ (L)=0.0016 6; $\alpha$ (M)=3.7×10 ⁻⁴ 14 $\alpha$ (N)=9; $\alpha$ (O)=1.8×10 ⁻⁵ 7; $\alpha$ (P)=1.7×10 ⁻⁶ 7
		1343.0 [@] 1	70 [@] 13	304.896	1-	[M1+E2]		0.0057 21	$\begin{aligned} &\alpha(\mathbf{K}) = 0.0047 \ 17; \ \alpha(\mathbf{L}) = 7.7 \times 10^{-4} \ 26; \ \alpha(\mathbf{M}) = 1.8 \times 10^{-4} \ 6 \\ &\alpha(\mathbf{N}) = 4.5 \times 10^{-5} \ 15; \ \alpha(\mathbf{O}) = 8.8 \times 10^{-6} \ 30; \ \alpha(\mathbf{P}) = 8.2 \times 10^{-7} \ 31; \\ &\alpha(\mathbf{IPF}) = 3.2 \times 10^{-5} \ 8 \end{aligned}$
1710.53	(6)+	$88.5^{\#a} 5$	<35 [#]	1621.70	$(7)^+$				
1843.41	2-	304.9" 2 1042.1 [@] 1	$100^{-7} 34$ $16.7^{\textcircled{0}} 32$	801.36	(5) ⁺ 3 ⁻	M1(+E2)	-0.03 5	0.01481 21	$\alpha$ (K)=0.01222 <i>18</i> ; $\alpha$ (L)=0.001989 <i>28</i> ; $\alpha$ (M)=0.000462 <i>7</i> $\alpha$ (N)=0.0001166 <i>17</i> ; $\alpha$ (O)=2.268×10 ⁻⁵ <i>33</i> ; $\alpha$ (P)=2.160×10 ⁻⁶ <i>31</i>
		1194.0 [@] 1	100 [@] 18	649.42	1-	M1(+E2)	-0.01 2	0.01048 15	Mult., $\delta$ : From $\gamma\gamma(\theta)$ in ²⁰⁵ Tl(n, $\gamma$ ) E=th. $\alpha(K)=0.00865 \ 12; \ \alpha(L)=0.001402 \ 20; \ \alpha(M)=0.000326 \ 5$ $\alpha(N)=8.21\times10^{-5} \ 12; \ \alpha(O)=1.599\times10^{-5} \ 22; \ \alpha(P)=1.524\times10^{-6}$ $21; \ \alpha(IPF)=6.02\times10^{-6} \ 9$
		1208.3 [@] 1	2.6 [@] 6	635.03	2-	M1+E2	-0.19 7	0.00997 22	Mult., $\delta$ : From $\gamma\gamma(\theta)$ in ²⁰⁵ Tl(n, $\gamma$ ) E=th. $\alpha(K)=0.00822\ 18;\ \alpha(L)=0.001335\ 28;\ \alpha(M)=0.000310\ 6$ $\alpha(N)=7.82\times10^{-5}\ 16;\ \alpha(O)=1.522\times10^{-5}\ 32;\ \alpha(P)=1.449\times10^{-6}$ $31;\ \alpha(IPF)=7.97\times10^{-6}\ 15$
		1538.6 [@] 2	9.3 [@] 19	304.896	1-	[M1+E2]		0.0043 14	Mult., $\delta$ : From $\gamma\gamma(\theta)$ in ²⁰⁵ Tl(n, $\gamma$ ) E=th. $\alpha(K)=0.0034 \ 11; \ \alpha(L)=5.6\times10^{-4} \ 17; \ \alpha(M)=1.3\times10^{-4} \ 4$ $\alpha(N)=3.3\times10^{-5} \ 10; \ \alpha(O)=6.4\times10^{-6} \ 20; \ \alpha(P)=6.0\times10^{-7} \ 20; \ \alpha(IPF)=0.000102 \ 25$

9

L

					nmas (continued	<u>d)</u>			
						<u> </u>	( ²⁰⁶ Tl) (cor	ntinued)	
E _i (level)	$\mathbf{J}_i^{\pi}$	${\rm E_{\gamma}}^{\dagger}$	$I_{\gamma}^{\dagger}$	$E_f$	$\mathbf{J}_f^{\pi}$	Mult.	δ	α <b>&amp;</b>	Comments
1843.41	2-	1577.5 [@] 1	94 [@] 17	265.833	2-	M1+E2	-0.06 3	0.00532 8	$\alpha(K)=0.00427 \ 6; \ \alpha(L)=0.000687 \ 10; \ \alpha(M)=0.0001594 \ 23$ $\alpha(N)=4.02\times10^{-5} \ 6; \ \alpha(O)=7.83\times10^{-6} \ 11;$ $\alpha(P)=7.48\times10^{-7} \ 11; \ \alpha(IPF)=0.0001488 \ 21$ Mult., $\delta$ : From $\gamma\gamma(\theta)$ in ²⁰⁵ Tl(n, $\gamma$ ) E=th.
		1843.4 [@] 1	18.3 [@] 35	0.0	0-	(E2)		2.21×10 ⁻³ 3	$\alpha(K)=0.001660\ 23;\ \alpha(L)=0.000269\ 4;\ \alpha(M)=6.24\times10^{-5}\ 9$ $\alpha(N)=1.572\times10^{-5}\ 22;\ \alpha(O)=3.04\times10^{-6}\ 4;$ $\alpha(P)=2.80\times10^{-7}\ 4;\ \alpha(IPF)=0.0001956\ 27$ Mult.: From $\gamma\gamma(\theta)$ in 205 Tl(n, $\gamma$ ) E=th.
2078.90	(8)+	368.2 [#] 2 457.2 [#] 5	5 [#] 3 100 [#] 12	1710.53 1621.70	$(6)^+$ $(7)^+$				
2189.7	(2 ⁻ )	1540.3 [@] 3	100 [@]	649.42	1-	[M1+E2]		0.0042 14	$\alpha$ (K)=0.0034 <i>11</i> ; $\alpha$ (L)=5.6×10 ⁻⁴ <i>17</i> ; $\alpha$ (M)=1.3×10 ⁻⁴ <i>4</i> $\alpha$ (N)=3.3×10 ⁻⁵ <i>10</i> ; $\alpha$ (O)=6.3×10 ⁻⁶ <i>20</i> ; $\alpha$ (P)=5.9×10 ⁻⁷ <i>20</i> ; $\alpha$ (IPF)=0.000103 <i>26</i>
2241.24	(1-)	841.8 [@] 5	14.7 [@] 29	1399.53	2-	[M1+E2]		0.017 8	$\alpha(K)=0.014\ 7;\ \alpha(L)=0.0025\ 10;\ \alpha(M)=5.8\times10^{-4}\ 23$ $\alpha(N)=1.5\times10^{-4}\ 6;\ \alpha(O)=2.8\times10^{-5}\ 11;\ \alpha(P)=2.5\times10^{-6}\ 12$
		881.1 ^{@a} 5	14.7 [@] 29	1360.16	0-	[M1]		0.02277 32	$\alpha$ (K)=0.01877 26; $\alpha$ (L)=0.00307 4; $\alpha$ (M)=0.000714 10 $\alpha$ (N)=0.0001801 25; $\alpha$ (O)=3.50×10 ⁻⁵ 5; $\alpha$ (P)=3.33×10 ⁻⁶ 5
		909.4 [@] 3	27 [@] 6	1331.84	1-	[M1+E2]		0.014 7	$\alpha$ (K)=0.012 6; $\alpha$ (L)=0.0020 8; $\alpha$ (M)=4.7×10 ⁻⁴ 19 $\alpha$ (N)=1.2×10 ⁻⁴ 5; $\alpha$ (O)=2.3×10 ⁻⁵ 9; $\alpha$ (P)=2.1×10 ⁻⁶ 10
		1591.8 [@] 2	100 [@] 15	649.42	1-	M1+E2	0.04 3	0.00521 7	$\alpha(K)=0.00418\ 6;\ \alpha(L)=0.000672\ 9;\ \alpha(M)=0.0001559\ 22$ $\alpha(N)=3.93\times10^{-5}\ 6;\ \alpha(O)=7.66\times10^{-6}\ 11;$ $\alpha(P)=7.31\times10^{-7}\ 10;\ \alpha(IPF)=0.0001571\ 22$ Mult. $\delta$ : From $\gamma\gamma(\theta)$ in ${}^{205}Tl(n\ \gamma)$ E=th
2326.16	(8 ⁺ )	$247.2^{\#}$ 1	100 [#] 21	2078.90	$(8)^+$				
		$704.6^{\#}.3$	<0 18 [#] 12	1/10.55	(0) $(7)^+$				
2380.64	(0 ⁻ )	1048.8 [@] 1	86 [@] 15	1331.84	1-	M1		0.01458 20	$\alpha(K)=0.01203 \ 17; \ \alpha(L)=0.001957 \ 27; \ \alpha(M)=0.000455 \ 6$ $\alpha(N)=0.0001147 \ 16; \ \alpha(O)=2.232\times10^{-5} \ 31;$ $\alpha(P)=2.126\times10^{-6} \ 30$ Mult : From $\alpha\alpha(\theta)$ in ${}^{205}Tl(n\alpha)$ E=th
		1263.8 [@] 1	100 [@] 16	1116.84	1-	M1		0.00909 13	$\alpha(K) = 0.00749 \ 10; \ \alpha(L) = 0.001212 \ 17; \ \alpha(M) = 0.000281 \ 4$ $\alpha(N) = 7.10 \times 10^{-5} \ 10; \ \alpha(O) = 1.382 \times 10^{-5} \ 19;$ $\alpha(P) = 1.318 \times 10^{-6} \ 18; \ \alpha(IPF) = 1.852 \times 10^{-5} \ 26$ Mult : From $\alpha\alpha(\theta)$ in 205 Tl( $\alpha_{2}$ ) E-th
		1382.3 ^{@a} 3	6.6 [@] 13	998.20	2-	[E2]		0.00345 5	$\alpha(K)=0.00279 \ 4; \ \alpha(L)=0.000479 \ 7; \ \alpha(M)=0.0001122 \ 16$

10

						Adopted L	evels, Gamma	as (continued)
						<u> </u>	( ²⁰⁶ Tl) (contin	ued)
E _i (level)	$\mathbf{J}_i^{\pi}$	$E_{\gamma}^{\dagger}$	$I_{\gamma}^{\dagger}$	$E_f$	$J_f^{\pi}$	Mult.	α <b>&amp;</b>	Comments
								$\alpha$ (N)=2.82×10 ⁻⁵ 4; $\alpha$ (O)=5.43×10 ⁻⁶ 8; $\alpha$ (P)=4.86×10 ⁻⁷ 7; $\alpha$ (IPF)=3.21×10 ⁻⁵ 5
2380.64	(0 ⁻ )	1731.2 [@] 3	10.5 [@] 26	649.42	1-	[M1]	0.00433 6	$ \begin{aligned} &\alpha(\mathrm{K}) = 0.00338 \ 5; \ \alpha(\mathrm{L}) = 0.000543 \ 8; \ \alpha(\mathrm{M}) = 0.0001259 \ 18 \\ &\alpha(\mathrm{N}) = 3.18 \times 10^{-5} \ 4; \ \alpha(\mathrm{O}) = 6.19 \times 10^{-6} \ 9; \ \alpha(\mathrm{P}) = 5.91 \times 10^{-7} \ 8; \\ &\alpha(\mathrm{IPF}) = 0.0002421 \ 34 \end{aligned} $
		2075.7 [@] 3	43 [@] 7	304.896	1-	M1	0.00307 4	$\alpha$ (K)=0.002142 30; $\alpha$ (L)=0.000342 5; $\alpha$ (M)=7.93×10 ⁻⁵ 11 $\alpha$ (N)=2.001×10 ⁻⁵ 28; $\alpha$ (O)=3.90×10 ⁻⁶ 5; $\alpha$ (P)=3.73×10 ⁻⁷ 5; $\alpha$ (IPF)=0.000478 7 Mult.: From $\gamma\gamma(\theta)$ in ²⁰⁵ Tl(n, $\gamma$ ) E=th.
2494.71	(1 ⁻ )	1378.0 [@] 2	100 [@] 19	1116.84	1-	[M1+E2]	0.0054 19	$\alpha$ (K)=0.0044 <i>16</i> ; $\alpha$ (L)=7.3×10 ⁻⁴ <i>24</i> ; $\alpha$ (M)=1.7×10 ⁻⁴ <i>6</i> $\alpha$ (N)=4.3×10 ⁻⁵ <i>14</i> ; $\alpha$ (O)=8.3×10 ⁻⁶ <i>28</i> ; $\alpha$ (P)=7.7×10 ⁻⁷ <i>28</i> ; $\alpha$ (IPF)=4.2×10 ⁻⁵ <i>11</i>
		1496.1 [@] 3	31 [@] 8	998.20	2-	[M1+E2]	0.0045 15	$\begin{aligned} &\alpha(\mathrm{K}) = 0.0037 \ 12; \ \alpha(\mathrm{L}) = 6.0 \times 10^{-4} \ 19; \ \alpha(\mathrm{M}) = 1.4 \times 10^{-4} \ 4 \\ &\alpha(\mathrm{N}) = 3.5 \times 10^{-5} \ 11; \ \alpha(\mathrm{O}) = 6.8 \times 10^{-6} \ 22; \ \alpha(\mathrm{P}) = 6.4 \times 10^{-7} \ 22; \\ &\alpha(\mathrm{IPF}) = 8.4 \times 10^{-5} \ 21 \end{aligned}$
		1860.3 [@] 8	23 [@] 4	635.03	2-	[M1+E2]	0.0030 8	$ \begin{array}{l} \alpha(\mathrm{K}) = 0.0022 \ 6; \ \alpha(\mathrm{L}) = 3.6 \times 10^{-4} \ 9; \ \alpha(\mathrm{M}) = 8.3 \times 10^{-5} \ 22 \\ \alpha(\mathrm{N}) = 2.1 \times 10^{-5} \ 6; \ \alpha(\mathrm{O}) = 4.1 \times 10^{-6} \ 11; \ \alpha(\mathrm{P}) = 3.8 \times 10^{-7} \ 11; \ \alpha(\mathrm{IPF}) = 0.00027 \\ 6 \end{array} $
2643.10	(12)-	316.8 [#] 2	1.1 [#] 4	2326.16	(8+)	M4	13.63 19	$\alpha(K)=6.90 \ 10; \ \alpha(L)=4.93 \ 7; \ \alpha(M)=1.376 \ 20 \ \alpha(N)=0.355 \ 5; \ \alpha(O)=0.0650 \ 9; \ \alpha(P)=0.00381 \ 5 \ B(M4)(W.u.)=5.5 \ 18 \ Mult : \ \alpha(exp)\approx14.2 \ in \ 1976Ha44 \ 1^{206}T1 \ IT \ decayl$
		564.2 [#] 1	8.0 [#] 13	2078.90	(8)+	M4	1.165 <i>16</i>	$\alpha(K) = 0.775 \ 11; \ \alpha(L) = 0.291 \ 4; \ \alpha(M) = 0.0756 \ 11 \\ \alpha(N) = 0.01934 \ 27; \ \alpha(O) = 0.00363 \ 5; \ \alpha(P) = 0.000268 \ 4 \\ B(M4)(W.u.) = 0.22 \ 4 \\ M_{1} \ K_{1} = 0.22 \ 4 \\ M_{2} \ K_{1} = 0.22 \ 4 \\ M_{2} \ K_{2} = 0.22 \ 4 \ 4 \ 4 \ 4 \ 10.22 \ 4 \ 10.22 \ 4 \\ M_{2} \ K_{2} = 0.22 \ 4 \ 10.22 \ 4 \ 10.22 \ 4 \ 10.22 \ 4 \ 10.22 \ 4 \ 10.22 \ 4 \ 10.22 \ 4 \ 10.22 \ 4 \ 10.22 \ 4 \ 10.22 \ 4 \ 10.22 \ 4 \ 10.22 \ 4 \ 10.22 \ 4 \ 10.22 \ 4 \ 10.22 \ 4 \ 10.22 \ 4 \ 10.22 \ 4 \ 10.22 \ 4 \ 10.22 \ 4 \ 10.22 \ 4 \ 10.22 \ 4 \ 10.22 \ 4 \ 10.22 \ 4 \ 10.22 \ 4 \ 10.22 \ 4 \ 10.22 \ 4 \ 10.22 \ 4 \ 10.22 \ 4 \ 10.22 \ 4 \ 10.22 \ 4 \ 10.22 \ 4 \ 10.22 \ 4 \ 10.22 \ 4 \ 10.22 \ 4 \ 10.22 \ 4 \ 10.22 \ 4 \ 10.22 \ 4 \ 10.22 \ 4 \ 10.22 \ 4 \ 10.22 \ 4 \ 10.22 \ 4 \ 10.22 \ 4 \ 10.22 \ 4 \ 10.22 \ 4 \ 10.22 \ 4 \ 10.22 \ 4 \ 10.22 \ 4 \ 10.22 \ 10.22 \ 4 \ 10.22 \ 10.22$
		1021.5# 2	100 [#] 9	1621.70	(7)+	[E5]	0.0617 9	Mult.: From $\alpha(\exp) \approx 1.2$ in 1970fra44 [-** 1111 decay]. $\alpha(K)=0.0383 5; \alpha(L)=0.01753 25; \alpha(M)=0.00452 6$ $\alpha(N)=0.001146 16; \alpha(O)=0.0002109 30; \alpha(P)=1.488\times10^{-5} 21$ B(E5)(W.u.)=14.2 7
2803.75	(2 ⁻ )	960.1 [@] 2	58 [@] 10	1843.41	2-	[M1+E2]	0.013 6	$\alpha(K)=0.010\ 5;\ \alpha(L)=0.0018\ 7;\ \alpha(M)=4.1\times10^{-4}\ 16$ $\alpha(N)=1\ 0\times10^{-4}\ 4;\ \alpha(\Omega)=2\ 0\times10^{-5}\ 8;\ \alpha(P)=1\ 8\times10^{-6}\ 8$
		1155.9 [@] 2	13 [@] 3	1647.86	(2 ⁻ )	[M1+E2]	0.0081 33	$\alpha(K) = 0.0066 \ 28; \ \alpha(L) = 0.0011 \ 4; \ \alpha(M) = 2.6 \times 10^{-4} \ 9$ $\alpha(N) = 6.5 \times 10^{-5} \ 24; \ \alpha(O) = 1.3 \times 10^{-5} \ 5; \ \alpha(P) = 1.2 \times 10^{-6} \ 5;$ $\alpha(IPF) = 1.7 \times 10^{-6} \ 5$
		1317.3 [@] 2	58 [@] 10	1486.52	(1-)	[M1+E2]	0.0060 22	$\alpha(K)=0.0049 \ 18; \ \alpha(L)=8.1\times10^{-4} \ 28; \ \alpha(M)=1.9\times10^{-4} \ 6 \\ \alpha(N)=4.8\times10^{-5} \ 16; \ \alpha(O)=9.2\times10^{-6} \ 32; \ \alpha(P)=8.6\times10^{-7} \ 33; \\ \alpha(IPF)=2.5\times10^{-5} \ 7 $

²⁰⁶71₁₂₅-11

н

					Adopte	d Levels, Gar	nmas (continued)
						$\gamma$ ⁽²⁰⁶ Tl) (cc	ontinued)
E _i (level)	$\mathbf{J}_i^{\pi}$	${\rm E_{\gamma}}^{\dagger}$	$I_{\gamma}^{\dagger}$	$E_f  J_f^{\pi}$	Mult.	α <b>&amp;</b>	Comments
2803.75	(2 ⁻ )	1404.3 [@] 2	71 [@] 13	1399.53 2-	[M1+E2]	0.0052 18	$\alpha(K)=0.0042 \ 15; \ \alpha(L)=6.9\times10^{-4} \ 23; \ \alpha(M)=1.6\times10^{-4} \ 5 \\ \alpha(N)=4.1\times10^{-5} \ 13; \ \alpha(O)=7.9\times10^{-6} \ 26; \ \alpha(P)=7.4\times10^{-7} \ 27; \ \alpha(IPF)=5.0\times10^{-5} \\ 13 $
		1687.0 [@] 5	45 [@] 10	1116.84 1-	[M1+E2]	0.0035 10	$\alpha(K)=0.0028 \ 8; \ \alpha(L)=4.5\times10^{-4} \ 13; \ \alpha(M)=1.05\times10^{-4} \ 30$ $\alpha(N)=2.6\times10^{-5} \ 8; \ \alpha(O)=5.1\times10^{-6} \ 15; \ \alpha(P)=4.8\times10^{-7} \ 15; \ \alpha(IPF)=0.00017 \ 4$
		1805.5 [@] 2	39 [@] 7	998.20 2-	[M1+E2]	0.0031 9	$\alpha(K) = 0.0024 \ 7; \ \alpha(L) = 3.8 \times 10^{-4} \ 10; \ \alpha(M) = 8.9 \times 10^{-5} \ 24 \\ \alpha(N) = 2.2 \times 10^{-5} \ 6; \ \alpha(O) = 4.4 \times 10^{-6} \ 12; \ \alpha(P) = 4.1 \times 10^{-7} \ 12; \ \alpha(IPF) = 0.00024 \ 6$
		2002.4 [@] 2	39 [@] 7	801.36 3-	[M1+E2]	0.0026 6	$\alpha$ (K)=0.0019 5; $\alpha$ (L)=0.00030 7; $\alpha$ (M)=7.0×10 ⁻⁵ 17 $\alpha$ (N)=1.8×10 ⁻⁵ 4; $\alpha$ (O)=3.4×10 ⁻⁶ 8; $\alpha$ (P)=3.2×10 ⁻⁷ 8; $\alpha$ (IPF)=0.00035 8
		2154.4 [@] 5	65 [@] 10	649.42 1-	[M1+E2]	0.0024 5	$\alpha$ (K)=0.00160 35; $\alpha$ (L)=0.00025 6; $\alpha$ (M)=5.9×10 ⁻⁵ 13 $\alpha$ (N)=1.49×10 ⁻⁵ 33; $\alpha$ (O)=2.9×10 ⁻⁶ 7; $\alpha$ (P)=2.7×10 ⁻⁷ 7; $\alpha$ (IPF)=0.00044 10
		2168.8 [@] 2	100 [@] 16	635.03 2-	[M1+E2]	0.0023 5	$\alpha(K)=0.00158 \ 34; \ \alpha(L)=0.00025 \ 6; \ \alpha(M)=5.8\times10^{-5} \ 13 \ \alpha(N)=1.47\times10^{-5} \ 32; \ \alpha(O)=2.8\times10^{-6} \ 6; \ \alpha(P)=2.7\times10^{-7} \ 6; \ \alpha(IPF)=0.00044 \ 10$
3002.7	(2-)	1642.3 ^{@a} 8	10 [@] 5	1360.16 0-	[E2]	0.00260 4	$\alpha$ (K)=0.002045 29; $\alpha$ (L)=0.000338 5; $\alpha$ (M)=7.87×10 ⁻⁵ 11 $\alpha$ (N)=1.982×10 ⁻⁵ 28; $\alpha$ (O)=3.82×10 ⁻⁶ 5; $\alpha$ (P)=3.49×10 ⁻⁷ 5; $\alpha$ (IPF)=0.0001137 16
		2353.3 [@] 5	100 [@] 15	649.42 1-	[M1+E2]	0.0021 4	$\alpha(K)=0.00132\ 25;\ \alpha(L)=0.00021\ 4;\ \alpha(M)=4.8\times10^{-5}\ 9$ $\alpha(N)=1.21\times10^{-5}\ 24;\ \alpha(O)=2.4\times10^{-6}\ 5;\ \alpha(P)=2.2\times10^{-7}\ 5;\ \alpha(IPF)=0.00055\ 12$
3041.12	(1 ⁻ )	1393.6 [@] 8	69 [@] 15	1647.86 (2 ⁻ )	[M1+E2]	0.0053 19	$\alpha(K)=0.0043 \ 15; \ \alpha(L)=7.1\times10^{-4} \ 24; \ \alpha(M)=1.6\times10^{-4} \ 5 \\ \alpha(N)=4.2\times10^{-5} \ 14; \ \alpha(O)=8.0\times10^{-6} \ 27; \ \alpha(P)=7.5\times10^{-7} \ 27; \ \alpha(IPF)=4.7\times10^{-5} \\ 12 $
		1554.6 [@] 10	31 [@] 8	1486.52 (1 ⁻ )	[M1+E2]	0.0042 13	$ \begin{array}{l} \alpha(\mathrm{K}) = 0.0033 \ 11; \ \alpha(\mathrm{L}) = 5.5 \times 10^{-4} \ 17; \ \alpha(\mathrm{M}) = 1.3 \times 10^{-4} \ 4 \\ \alpha(\mathrm{N}) = 3.2 \times 10^{-5} \ 10; \ \alpha(\mathrm{O}) = 6.2 \times 10^{-6} \ 19; \ \alpha(\mathrm{P}) = 5.8 \times 10^{-7} \ 20; \ \alpha(\mathrm{IPF}) = 0.000109 \\ 27 \end{array} $
		1680.9 [@] 5	77 [@] 23	1360.16 0-	[M1]	0.00462 6	$\alpha$ (K)=0.00365 5; $\alpha$ (L)=0.000585 8; $\alpha$ (M)=0.0001358 19 $\alpha$ (N)=3.43×10 ⁻⁵ 5; $\alpha$ (O)=6.67×10 ⁻⁶ 9; $\alpha$ (P)=6.37×10 ⁻⁷ 9; $\alpha$ (IPF)=0.0002104 30
		1709.2 [@] 5	100 [@] 23	1331.84 1-	[M1+E2]	0.0035 10	$\alpha(K)=0.0027 \ 8; \ \alpha(L)=4.4\times10^{-4} \ 12; \ \alpha(M)=1.01\times10^{-4} \ 29$ $\alpha(N)=2.6\times10^{-5} \ 7; \ \alpha(O)=5.0\times10^{-6} \ 14; \ \alpha(P)=4.7\times10^{-7} \ 14; \ \alpha(IPF)=0.00018 \ 4$
		1924.2 [@] 10	69 [@] 15	1116.84 1-	[M1+E2]	0.0028 7	$\alpha(K) = 0.0021 \ 5; \ \alpha(L) = 3.3 \times 10^{-4} \ 8; \ \alpha(M) = 7.7 \times 10^{-5} \ 19$ $\alpha(N) = 1.9 \times 10^{-5} \ 5; \ \alpha(Q) = 3.8 \times 10^{-6} \ 10; \ \alpha(P) = 3.5 \times 10^{-7} \ 10; \ \alpha(IPF) = 0.00030 \ 7$
		2043.0 [@] 5	92 [@] 23	998.20 2-	[M1+E2]	0.0026 6	$\alpha(K) = 0.0018 \ 4; \ \alpha(L) = 0.00029 \ 7; \ \alpha(M) = 6.7 \times 10^{-5} \ 16 \ \alpha(DF) = 0.00037 \ 9$ $\alpha(K) = 1.7 \times 10^{-5} \ 4; \ \alpha(Q) = 3.3 \times 10^{-6} \ 8; \ \alpha(P) = 3.1 \times 10^{-7} \ 8; \ \alpha(DF) = 0.00037 \ 9$
		2391.7 [@] 8	46 [@] 8	649.42 1-	[M1+E2]	0.0021 4	$\alpha(K) = 0.00127 \ 23; \ \alpha(L) = 0.00020 \ 4; \ \alpha(M) = 4.6 \times 10^{-5} \ 9 \ \alpha(N) = 1.17 \times 10^{-5} \ 23; \ \alpha(Q) = 2.3 \times 10^{-6} \ 4; \ \alpha(P) = 2.2 \times 10^{-7} \ 4; \ \alpha(PF) = 0.00057 \ 13$
		2406.0 [@] 5	92 [@] 23	635.03 2-	[M1+E2]	0.0021 4	$\alpha(K) = 0.00125 \ 23; \ \alpha(L) = 0.00020 \ 4; \ \alpha(M) = 4.6 \times 10^{-5} \ 9 \\ \alpha(N) = 1.15 \times 10^{-5} \ 22; \ \alpha(O) = 2.2 \times 10^{-6} \ 4; \ \alpha(P) = 2.1 \times 10^{-7} \ 4; \ \alpha(IPF) = 0.00058 \ 13$

 $^{206}_{81}\mathrm{Tl}_{125}$ -12

## $\gamma$ ⁽²⁰⁶Tl) (continued)

$E_i$ (level)	$\mathbf{J}_i^{\pi}$	$E_{\gamma}^{\dagger}$	$I_{\gamma}^{\dagger}$	$E_f  J_f^{\pi}$	Mult.	α <b>&amp;</b>	Comments
3041.12	(1 ⁻ )	2775.3 [@] 10	38 [@] 8	265.833 2-	[M1+E2]	0.00189 <i>31</i>	$\begin{aligned} &\alpha(\text{K}) = 0.00091 \ 12; \ \alpha(\text{L}) = 0.000143 \ 21; \ \alpha(\text{M}) = 3.3 \times 10^{-5} \ 5 \\ &\alpha(\text{N}) = 8.3 \times 10^{-6} \ 12; \ \alpha(\text{O}) = 1.62 \times 10^{-6} \ 24; \ \alpha(\text{P}) = 1.55 \times 10^{-7} \ 24; \\ &\alpha(\text{IPF}) = 0.00079 \ 16 \end{aligned}$
		3041.1 [@] 8	54 [@] 15	0.0 0-	[M1]	2.10×10 ⁻³ 3	$ \begin{array}{l} \alpha(\mathrm{K}) = 0.000821 \ 12; \ \alpha(\mathrm{L}) = 0.0001299 \ 18; \ \alpha(\mathrm{M}) = 3.01 \times 10^{-5} \ 4 \\ \alpha(\mathrm{N}) = 7.59 \times 10^{-6} \ 11; \ \alpha(\mathrm{O}) = 1.479 \times 10^{-6} \ 21; \ \alpha(\mathrm{P}) = 1.416 \times 10^{-7} \ 20; \\ \alpha(\mathrm{IPF}) = 0.001111 \ 16 \end{array} $
4416.3	(1 ⁻ )	3781.2 [@] 5	69 [@] 19	635.03 2-	[M1+E2]	0.00183 25	$\alpha$ (K)=0.000468 <i>12</i> ; $\alpha$ (L)=7.21×10 ⁻⁵ <i>33</i> ; $\alpha$ (M)=1.66×10 ⁻⁵ 8 $\alpha$ (N)=4.19×10 ⁻⁶ <i>21</i> ; $\alpha$ (O)=8.2×10 ⁻⁷ <i>4</i> ; $\alpha$ (P)=7.8×10 ⁻⁸ <i>4</i> ; $\alpha$ (IPF)=0.00127 <i>24</i>
		4110.7 [@] 10	95 [@] 24	304.896 1-	[M1+E2]	0.00188 25	$\alpha$ (K)=0.000392 6; $\alpha$ (L)=6.01×10 ⁻⁵ 13; $\alpha$ (M)=1.385×10 ⁻⁵ 33 $\alpha$ (N)=3.49×10 ⁻⁶ 9; $\alpha$ (O)=6.81×10 ⁻⁷ 17; $\alpha$ (P)=6.51×10 ⁻⁸ 17; $\alpha$ (IPF)=0.00141 25
		4150.8 [@] 8	39 [@] 7	265.833 2-	[M1+E2]	0.00188 25	$\alpha$ (K)=0.000384 6; $\alpha$ (L)=5.88×10 ⁻⁵ 11; $\alpha$ (M)=1.357×10 ⁻⁵ 29 $\alpha$ (N)=3.42×10 ⁻⁶ 8; $\alpha$ (O)=6.66×10 ⁻⁷ 15; $\alpha$ (P)=6.37×10 ⁻⁸ 15; $\alpha$ (IPF)=0.00142 25
		4416.2 [@] 8	100 [@] 26	0.0 0-	[M1]	2.19×10 ⁻³ 3	$ \begin{array}{l} \alpha(\mathrm{K}) = 0.000327 \ 5; \ \alpha(\mathrm{L}) = 5.12 \times 10^{-5} \ 7; \ \alpha(\mathrm{M}) = 1.183 \times 10^{-5} \ 17 \\ \alpha(\mathrm{N}) = 2.98 \times 10^{-6} \ 4; \ \alpha(\mathrm{O}) = 5.82 \times 10^{-7} \ 8; \ \alpha(\mathrm{P}) = 5.57 \times 10^{-8} \ 8; \\ \alpha(\mathrm{IPF}) = 0.001792 \ 25 \end{array} $

[†] From ²⁰⁷Pb( $\mu^-$ ,n $\gamma$ ) (1983Bu02), unless otherwise stated. [‡] From ²¹⁰Bi  $\alpha$  decay (3.04×10⁶ y). [#] From ²⁰⁶Tl IT decay. [@] From ²⁰⁵Tl(n, $\gamma$ ) E=th.

13

[&] Additional information 1. ^{*a*} Placement of transition in the level scheme is uncertain.

From ENSDF



14

 $^{206}_{81}\mathrm{Tl}_{125}$ -14





![](_page_15_Figure_1.jpeg)

16

²⁰⁶₈₁Tl₁₂₅-16

From ENSDF

Adopted Levels, Gammas

²⁰⁶₈₁Tl₁₂₅-16