197 Au(14 N,5n γ), 194 Pt(16 O,4n γ) 1981Ho29,1981Ma28,2008An01

History							
Туре	Author	Citation	Literature Cutoff Date				
Full Evaluation	F. G. Kondev	NDS 109, 1527 (2008)	31-Jan-2008				

1981Ho29: ¹⁹⁷Au(¹⁴N,5n γ) reaction with E(¹⁴N)=80-94 MeV and ¹⁹⁴Pt(¹⁶O,4n γ) reaction on enriched (97%) target with E(¹⁶O)=85-110 MeV. The targets were backed with 8-10 mg/cm² thick ²⁰⁸Pb layers; Detectors: Ge(Li); Measured: excitation functions, E γ , I γ , $\gamma\gamma$ (t) coin, T_{1/2}; Deduced: level scheme. No longer lived isomers (T_{1/2}<0.05 s) were observed in a pulsed beam experiment.

1981Ma28: ¹⁹⁸Hg(¹²C,4n γ), E(¹²C)=80 MeV with 85.3% enriched ¹⁹⁸Hg target cooled at -30° C. The beam was pulsed with 1 ns width separated by 1.5 μ s periods. Detectors: twoGe(Li); Measured: E γ , I γ , γ (t) I(t, θ), angular distributions, g-factors, T_{1/2}; Deduced: μ .

2008An01: ¹⁹⁷Au(¹⁴N,5n γ) reaction with E(¹⁴N)=82 MeV. Target: 3 mg/cm²; OSIRIS-II gamma-ray spectrometer consisting of 10 HPGe detectors and internal electron conversion spectrometer with two Si(Li) and three PIPS detectors; Deduced: α (K)exp and α (L)exp.

Others: 1970InZZ, 1969Ru08.

²⁰⁶Rn Levels

E(level) [†]	$J^{\pi \ddagger}$	T _{1/2}	Comments
0.0	0^{+}		
575.40 10	2+		
1134.50 15	4+		
1763.30 18	6+		
1818.30 18	6+		
1924.60 20	8+	19 ns <i>3</i>	$T_{1/2}$: From 575.4 γ (t) and by taking into account the half-life of the 65 ns isomer. Other: 13.5 ns 10 (1981Ma28) using 575.4-559.1-628.8 γ (t).
			μ : g=0.83 5 (1981Ma28). This value was corrected for diamagnetic and Knight shift by +1.86% 2. μ =6.6 4.
			Configuration= $(\pi h_{9/2}8^+)$.
2270.4 3	9-		
2476.0 3	10-	65 ns 5	$T_{1/2}$: From 551.2 γ (t). The non-observation of prompt component in the time spectrum suggests that this γ directly depopulates the isomer. Other: 75 ns <i>10</i> (1981Ma28) using 575.4-559.1-628.8 γ (t).
			μ : g=1.120 <i>10</i> (1981Ma28). This value was corrected for diamagnetic and Knight shift by +1.86% 2. μ =11.20 <i>10</i> .
			Configuration= $((\pi f_{7/2})^{+1}(\pi i_{13/2})^{+1})_{10-}$. The assignment is tentative.
2534.9 <i>3</i>	10^{+}		
2585.8 4	$11^{(+)}$		
2834.6? 5	(12)		
3131.8 5	12^{+}		
3362.4 5	$13^{(+)}$		
3887.9? 6	14		
4130.2 9	15	11 ns 2	$T_{1/2}$: From 768 γ (t).
			Possible Configuration= $((\pi h_{9/2})^{+3}(\pi i_{13/2})^{+1})$. The assignment is tentative.

[†] From a least-squares fit to $E\gamma$.

[‡] From angular distribution data (1981Ho29), apparent band structures and the J^{π} assignments made in 1981Ho29.

$^{206}_{86}$ Rn₁₂₀-2

197 Au(14 N 5 mai) $194 Pt(16 O 4 mai)$	1081Ho20 1081Mo28 2008Ap01 (continued)
$Au(3N,5n\gamma), Pl(30,4n\gamma)$	1981H029,1981W1a28,2008An01 (continued)

$\gamma(^{206}\text{Rn})$

E_{γ}^{\dagger}	E _i (level)	\mathbf{J}_i^{π}	E_f	J_f^{π}	Mult. [‡]	$I_{(\gamma+ce)}^{\#}$	Comments
109.8 <i>3</i>	2585.8	11 ⁽⁺⁾	2476.0	10-	(E1)	4	Mult.: $A_2 = -0.20 \ 13$ in ¹⁹⁷ Au(¹⁴ N,5n γ); $A_2 = -0.11 \ 37$ in ¹⁹⁴ Pt(¹⁶ O,4n γ).
161.3 <i>1</i>	1924.60	8+	1763.30	6+	E2	120	$I_{(\gamma+ce)}: 13 \ ({}^{194}\text{Pt}({}^{10}\text{O},4n\gamma)).$ Mult.: A ₂ =0.11 7 in ${}^{197}\text{Au}({}^{14}\text{N},5n\gamma);$ A ₂ =0.06 2 and A ₄ =-0.48 32 in ${}^{194}\text{Pt}({}^{16}\text{O},4n\gamma).$
205.7 2	2476.0	10-	2270.4	9-	M1	32	Mult.: $A_2 = -0.065$ and $A_4 = 0.178$ in ¹⁹⁷ Au(¹⁴ N,5n γ); $A_2 = -0.38$ <i>11</i> and $A_4 = 0.40$ <i>16</i> in ¹⁹⁴ Pt(¹⁶ O,4n γ); From α deduced from intensity balance in $\gamma\gamma$ coin studies. $I_{(\gamma+ce)}$: 31 (¹⁹⁴ Pt(¹⁶ O,4n γ)).
242 <i>1</i> 248.9 <i>3</i>	4130.2 2834.6?	15 (12)	3887.9? 2585.8	14 11 ⁽⁺⁾	D	5	E _γ : γ is shown In decay scheme, but not listed In γ table. Mult.: A ₂ =-0.26 6 in ¹⁹⁷ Au(¹⁴ N,5nγ); A ₂ =-0.52 9 in ¹⁹⁴ Pt(¹⁶ O,4nγ). I _(γ+ce) : 10 (M1) (¹⁹⁷ Au(¹⁴ N,5nγ)); 4 (E1) or 8 (M1)
346.0 2	2270.4	9-	1924.60	8+	E1	46	Mult.: α (K)exp=0.010 3 and α (L)exp=0.0097 23 (2008An01); A ₂ =-0.08 2 in ¹⁹⁷ Au(¹⁴ N,5n γ); A ₂ =0.01 3 in ¹⁹⁴ Pt(¹⁶ O,4n γ). I(γ +ce): 55 (¹⁹⁴ Pt(¹⁶ O,4n γ)).
^x 427.9 525.5 3	3887.9?	14	3362.4	13 ⁽⁺⁾	D	4	Mult.: A ₂ =-0.56 40 in ¹⁹⁷ Au(¹⁴ N,5n γ); A ₂ =-0.13 30 in ¹⁹⁴ Pt(¹⁶ O,4n γ). I _{(γ+ce}): 5 (M1) (¹⁹⁷ Au(¹⁴ N,5n γ)); I(γ +ce)=6 (E1) or 7
527.8 2	3362.4	13(+)	2834.6?	(12)	D	16	(M1) $({}^{194}\text{Pt}({}^{10}\text{O},4n\gamma))$. Mult.: A ₂ =-0.55 4 and A ₄ =0.64 61 in ${}^{197}\text{Au}({}^{14}\text{N},5n\gamma)$; A ₂ =-0.50 6 in ${}^{194}\text{Pt}({}^{16}\text{O},4n\gamma)$. I _(γ+cc) : 18 (M1) (${}^{197}\text{Au}({}^{14}\text{N},5n\gamma)$); 18 (E1) or 20 (M1)
551.2 2	2476.0	10-	1924.60	8+	M2	16	(¹⁹⁴ Pt(¹⁶ O,4nγ)). Mult.: α (K)exp=0.20 5 (2008An01); A ₂ =0.00 3 in ¹⁹⁷ Au(¹⁴ N,5nγ); A ₂ =0.03 6 in ¹⁹⁴ Pt(¹⁶ O,4nγ).
559.1 <i>1</i>	1134.50	4+	575.40	2+	E2	98	I _(γ+ce) : 30 (¹⁹⁴ Pt(¹⁶ O,4n γ)). Mult.: α (K)exp=0.027 7 and α (L)exp=0.0076 18 (2008An01); A ₂ =0.13 1 in ¹⁹⁷ Au(¹⁴ N,5n γ); A ₂ =0.16 2 and A ₄ =0.31 22 in ¹⁹⁴ Pt(¹⁶ O,4n γ).
575.4 1	575.40	2+	0.0	0+	E2	100	I _(γ+ce) : 104 (¹⁹⁴ Pt(¹⁶ O,4n γ)). Mult.: α (K)exp=0.018 4 and α (L)exp=0.0068 16 (2008An01); A ₂ =0.13 2 in ¹⁹⁷ Au(¹⁴ N,5n γ) ; A ₂ =0.15 1 in ¹⁹⁴ Pt(¹⁶ O,4n γ).
596.9 <i>3</i>	3131.8	12+	2534.9	10+	E2	9	I _(γ+ce) : 100 (¹⁹⁴ Pt(¹⁶ O,4nγ)). Mult.: α (K)exp=0.018 5 (2008An01);A ₂ =0.04 3 and A ₄ =0.25 6 in ¹⁹⁷ Au(¹⁴ N,5nγ); A ₂ =0.16 5 and A ₄ =0.16 7 in ¹⁹⁴ Pt(¹⁶ O,4nγ).
610.3 2	2534.9	10+	1924.60	8+	E2	16	$I_{(\gamma+ce)}: 20 \ ({}^{194}\text{Pt}({}^{10}\text{O},4n\gamma)).$ Mult.: A ₂ =0.34 <i>10</i> in ${}^{197}\text{Au}({}^{14}\text{N},5n\gamma)$; A ₂ =0.21 <i>10</i> in ${}^{194}\text{Pt}({}^{16}\text{O},4n\gamma).$
628.8 1	1763.30	6+	1134.50	4+	E2	93	I _(γ+ce) : 26 (¹⁹⁴ Pt(¹⁶ O,4nγ)). Mult.: α (K)exp=0.011 3 and α (L)exp=0.0016 4 (2008An01); A ₂ =0.11 3 in ¹⁹⁷ Au(¹⁴ N,5nγ); A ₂ =0.12 1 and A ₄ =-0.48 16 in ¹⁹⁴ Pt(¹⁶ O,4nγ).
684.0 <i>1</i>	1818.30	6+	1134.50	4+	E2		I _(γ+ce) : 97 (¹⁹⁴ Pt(¹⁰ O,4nγ)). E _γ : From adopted gammas. Mult.: α (K)exp=0.017 4 (2008An01). Note, that 684γ is labeled as E1 in Table 1 (2008An01).

Continued on next page (footnotes at end of table)

197 Au(14 N,5n γ), 194 Pt(16 O,4n γ) 1981Ho29,1981Ma28,2008An01 (continued)

$\gamma(^{206}Rn)$ (continued)

E_{γ}^{\dagger}	E _i (level)	\mathbf{J}_i^{π}	E_f	\mathbf{J}_{f}^{π}	Mult. [‡]	$I_{(\gamma+ce)}$ #	Comments
768 <i>1</i> 776.6 <i>3</i>	4130.2 3362.4	15 13 ⁽⁺⁾	3362.4 2585.8	13 ⁽⁺⁾ 11 ⁽⁺⁾	E2	13	E _γ : γ is shown In decay scheme, but not listed In γ table. Mult.: A ₂ =0.22 3 and A ₄ =-0.45 46 in ¹⁹⁷ Au(¹⁴ N,5nγ); A ₂ =0.18 18 and A ₄ =0.29 28 in ¹⁹⁴ Pt(¹⁶ O,4nγ). I _(γ+ce) : 15 (¹⁹⁴ Pt(¹⁶ O,4nγ)).

[†] Uncertainties were assigned by the evaluators from authors' general statement that they are 0.1 to 0.3 keV.

[±] From angular distribution data and the apparent band structures in 1981Ho29 and α (K)exp and α (L)exp in 2008An01. [#] From ¹⁹⁷Au(¹⁴N,5n γ) reaction at 88 MeV (1981Ho29). The α of Rosel (1978Ro21) were used by the authors.

 $x \gamma$ ray not placed in level scheme.

$^{197}\mathrm{Au}(^{14}\mathrm{N},5\mathrm{n}\gamma),^{194}\mathrm{Pt}(^{16}\mathrm{O},4\mathrm{n}\gamma) \qquad 1981\mathrm{Ho29},1981\mathrm{Ma28},2008\mathrm{An01}$

Level Scheme

 $^{206}_{86} Rn_{120}$