Adopted Levels, Gammas

Туре			Author	History Citation	Literature Cutoff Date						
	Full Evaluation			F. G. Kondev	NDS 201,346 (2025)	21-Jan-2025					
$Q(\beta^{-})=-7886\ 29;\ S(n)=9494\ 10;\ S(p)=3437\ 15;\ Q(\alpha)=6383.7\ 16$ 2021Wa16 S(2n)=17305\ 11,\ S(2p)=5370\ 13,\ Q(\varepsilon)=3306\ 16,\ Q(\varepsilon p)=1100\ 13\ (2021Wa16).											
²⁰⁶ Rn Levels											
Cross Reference (XREF) Flags											
$ \begin{array}{lll} \mathbf{A} & {}^{210}\mathrm{Ra} \ \alpha \ \mathrm{decay} \\ \mathbf{B} & {}^{206}\mathrm{Fr} \ \varepsilon \ \mathrm{decay} \\ \mathbf{C} & (\mathrm{HI},\mathrm{xn}\gamma) \end{array} $											
E(level) [†]	\mathbf{J}^{π}	T _{1/2}	XREF			Comments					
0.0	0+	5.67 min <i>17</i>	ABC	%α=62 3; %a T _{1/2} : From 1 min 5 (195 (1967Va17) %α: From 19 65% (1957 unknown.	$ε + %β^+ = 38 3$ 969Ha03. The same value 4Bu67), 7 min <i>I</i> (1954V). 9. 71Ho01. Others: 63% (St10). A value of %α=6	the is also quoted in 1971Ho01. Others: 6.5 Vi26), 6.2 min 5 (1957St10) and 6.5 min I 1969Ha03, same authors as 1971Ho01) and 58% is quoted in 1991Ry01, but its origin is					
575.30 10	$2^+_{4^+}$		ABC	J^{π} : 575.3 γ E2 to 0 ⁺ .							
1134.30 <i>15</i> 1501.80 <i>15</i>	(2 ⁻ ,3)		B	J [*] : 559.0 γ E2 γ to 2 ⁺ . J [#] : 926.5 γ to 2 ⁺ level. The absence of γ from the 6 ⁺ level at 1762.9 keV would argue against J [#] =4 ⁺ . The absence of γ to the 0 ⁺ ground state would argue against J [#] =1 ⁺ , 1 ⁻ and 2 ⁺ .							
1762.90 <i>18</i>	6+	1.8 ns <i>13</i>	BC	J^{π} : 628.6 γ E2 γ to 4 ⁺ . T _{1/2} : From 282.3 γ -628.6 γ (Δ T) using centroid shift method in 1981Ri02 (²⁰⁶ Fr ε							
1818.30 <i>18</i>	(6)+		BC	J^{π} : 648.0 γ E2 to 4 ⁺ consistent with $J^{\pi}=2^+,4^+$ or 6 ⁺ . However, population of this level in ¹⁹⁷ Au(¹⁴ N,5n γ) (2008An01) would suggest $J^{\pi}=6^+$.							
1924.30 20	8+	6.3 ns 24	BC	μ =6.6 4 J ^π : 161.4γ E2 to 6 ⁺ level; systematics of structures in neighboring nuclei; μ . T _{1/2} : From 282.3γ-161.4γ(ΔT) in 1981Ri02 (²⁰⁶ Fr ε decay). Others: 19 ns 3 from 575.4γ(t) in 1981Ho29, by taking into account the half-life of the 2475.55-keV isomer, and 13.5 ns 10 in 1981Ma28 using 575.4-559.1-628.8γ(t). μ : From g=0.83 5 in 1981Ma28,2020StZV using perturbed angular distribution technique. This value was corrected by +1.86% 2 for diamagnetic and Knight shift.							
2024.90 18			в	Configuration	$=\pi(h_{9/2}^{+2}).$						
2174.30 20			B			207					
2206.90 23	(7,8)+		В	J^{π} : 282.6 γ M $(J^{\pi}=7^+)$ ar	1 γ to 8 ⁺ . The direct features against $J^{\pi}=9^+$.	eding of this level in ²⁰⁰ Fr ε decay					
2269.89 <i>23</i> 2475.55 <i>25</i>	9- 10-	65 ns 5	BC C	J ^π : 345.6γ EI μ=11.20 <i>I0</i> J ^π : 205.7γ M T _{1/2} : From 5 in the time 75 ns <i>I0</i> in μ: From g=1. technique. shift. Configuration	1 to 8 ⁺ . 1 to 9 ⁻ ; μ ; systematics of 51.2 γ (t) in 1981Ho29. T spectrum suggests that 1981Ma28 using 575.4 120 <i>10</i> in 1981Ma28,20 This value was corrected = $\pi(f_{7/2}^{+1}, i_{13/2}^{+1})$.	of structures in neighboring nuclei. The non-observation of a prompt component 551.2γ directly depopulates the isomer. Other: $-559.1-628.8\gamma(t)$. 20StZV using perturbed angular distribution d by +1.86% 2 for diamagnetic and Knight					

Continued on next page (footnotes at end of table)

Adopted Levels, Gammas (continued)

²⁰⁶Rn Levels (continued)

E(level) [†]	\mathbf{J}^{π}	T _{1/2}	XREF	Comments
2534.6 3	10^{+}		С	J^{π} : 610.3 γ E2 to 8 ⁺ .
2585.3 4	(11)		С	J^{π} : 109.8 γ D to 10 ⁻ .
2834.2? 5	(12)		С	J^{π} : 248.9 γ D to J=(11).
3131.5 5	12^{+}		С	J^{π} : 596.9 γ E2 to 10 ⁺ .
3362.0 5	(13)		С	J^{π} : 527.8 γ D γ to J=(12), 776.6 γ E2 to J=(11).
3887.5? 6	(14)		С	J^{π} : 525.5 γ D to J=(13); relative population of this level in (HI,xn γ).
4129.8 9	(15)	11 ns 2	С	J^{π} : 242 γ to J=(14) and 768 γ to \hat{J} =(13).
				$T_{1/2}$: From 768 γ (t) in 1981Ho29.

Possible configuration= $\pi(h_{9/2}^{+3}, i_{13/2}^{+1})$. The assignment is tentative.

 $\gamma(^{206}\text{Rn})$

 † From a least-squares fit to Ey.

E _i (level)	J_i^π	E_{γ}^{\dagger}	I_{γ}^{\dagger}	$\mathbf{E}_f = \mathbf{J}_f^{\pi}$	Mult. [#]	α &	Comments
575.30	2+	575.3 1	100	$0.0 0^+$	E2	0.0254 4	$\alpha(K)=0.01790\ 25;\ \alpha(L)=0.00565\ 8;$
							$\alpha(M) = 0.001421\ 20$
							$\alpha(N)=0.000370\ 5;\ \alpha(O)=7.81\times10^{-5}\ 11;$
							$\alpha(P)=1.022\times10^{-5}$ 14
							Mult.: α (K)exp=0.013 5 (1981Ri02);
							α (K)exp=0.018 4 and α (L)exp=0.0068 16
							(2008An01).
1134.30	4+	559.0 1	100	575.30 2+	E2	0.0271 4	α (K)=0.01894 27; α (L)=0.00615 9; α (M)=0.001550 22
							$\alpha(N)=0.000403 6; \alpha(O)=8.51\times10^{-5} 12;$
							$\alpha(P) = 1.109 \times 10^{-5} 16$
							Mult.: α (K)exp=0.015 5 (1981Ri02);
							α (K)exp=0.027 7 and α (L)exp=0.0076 18 (2008An01).
1501.80	(2 ⁻ ,3)	926.5 1	100	575.30 2+			
1762.90	6+	628.6 <i>1</i>	100	1134.30 4+	E2	0.02091 29	B(E2)(W.u.)=0.04 4
							α (K)=0.01508 21; α (L)=0.00438 6; α (M)=0.001094 15
							$\alpha(N)=0.000285 \ 4; \ \alpha(O)=6.03\times10^{-5} \ 8;$
							$\alpha(1) = 7.55 \times 10^{-11}$ Mult : $\alpha(K) = 0.016^{-5} (1981 Ri02)$
							$\alpha(K) \exp = 0.011 \ 3 \text{ and } \alpha(L) \exp = 0.0016 \ 4$
					6		(2008An01).
1818.30	$(6)^{+}$	684.0 <i>1</i>	100	1134.30 4+	E2 [@]	0.01744 24	$\alpha(K)=0.01283 \ 18; \ \alpha(L)=0.00347 \ 5;$
							$\alpha(M) = 0.000861 \ 12$
							α (N)=0.0002242 31; α (O)=4.76×10 ⁻⁵ 7;
							$\alpha(P) = 6.38 \times 10^{-6} \ 9$
							Mult.: α (K)exp=0.017 4 (2008An01).
1924.30	8+	161.4 <i>1</i>	100	1762.90 6+	E2	1.159 16	B(E2)(W.u.)=5.3 20
							$\alpha(K) = 0.2488 \ 33; \ \alpha(L) = 0.672 \ 10; \ \alpha(M) = 0.1804 \ 26$
							$\alpha(N)=0.04707; \alpha(O)=0.0095314; \alpha(P)=0.001080$ 15
2024.00		000 6 7	100	1124.20 ()			Mult.: α (L)exp=0.65 7 (1981Ri02).
2024.90		890.6 1	100	1134.30 4+			
21/4.30	(7.0)+	330.0 I	100	$1818.30(6)^{+}$	M1	0.704.10	$\alpha(K) = 0.570.9; \alpha(L) = 0.1021.14; \alpha(M) = 0.02422.24$
2200.90	(7,8)	282.0 I	100	1924.30 8	IVI I	0.704 10	$\alpha(\mathbf{K}) = 0.570 \delta; \ \alpha(\mathbf{L}) = 0.1021 \ 14; \ \alpha(\mathbf{M}) = 0.02423 \ 34$ $\alpha(\mathbf{N}) = 0.00631 \ 9; \ \alpha(\mathbf{O}) = 0.001382 \ 19;$

Continued on next page (footnotes at end of table)

Adopted Levels, Gammas (continued)

$\gamma(^{206}\text{Rn})$ (continued)

E _i (level)	\mathbf{J}_i^{π}	E_{γ}^{\dagger}	I_{γ}^{\dagger}	\mathbf{E}_{f}	\mathbf{J}_f^{π}	Mult. [#]	α ^{&}	Comments
2269.89	9-	345.6 1	100	1924.30	8+	E1	0.02418 <i>34</i>	α (P)=0.0002017 28 Mult.: α (K)exp=0.51 7 (1981Ri02). α (K)=0.01967 28; α (L)=0.00344 5; α (M)=0.000813 11 α (N)=0.0002102 29; α (O)=4.52×10 ⁻⁵ 6; α (P)=6.27×10 ⁻⁶ 9 Mult.: α (K)exp=0.010 3 and α (L)exp=0.0097 23 (2008 4 z01)
2475.55	10-	205.7 [‡] 2	100‡	2269.89	9-	M1 [@]	1.701 24	B(M1)(W.u.)= $1.03 \times 10^{-5} 8$ α (K)= $1.375 20; \alpha$ (L)= $0.2478 35; \alpha$ (M)= $0.0588 8$ α (N)= $0.01533 22; \alpha$ (O)= $0.00336 5; \alpha$ (P)= $0.000490 7$ I_{γ} : From I(γ +ce) in 1981Ho29 and corrected by
								α (M1)=1.185 from 1978Ro21. Mult.: Other: from total α deduced from intensity balance in $\gamma\gamma$ coin studies in 1981Ho29.
		551.2 [‡] 2	82 [‡]	1924.30	8+	M2	0.317 4	B(M2)(W.u.)=0.058 5 α (K)=0.2447 34; α (L)=0.0543 8; α (M)=0.01330 19 (N)=0.00240 5 (0)=0.0007(0) H
								$\alpha(N)=0.00349 \ 5; \ \alpha(O)=0.000760 \ 11;$ $\alpha(P)=0.0001096 \ 15$ I_{γ} : From I(γ +ce) in 1981Ho29 and corrected by $\alpha(M2)=0.333 \ \text{from 1978Ro21.}$ Mult.: $\alpha(K)\exp=0.205 \ (2008An01).$
2534.6	10+	610.3 [‡] 2	100 [‡]	1924.30	8+	E2 [@]	0.02230 <i>31</i>	$\alpha(K)=0.01596\ 22;\ \alpha(L)=0.00476\ 7;\alpha(M)=0.001192\ 17\alpha(N)=0.000310\ 4;\ \alpha(O)=6.57\times10^{-5}\ 9;\alpha(P)=8\ 66\times10^{-6}\ 12$
2585.3 2834 22	(11) (12)	109.8 [‡] 3 248.9 [‡] 3	100 [‡] 100 [‡]	2475.55	10^{-}	D D@		Mult.: $A_2 = -0.20$ 13 and -0.11 37 in 1981Ho29.
3131.5	12+	596.9 [‡] 3	100 [‡]	2534.6	10+	E2	0.02342 <i>33</i>	$\alpha(K)=0.01666\ 23;\ \alpha(L)=0.00508\ 7;$ $\alpha(M)=0.001273\ 18$ $\alpha(N)=0.000331\ 5;\ \alpha(O)=7.00\times10^{-5}\ 10;$ $\alpha(P)=9.21\times10^{-6}\ 13$ Mult : $\alpha(K)$ exp=0.018 5 (2008Ap01)
3362.0	(13)	527.8 [‡] 2	100‡	2834.2?	(12)	D [@]		I_{γ} : From I(γ +ce) in 1981Ho29 and corrected by $\alpha(M1)=0.139$ from Rosel (1978Ro21)
		776.6 [‡] 3	91 [‡]	2585.3	(11)	E2 [@]	0.01340 <i>19</i>	$\alpha(M1)=0.105 \text{ Hom Roser (1970R021).}$ $\alpha(K)=0.01011 14; \ \alpha(L)=0.002484 35; \ \alpha(M)=0.000611 9 \ \alpha(N)=0.0001591 22; \ \alpha(O)=3.40\times10^{-5} 5; \ \alpha(P)=4.61\times10^{-6} 6 \ I_{\gamma}: \text{ From I}(\gamma+\text{ce}) \text{ in 1981Ho29 and corrected by}$
3887.5? 4129.8	(14) (15)	525.5 [‡] 3 242 1	100‡	3362.0 3887.5?	(13) (14)	D [@]		α (E2)=0.0136 from 1978Ro21. E _y : From 1981Ho29.
		768 1		3362.0	(13)			E_{γ} : From 1981Ho29.

 † From $^{206}\mathrm{Fr}~\varepsilon$ decay (1981Ri02), unless otherwise stated.

[‡] From (HI,xn γ).

[#] From $\alpha(K)$ exp and $\alpha(L)$ exp in 1981Ri02 and 2008An01, unless otherwise stated. See 1981Ho29 for additional support from $\gamma(\theta)$ data.

Adopted Levels, Gammas (continued)

 $\gamma(^{206}\text{Rn})$ (continued)

[@] From $\gamma(\theta)$ in 1981Ho29. [&] Additional information 1.

Adopted Levels, Gammas

Level Scheme

Intensities: Relative photon branching from each level

