²⁰⁶At ε + β ⁺ decay 1977Li16,1982Br07

		History	
Туре	Author	Citation	Literature Cutoff Date
Full Evaluation	F. G. Kondev	NDS 201,346 (2025)	21-Jan-2025

Parent: ²⁰⁶At: E=0.0; $J^{\pi}=(6)^+$; $T_{1/2}=30.5 \text{ min } 6$; $Q(\varepsilon)=5749 \ 14$; $\mathscr{H}\varepsilon + \mathscr{H}\beta^+$ decay=99.10 8 1977Li16: source produced in the ²⁰⁹Bi(³He,6n) reaction followed by radiochemical separation of the astatine fraction; Detectors: Ge(Li), Si(Li); Measured: E γ , I γ , γ singles, $\gamma\gamma$ coincidence, I β , E(ce), Ice.

1982Br07: source produced in 660-MeV proton spallation of a thorium target, followed by mass separation; Detectors: Ge(Li) and Si(Li); Measured: $E\gamma$, $I\gamma$, E(ce), Ice.

Others: 1970BrZO, 2023St05.

²⁰⁶Po Levels

E(level) [†]	$J^{\pi \#}$	T _{1/2} #	Comments
0.0	0+	8.8 d 1	
700.66 <i>3</i>	2+	4.3 ps 7	
1177.80 4	4+	63 ps 5	$T_{1/2}$: Other: 70 ps 6 from $\gamma\gamma(\Delta t)$ in 2023St05.
1434.35 5	4+	<3.5 ps	
1564.70 5	$(3)^+$		
1573.38 6	6+	184 ps 50	$T_{1/2}$: From $\gamma\gamma(\Delta t)$ in 2023St05.
1585.88 [‡] 12	8+	232 ns 4	$T_{1/2}$: Other: 212 ns 5 in 1970BrZO.
1915.87 8	$(4)^+$		-,-
2100.80 6	$(5)^{+}$		
2138.92 7	$(4,5)^+$		
2200.28 [‡] <i>13</i>	8+		
2262.05 [‡] 13	9-	1.05 μs 6	
2302.62 6	$(5)^+$		
2500.60 8	5+,6+		
2581.57 7	$(4,5,6)^+$		
2917.02 7	$(4^+, 5^+, 6^+)$		
3361.96 7			
3396.49 12			
3393.43 8			
3872.13 9 4038 84 8			
4030.04 0			
4410.04 9			
4697 77 16			

[†] From a least-squares fit to $E\gamma$.

[‡] Level reported only in 1982Br07.

[#] From Adopted Levels.

 ε, β^+ radiations

av E β : Additional information 1.

E(decay)	E(level)	Ιβ ⁺ ‡	$I\varepsilon^{\ddagger}$	Log ft	$I(\varepsilon + \beta^+)^{\dagger \ddagger}$	Comments
(1051 14)	4697.77	7.47×10^{-11}	0.88 14	7.0	0.88 14	av E β =18 8; ε K=0.7849 6; ε L=0.16042 31; ε M+=0.05469 19
(1329 14)	4419.63	1.72×10 ⁻⁴ 44	2.73 19	6.726 <i>34</i>	2.73 19	av Eβ=158 7; εK=0.79059 46; εL=0.15633 21; εM+=0.05301 16
(1339 14)	4410.04	$2.5 \times 10^{-4} 6$	3.4 <i>3</i>	6.637 41	3.4 3	av Eβ=163 7; εK=0.79074 45; εL=0.15622 20;

Continued on next page (footnotes at end of table)

			²⁰⁶ At	ε + β^+ decay	1977Li16,198	82Br07 (continued)							
	ϵ, β^+ radiations (continued)												
E(decay)	E(level)	Ιβ ⁺ ‡	I ε^{\ddagger}	Log ft	$I(\varepsilon + \beta^+)^{\dagger \ddagger}$	Comments							
(1710 14)	1020 01	0.00215 40	166.21	7 17 6	166 21	εM +=0.05297 16							
(1710-14)	4058.84	0.00515 49	1.00 21	7.17 0	1.00 21	$e^{\text{E}} = 5500; e^{\text{E}} = 0.7957750; e^{\text{E}} = 0.1527774;$							
(1877 14)	3872.15	0.0126 14	2.94 25	7.010 39	2.95 25	av $E\beta$ =403 6; ε K=0.79327 40; ε L=0.15141 13; ε M+=0.05104 13							
(2154 14)	3595.45	0.080 7	6.9 5	6.763 33	7.0 5	av Eβ=524 6; εK=0.7893 5; εL=0.14904 13; εM+=0.05015 12							
(2353 14)	3396.49	0.0327 31	1.63 14	7.472 38	1.66 14	av Eβ=610 6; εK=0.7837 7; εL=0.14709 15; εM+=0.04943 12							
(2832 14)	2917.02	0.253 37	4.6 7	7.18 6	4.9 7	av Eβ=818 6; εK=0.7600 12; εL=0.14107 24; εM+=0.04732 13							
(3167 14)	2581.57	0.09 5	1.0 6	7.95 24	1.1 6	av E β =964 6; ε K=0.7347 17; ε L=0.13561 31; ε M+=0.04544 13							
(3248 14)	2500.60	0.29 6	2.8 6	7.53 8	3.1 6	av Eβ=1000 6; εK=0.7276 18; εL=0.13414 33; εM+=0.04495 14							
(3446 14)	2302.62	0.70 47	5.3 40	7.30 29	64	av Eβ=1086 6; εK=0.7087 20; εL=0.13031 37; εM+=0.04363 14							
(3487 14)	2262.05					An intensity imbalance exists at this level.							
(3549 14)	2200.28	1 10 11	740	7 001 40	0.6.0	An intensity imbalance exists at this level.							
(3610-14)	2138.92	1.19 11	1.4 8	7.201 42	8.68	av $E\beta$ =1158 6; ε K=0.6916 22; ε L=0.12692 40; ε M+-0.04249 15							
(3648 14)	2100.80					An intensity imbalance exists at this level.							
(3833 14)	1915.87					An intensity imbalance exists at this level.							
(4176 14)	1573.38	7.1 9	24.9 39	6.81 6	32 4	av Eβ=1408 6; εK=0.6248 27; εL=0.1140 5; εM+=0.03813 15							
						$I\beta^+$: 10.0 reported in 1977Li16.							
(4184 14)	1564.70	0.236 23	5.1 5	11.117 ² <i>u</i> 43	5.3 5	av Eβ=1371 6; εK=0.7560 8; εL=0.14902 17; εM+=0.05051 13							
(4315 14)	1434.35	0.41 16	3.5 15	9.52 17	3.9 15	av Eβ=1424 6; εK=0.7151 15; εL=0.13522 29; εM+=0.04551 13							
(4571 14)	1177.80	2.1 8	14 6	9.03 16	16 <i>6</i>	av Eβ=1532 6; εK=0.6961 17; εL=0.13111 33; εM+=0.04409 12							
						$I\beta^+$: 7.0 (reported by 1977Li16).							

[†] Deduced from γ -ray intensity balances. [‡] For absolute intensity per 100 decays, multiply by 0.9910 8.

γ (²⁰⁶Po)

I γ normalization: Calculated by assuming that there is no $\varepsilon + \beta^+$ feeding to g.s. and I(γ +ce)(700.7 γ)=100%.

ω

x-ray		measured intensity	7 (1982)	Br07)					
Po-K α_1 Po-K β_1 Po-K β_2	x ray x ray x ray		48. 14.3 5.6	.9 15 3 7 5 3					
E_{γ}^{\dagger}	$I_{\gamma}^{\dagger a}$	E _i (level)	\mathbf{J}_i^{π}	E _f J	J_f^{π} 1	Mult. [@]	$\delta^{@}$	α &	Comments
12.5 1	14.6×10 ⁻⁵ 17	1585.88	8+	1573.38 64	+ []	E2]		4.52×10 ⁴ 19	%Iγ=0.000144 17 α(M)=3.46×10 ⁴ 15 α(N)=8.8×10 ³ 4; $α$ (O)=1.66×10 ³ 7; $α$ (P)=144 6 E _γ : From adopted gammas, based on γ-rays energy difference in ¹⁹⁸ Pt(¹³ C,5nγ) in 1990Ba31. I _γ : From intensity balance and $α$ _T .
61.766 [#] <i>19</i>	1.34 [#] 14	2262.05	9-	2200.28 84	+ E	21		0.355 5	%Iγ=1.32 14 α (L)=0.271 4; α (M)=0.0649 9 α (N)=0.01632 23; α (O)=0.00316 4; α (P)=0.000329 5 Mult.: (α (L1)exp+ α (L2)exp)≈0.22, α (L3)exp≈0.15 (1982Br07).
^x 110.70 [#] 10	0.10 [#] 5				Ν	11		8.31 12	%I γ =0.10 5 α (K)=6.73 <i>10</i> ; α (L)=1.200 <i>17</i> ; α (M)=0.283 <i>4</i> α (N)=0.0729 <i>10</i> ; α (O)=0.01526 <i>22</i> ; α (P)=0.001971 <i>28</i> Mult.: From 1982Br07.
^x 139.25 [#] 20	0.24 [#] 4				E	2(+M1)		3.1 12	% $I\gamma=0.24$ 4 $\alpha(K)=1.9$ 16; $\alpha(L)=0.86$ 24; $\alpha(M)=0.22$ 7 $\alpha(N)=0.057$ 19; $\alpha(O)=0.0112$ 33; $\alpha(P)=0.00117$ 15 Mult.: From 1982Br07.
^x 154.48 [‡] 28 197.98 <i>12</i>	0.5 [‡] <i>1</i> 1.6 <i>2</i>	2500.60	5+,6+	2302.62 (5	5) ⁺ N	И1(+E2)	≤0.34	1.54 6	%I γ =1.58 20 α (K)=1.24 6; α (L)=0.2291 33; α (M)=0.0544 9 α (N)=0.01400 23; α (O)=0.00292 4; α (P)=0.000371 7 I $_{\gamma}$: Other: 0.63 15 (1982Br07). Mult.: α (K)exp=1.43 22, α (L)exp=0.25 7 and α (M)exp \approx 0.06 (1977Li16) and α (K)exp=1.43 20 (1982Br07).

					206	At ε + β ⁺ dec	ay <mark>1977Li16,1</mark>	982Br07 (co	ntinued)
							$\gamma(^{206}\text{Po})$ (contin	ued)	
E_{γ}^{\dagger}	$I_{\gamma}^{\dagger a}$	E _i (level)	\mathbf{J}_i^{π}	E_f	\mathbf{J}_f^{π}	Mult.@	$\delta^{@}$	α &	Comments
201.84 12	5.5 6	2302.62	(5)+	2100.80 ((5)+	[M1,E2]		1.0 5	%Iγ=5.4 6 α (K)=0.7 5; α (L)=0.2172 31; α (M)=0.0543 33 α (N)=0.0140 8; α (O)=0.00280 6; α (P)=0.00031 4 L: Other: <0.25 (1982Br07)
233.55 9	3.2 3	3595.45		3361.96		(E2)		0.278 4	$\%$ I γ =3.15 30 α (K)=0.1181 17; α (L)=0.1186 17; α (M)=0.0312 4 α (N)=0.00800 11; α (O)=0.001545 22; α (P)=0.0001486 21 L: Other: <0.5 (1982Br07)
256.53 8	4.5 4	1434.35	4+	1177.80 4	1 +	M1(+E2)	≤0.6	0.70 8	%Iy=4.4 4 α (K)=0.56 7; α (L)=0.107 4; α (M)=0.0255 7 α (N)=0.00656 19; α (O)=0.00136 5; α (P)=0.000171 11 Iy: Other: 4.2 3 (1982Br07). Mult.: α (K)exp=0.67 9, α (L)exp=0.11 2 and α (M)exp=0.022 11 (1977Li16) and α (K)exp=0.60 6 and α (L)exp=0 107 22 (1982Br07).
^x 268.34 9	1.3 <i>1</i>					M1(+E2)		0.43 25	%Iy=1.28 10 $\alpha(K)=0.32 24; \alpha(L)=0.083 15; \alpha(M)=0.0204 27$ $\alpha(N)=0.0052 7; \alpha(O)=0.00106 18; \alpha(P)=1.2\times10^{-4} 4$ Iy: Other: 1.28 14 (1982Br07). Mult : From 1982Br07
^x 275.59 11	2.1 2					M1(+E2)		0.40 24	%I γ =2.07 20 $\alpha(K)$ =0.30 22; $\alpha(L)$ =0.076 15; $\alpha(M)$ =0.0187 27 $\alpha(N)$ =0.0048 7; $\alpha(O)$ =0.00097 18; $\alpha(P)$ =1.14×10 ⁻⁴ 35 I $_{\gamma}$: Other: 1.66 16 (1982Br07). Mult : From 1982Br07
278.88 5	2.7 3	2581.57	(4,5,6) ⁺	2302.62 ((5)+	M1+E2	1.52 +19-15	0.296 22	With: 1400 19020107. %Iγ=2.66 30 $\alpha(K)=0.207 20; \alpha(L)=0.0673 17; \alpha(M)=0.01688 35$ $\alpha(N)=0.00434 9; \alpha(O)=0.000867 21; \alpha(P)=9.59×10^{-5} 35$ I _γ : Other: 1.92 14 (1982Br07). Mult.: $\alpha(K)\exp=0.52 7$ (1977Li16) and $\alpha(K)\exp=0.18 2$ (1982Br07)
^x 317.30 <i>16</i>	0.5 1					M1(+E2)		0.27 16	$^{(1)}\alpha$ (1) $^{(2)}\alpha$ (1)
342.51 <i>19</i>	1.5 2	1915.87	(4) ⁺	1573.38 6	5+	(E2)		0.0857 12	%I γ =1.48 20 $\alpha(K)$ =0.0498 7; $\alpha(L)$ =0.0269 4; $\alpha(M)$ =0.00693 10 $\alpha(N)$ =0.001778 25; $\alpha(O)$ =0.000349 5; $\alpha(P)$ =3.57×10 ⁻⁵ 5 L ₂ : Other: <0.15 (1982Br07).
^x 373.41 [‡] 9	0.4 [‡] 1								

From ENSDF

 $^{206}_{84}\mathrm{Po}_{122}\text{-}4$

 $^{206}_{84}\mathrm{Po}_{122}$ -4

E_{γ}^{\dagger} 380.81 21 386.894 ^{b#} 19	$\frac{I_{\gamma}^{\dagger a}}{0.8 I}$	$\frac{E_i(\text{level})}{4419.63}$	J ^π	$\frac{\mathrm{E}_f}{4038.84} \frac{\mathrm{J}_f^{\pi}}{}$	Mult. [@] M1(+E2)	$\frac{\delta^{\textcircled{0}}}{\leq 0.5}$	α ^{&} 0.244 20	Comments %Iy=0.79 10
380.81 <i>21</i> 386.894 ^{b#} 19	0.8 <i>I</i> 2.9 ^{b#} 4	4419.63		4038.84	M1(+E2)	≤0.5	0.244 20	%Iy=0.79 <i>10</i>
386.894 ^{b#} 19	2.9 ^{b#} 4	1564.70						$\alpha(K)=0.198 \ I8; \ \alpha(L)=0.0355 \ 20; \ \alpha(M)=0.0084 \ 4$ $\alpha(N)=0.00216 \ I1; \ \alpha(O)=0.000451 \ 24; \ \alpha(P)=5.8\times10^{-5} \ 4$ I _y : Other: 0.62 20 (1982Br07). Mult.: $\alpha(K)exp=0.23 \ 7 \ (1977Li16)$ and 0.27 11 (1982Br07).
			(3)+	1177.80 4+	M1(+E2)	≤0.3	0.245 9	%Iy=2.9 4 α (K)=0.199 7; α (L)=0.0351 9; α (M)=0.00827 20 α (N)=0.00213 5; α (O)=0.000445 11; α (P)=5.73×10 ⁻⁵ 17 I _γ : Other: 2.7 3 (1977Li16). Mult.: α (K)exp=0.037 19, α (L)exp=0.015 7 in 1977Li16 requires E2, but α (K)exp=0.29 5 in 1982Br07 suggests M1. The later is preferred owing to the (M1+E2) character of the 864.3y to 2 ⁺ .
386.894 ^{b#} 19	2.9 ^{b#} 4	2302.62	(5)+	1915.87 (4)+	[M1,E2]		0.16 <i>10</i>	%Iγ=2.9 4 $\alpha(K)=0.12 \ 8; \ \alpha(L)=0.027 \ 9; \ \alpha(M)=0.0065 \ 20$ $\alpha(N)=0.0017 \ 5; \ \alpha(O)=3.4\times10^{-4} \ 11; \ \alpha(P)=4.1\times10^{-5} \ 18$ I _γ : Other: 2.7 3 (1977Li16). Mult.: $\alpha(K)exp=0.037 \ 19, \ \alpha(L)exp=0.015 \ 7$ in 1977Li16 requires E2, but $\alpha(K)exp=0.29 \ 5$ in 1982Br07 suggests M1
395.54 4	49.3 29	1573.38	6+	1177.80 4+	E2		0.0579 8	$%1\gamma=48.6 29$ $\alpha(K)=0.0363 5; \alpha(L)=0.01613 23; \alpha(M)=0.00412 6$ $\alpha(N)=0.001058 15; \alpha(O)=0.0002088 29;$ $\alpha(P)=2.193\times10^{-5} 31$ I_{γ} : Other: 44.4 8 (1982Br07). Mult.: $\alpha(K)\exp=0.037 5, \alpha(L)\exp=0.016 2$ and $\alpha(M)\exp=0.004 2$ (1977Li16) and $\alpha(K)\exp=0.038 4$ (1982Br07)
399.98 16	0.7 1	2500.60	5+,6+	2100.80 (5)+	M1(+E2)	≤0.8	0.197 <i>34</i>	% Iy=0.69 10 $\alpha(K)=0.159 30; \alpha(L)=0.0294 34; \alpha(M)=0.0070 7$ $\alpha(N)=0.00180 19; \alpha(O)=0.00037 4; \alpha(P)=4.7\times10^{-5} 6$ I _y : Other: 0.60 10 (1982Br07). Mult.: $\alpha(K)\exp=0.20 7$ (1982Br07).
416.41 <i>12</i>	1.3 1	2917.02	(4+,5+,6+)	2500.60 5+,6+	[M1,E2]		0.13 8	%I _γ =1.28 <i>10</i> α (K)=0.10 7; α (L)=0.021 8; α (M)=0.0052 <i>17</i> α (N)=0.0013 4; α (O)=2.7×10 ⁻⁴ <i>10</i> ; α (P)=3.3×10 ⁻⁵ <i>15</i> I _γ : Other: ≤0.1 (1982Br07).

S

				20	⁶ At ε+	⊦β ⁺ decay	1977Li1	6,1982Br07 (c	ontinued)
						γ ⁽²⁰	⁶ Po) (cor	ntinued)	
E_{γ}^{\dagger}	$I_{\gamma}^{\dagger a}$	E _i (level)	\mathbf{J}_i^{π}	E_{f}	\mathbf{J}_f^{π}	Mult. [@]	$\delta^{\mathbf{@}}$	α ^{&}	Comments
477.10 3	88 4	1177.80	4+	700.66	2+	E2		0.0360 <i>5</i>	$\begin{aligned} &\alpha(\mathrm{N}) = 0.00131 \ 18; \ \alpha(\mathrm{O}) = 0.00027 \ 4; \ \alpha(\mathrm{P}) = 3.5 \times 10^{-5} \ 6 \\ &\mathrm{I}_{\gamma}: \ \mathrm{Other}: \ 1.37 \ 7 \ (1982\mathrm{Br07}). \\ &\mathrm{Mult}: \ \alpha(\mathrm{K}) \mathrm{exp} = 0.15 \ 8 \ (1977\mathrm{Li16}, 1982\mathrm{Br07}). \\ &\%\mathrm{I}_{\gamma} = 87 \ 4 \\ &\alpha(\mathrm{K}) = 0.02441 \ 34; \ \alpha(\mathrm{L}) = 0.00867 \ 12; \ \alpha(\mathrm{M}) = 0.002186 \ 31 \\ &\alpha(\mathrm{N}) = 0.000561 \ 8; \ \alpha(\mathrm{O}) = 0.0001118 \ 16; \ \alpha(\mathrm{P}) = 1.216 \times 10^{-5} \ 17 \\ &\mathrm{I}_{\gamma}: \ \mathrm{Other}: \ 87.7 \ 24 \ (1982\mathrm{Br07}). \\ &\mathrm{Mult}: \ \alpha(\mathrm{K}) \mathrm{exp} = 0.025 \ 3, \ \alpha(\mathrm{L}) \mathrm{exp} = 0.0090 \ 12 \ \mathrm{and} \\ &\alpha(\mathrm{M}) \mathrm{exp} = 0.0023 \ 12 \ (1977\mathrm{Li16}) \ \mathrm{and} \ \alpha(\mathrm{K}) \mathrm{exp} = 0.026 \ 8 \\ &(1982\mathrm{Br07}). \end{aligned}$
x498.52+ 41 527.27 7	0.6+ <i>1</i> 3.0 <i>3</i>	2100.80	(5)+	1573.38	6+	M1(+E2)	≤0.43	0.104 7	%I γ =2.96 30 α (K)=0.085 6; α (L)=0.0148 7; α (M)=0.00350 17 α (N)=0.00090 4; α (O)=0.000188 9; α (P)=2.42×10 ⁻⁵ 13 I $_{\gamma}$: Other: 2.98 12 (1982Br07) and 6.3 5 from I γ (528 γ)/I γ (477 γ)=0.071 6 (2023St05) and I γ (477 γ)=88 from 1977Li16.
565.55 12	3.3 3	2138.92	(4,5)+	1573.38	6+	[M1,E2]		0.058 <i>34</i>	Mult.: α (K)exp=0.07 3 (1977Li16) and 0.091 11 (1982Br07). %I γ =3.25 30 α (K)=0.046 29; α (L)=0.009 4; α (M)=0.0022 9 α (N)=5.6×10 ⁻⁴ 23; α (O)=1.1×10 ⁻⁴ 5; α (P)=1.4×10 ⁻⁵ 7 I $_{\gamma}$: Other: \leq 0.2 (1982Br07).
^x 599.33+ <i>14</i> 614.40 ^b 5	$0.4^{+} 1$ $6.3^{b} 6$	2200.28	8+	1585.88	8+	M1(+E2)	≤0.32	0.0714 27	%I γ =6.2 6 α (K)=0.0582 23; α (L)=0.01006 32; α (M)=0.00237 7 α (N)=0.000609 19; α (O)=0.000127 4; α (P)=1.65×10 ⁻⁵ 6 I $_{\gamma}$: Other: 6.14 19 (1982Br07). Mult.: α (K)exp=0.063 17 (1977Li16) and 0.060 4 (1982Br07).
614.40 ^b 5	6.3 ^b 6	2917.02	(4+,5+,6+)	2302.62	(5)+	M1(+E2)	≤0.31	0.0715 26	%Iγ=6.2 6 α (K)=0.0583 22; α (L)=0.01008 31; α (M)=0.00237 7 α (N)=0.000610 18; α (O)=0.000128 4; α (P)=1.65×10 ⁻⁵ 5 I _γ : Other: 6.14 19 (1982Br07). Mult.: α (K)exp=0.063 17 (1977Li16) Others:
676		2262.05	9-	1585.88	8+	[E1]		0.00562 8	α (K)exp=0.060 4 (1982Br07). This transition is a doublet. α (K)=0.00465 7; α (L)=0.000743 10; α (M)=0.0001732 24 α (N)=4.43×10 ⁻⁵ 6; α (O)=9.19×10 ⁻⁶ 13; α (P)=1.157×10 ⁻⁶ 16
700.66 3	100	700.66	2+	0.0	0^{+}	E2		0.01507 21	E _γ : From 1982Br07. %Iγ=98.515 20

					20	6 At ε + β^+	decay 1	977Li16,1982Bi	r07 (continued)
							γ (²⁰⁶ F	o) (continued)	
E_{γ}^{\dagger}	$I_{\gamma}^{\dagger a}$	E _i (level)	\mathbf{J}_i^{π}	\mathbf{E}_{f} .	\mathbf{J}_{f}^{π}	Mult.@	$\delta^{@}$	α &	Comments
704.66 9	6.1 6	2138.92	(4,5)+	1434.35	4+	M1+E2	≈0.9	≈0.0352	$\alpha(K)=0.01132 \ 16; \ \alpha(L)=0.00283 \ 4; \ \alpha(M)=0.000695 \ 10$ $\alpha(N)=0.0001785 \ 25; \ \alpha(O)=3.62\times10^{-5} \ 5; \ \alpha(P)=4.21\times10^{-6} \ 6$ $I_{\gamma}: \ Other: \ 100 \ (1982Br07).$ Mult.: $\alpha(K)exp=0.0114, \ \alpha(L)exp=0.0029 \ and \ \alpha(M)exp=0.0012$ (1977Li16). %Iv=6.0 6
									$\alpha(K) \approx 0.0283; \ \alpha(L) \approx 0.00523; \ \alpha(M) \approx 0.001241$ $\alpha(N) \approx 0.000319; \ \alpha(O) \approx 6.63 \times 10^{-5}; \ \alpha(P) \approx 8.38 \times 10^{-6}$ $I_{\gamma}: \text{ Other: } 5.20 \ 10 \ (1982 \text{Br} 07).$ Mult.: $\alpha(K) \exp \approx 0.029 \ (1982 \text{Br} 07).$
x709.32 [‡] 23 x729.14 [‡] 9 729.27 15	0.6 [‡] 1 0.2 [‡] 1 1.0 1	2302.62	(5) ⁺	1573.38	6+	E2+M1	2.3 12	0.019 <i>10</i>	%Iy=0.99 <i>10</i>
									$\begin{aligned} &\alpha(\mathbf{K}) = 0.015 \ 8; \ \alpha(\mathbf{L}) = 0.0032 \ 12; \ \alpha(\mathbf{M}) = 7.7 \times 10^{-4} \ 27 \\ &\alpha(\mathbf{N}) = 2.0 \times 10^{-4} \ 7; \ \alpha(\mathbf{O}) = 4.1 \times 10^{-5} \ 15; \ \alpha(\mathbf{P}) = 4.9 \times 10^{-6} \ 21 \\ &\mathbf{I}_{\gamma}: \ \text{Other:} \ 2.20 \ 8 \ (1982\text{Br07}) \ \text{and} \ 3.8 \ 4 \ \text{from} \\ &\mathbf{I}_{\gamma}(528\gamma)/\mathbf{I}_{\gamma}(477\gamma) = 0.071 \ 6 \ (2023\text{St05}) \ \text{and} \ \mathbf{I}_{\gamma}(477\gamma) = 88 \ \text{from} \\ &1977\text{Li16}. \end{aligned}$
733.73 5	10.4 7	1434.35	4+	700.66	2+	E2		0.01368 <i>19</i>	Mult.: $\alpha(K)\exp=0.015\ 9\ (1982Br07)$. $\%I\gamma=10.2\ 7$ $\alpha(K)=0.01037\ 15;\ \alpha(L)=0.002508\ 35;\ \alpha(M)=0.000614\ 9$ $\alpha(N)=0.0001576\ 22;\ \alpha(O)=3.20\times10^{-5}\ 4;\ \alpha(P)=3.75\times10^{-6}\ 5$ I_{γ} : Other: 7.89 21 (1982Br07). Mult.: $\alpha(K)\exp=0.0145\ 23\ (1982Br07)$. Note, that this value suggests E2+M1 assignment, but the adopted level scheme
738.03 12	1.2 <i>1</i>	1915.87	(4) ⁺	1177.80	4+	[M1]		0.0457 6	requires E2. %I γ =1.18 <i>10</i> α (K)=0.0374 <i>5</i> ; α (L)=0.00638 <i>9</i> ; α (M)=0.001498 <i>21</i> α (N)=0.000386 <i>5</i> ; α (O)=8.07×10 ⁻⁵ <i>11</i> ; α (P)=1.046×10 ⁻⁵ <i>15</i> I ₂ : Other: 1.07 7 (1982Br07).
^x 747.52 [‡] 5	0.1 [‡] 1								
^x 796.60 <i>11</i>	1.2 1								% $I_{\gamma}=1.18 \ 10$ I _{γ} : Other: 2.8 5 from I $_{\gamma}(797\gamma)/I_{\gamma}(477\gamma)=0.032 \ 6 \ (2023St05)$ and I $_{\gamma}(477\gamma)=88$ from 1977Li16.
^x 802.50 [‡] 15	0.2 [‡] 1								I_{γ} : Other: 2.0 4 from $I_{\gamma}(803\gamma)/I_{\gamma}(477\gamma)=0.023 5$ (2023St05) and
^x 806.33 <i>13</i>	5.8 6								$I\gamma(4/7\gamma)=88$ from 1977L116. E_{γ} : From 2023St05. I_{γ} : From $I\gamma(806\gamma)/I\gamma(477\gamma)=0.066$ 7 (2023St05) and $I\gamma(477\gamma)=88$ from 1977L116.

²⁰⁶₈₄Po₁₂₂-7

					²⁰⁶ At ε + β	⁺ decay 1	977Li16	5,1982Br07 (con	ntinued)
						γ ⁽²⁰⁶ F	Po) (cont	inued)	
E_{γ}^{\dagger}	$I_{\gamma}^{\dagger a}$	E _i (level)	\mathbf{J}_i^{π}	\mathbf{E}_{f}	\mathbf{J}_f^π	Mult.@	$\delta^{@}$	α &	Comments
824.22 9	1.3 1	4419.63		3595.45	ý				$\%$ I γ =1.28 10 L : Other: 1.16.6 (1982Br07)
^x 838.01 [#] 15	2.6 [#] 3					(M1)		0.0329 5	% Iy=2.56 30 $\alpha(K)=0.0269 4; \alpha(L)=0.00457 6; \alpha(M)=0.001073 15$ $\alpha(N)=0.000276 4; \alpha(O)=5.78\times10^{-5} 8; \alpha(P)=7.49\times10^{-6} 10$ Mult.: From 1982Br07.
864.30 [#] 11	1.76 [#] 10	1564.70	(3)+	700.66	2+	(M1+E2)		0.020 10	%I γ =1.73 10 α (K)=0.016 9; α (L)=0.0029 13; α (M)=7.0×10 ⁻⁴ 29 α (N)=1.8×10 ⁻⁴ 8; α (O)=3.7×10 ⁻⁵ 16; α (P)=4.7×10 ⁻⁶ 22 Mult: α (K)exp \approx 0.011 (1982Br07)
868.27 5	7.8 8	2302.62	(5)+	1434.35	4+	(E2)		0.00971 14	%Iγ=7.7 8 α(K)=0.00754 11; $α$ (L)=0.001643 23; $α$ (M)=0.000398 6 α(N)=0.0001022 14; $α$ (O)=2.089×10 ⁻⁵ 29; α(P)=2.504×10 ⁻⁶ 35 I _γ : Other: 8.1 4 (1982Br07). Mult.: $α$ (K)exp≈0.0074 (1982Br07).
^x 911.96 [‡] 9 923.12 6	0.6 [‡] 1 5.7 6	2100.80	(5)+	1177.80	4+	M1+E2	≈1.1	≈0.01628	%Iγ=5.6 6 α (K)≈0.01316; α (L)≈0.002382; α (M)≈0.000564 α (N)≈0.0001451; α (O)≈3.02×10 ⁻⁵ ; α (P)≈3.82×10 ⁻⁶ I _γ : Other: 5.30 21 (1982Br07). Mult : α (K)≈xp≈0.013 (1082Br07).
927.09 14	1.0 <i>I</i>	2500.60	5+,6+	1573.38	6+	M1+E2	≈0.2	≈0.02465	Will: $\alpha(K)$ exp≈0.015 (1762B107). %Iγ=0.99 10 $\alpha(K)$ ≈0.02016; $\alpha(L)$ ≈0.00343; $\alpha(M)$ ≈0.000805 $\alpha(N)$ ≈0.0002071; $\alpha(O)$ ≈4.34×10 ⁻⁵ ; $\alpha(P)$ ≈5.61×10 ⁻⁶ I _γ : Other: 1.00 13 (1982Br07). Mult: $\alpha(K)$ exp≈0.02 (1982Br07).
^x 939.25 7	2.0 2					(M1+E2)		0.016 8	%Iγ=1.97 20 $α(K)=0.013 7; α(L)=0.0024 10; α(M)=5.6×10^{-4} 23$ $α(N)=1.4×10^{-4} 6; α(O)=3.0×10^{-5} 13; α(P)=3.8×10^{-6} 17$ I _γ : Others: 2.06 8 (1982Br07) and 4.8 6 from I _γ (939γ)/I _γ (477γ)=0.054 7 (2023St05) and I _γ (477γ)=88 from 1977Li16. Mult : From 1982Br07
955.20 8	1.5 2	3872.15		2917.02	(4 ⁺ ,5 ⁺ ,6 ⁺)	M1+E2	≈1.0	≈0.01573	%Iγ=1.48 20 α (K)≈0.01274; α (L)≈0.002277; α (M)≈0.000538 α (N)≈0.0001385; α (O)≈2.88×10 ⁻⁵ ; α (P)≈3.67×10 ⁻⁶ I _γ : Other: 2.00 20 (1982Br07). Mult.: α (K)exp≈0.013 (1982Br07).

 ∞

²⁰⁶₈₄Po₁₂₂-8

					206 At ε + β	⁺ decay	1977Li	16,1982Br07 (co	ontinued)
						γ ⁽²⁰⁰	⁶ Po) (co	ntinued)	
E_{γ}^{\dagger}	$I_{\gamma}^{\dagger a}$	E _i (level)	\mathbf{J}_i^{π}	E_{f}	J_f^{π}	Mult. [@]	$\delta^{@}$	α &	Comments
960.92 12	1.4 <i>I</i>	2138.92	(4,5)+	1177.80	4+	[M1]		0.02306 32	%Iγ=1.38 10 α (K)=0.01887 26; α (L)=0.00319 4; α (M)=0.000750 11 α (N)=0.0001929 27; α (O)=4.04×10 ⁻⁵ 6; α (P)=5.24×10 ⁻⁶ 7
^x 976.32 <i>10</i>	1.4 <i>1</i>								I_{γ} : Other: $\approx 0.5 (1982Br07)$. $\% I_{\gamma}=1.38 \ IO$ I_{γ} : Others: 1.26 6 (1982Br07) and 1.0 3 from $I_{\gamma}(976\gamma)/I_{\gamma}(477\gamma)=0.011 \ 3 (2023St05)$ and $I_{\gamma}(477\gamma)=88$ from 1977Li16
1008.64 28	1.8 2	2581.57	(4,5,6)+	1573.38	6+	[M1,E2]		0.014 7	%Iy=1.77 20 $\alpha(K)=0.011 5; \alpha(L)=0.0020 8; \alpha(M)=4.7\times10^{-4} 19$ (N)=4.2×10 ⁻⁴ 5(Q)=2.5×10 ⁻⁵ 10(D)=2.2×10 ⁻⁶ 14
1013.82 12	3.0 3	3595.45		2581.57	(4,5,6) ⁺				$\alpha(N)=1.2\times10^{-5}$; $\alpha(O)=2.5\times10^{-5}$ 10; $\alpha(P)=5.2\times10^{-6}$ 14 %I γ =2.96 30 Mult.: $\alpha(K)$ exp=0.053 17 (1982Br07) suggests M2 assignment.
x1026.29 [#] 10 1048.18 11	0.82 [#] 7 2.3 2	4410.04		3361.96		(M1)		0.01842 26	γ : Other: 2.45 20 (1982B107). %I γ =0.81 7 %I γ =2.27 20 α (K)=0.01509 21; α (L)=0.00255 4; α (M)=0.000598 8 α (N)=0.0001538 22; α (O)=3.22×10 ⁻⁵ 5; α (P)=4.18×10 ⁻⁶ 6 L : Other: 1.88 8 (1982Br07)
1059.38 5	3.5 4	3361.96		2302.62	(5)+				$M_{\rm v}$: Other: 1.00 of (1/02D107). Mult.: α(K)exp≈0.021 (1982Br07). %Iγ=3.4 4 I_{γ} : Other: 2.80 10 (1982Br07). Mult.: α(K)exp=0.046 14 (1982Br07) suggests M2 assignment.
^x 1071.78 [‡] 19	0.2 [‡] 1								I_{γ} : Other: 2.9 5 from $I_{\gamma}(1072\gamma)/I_{\gamma}(477\gamma)=0.032$ 6
x1087.76 15	0.7 1								(2025305) and $(y(477y) - 80$ from 19771210 . %1y=0.69 10
1094.89 12	0.7 1	3595.45		2500.60	5+,6+				I_{γ} : Other: ≤ 0.2 (1982Br07). % $I_{\gamma}=0.69 \ I0$
1124.77 10	1.9 2	2302.62	(5)+	1177.80	4+	M1+E2	≈0.5	≈0.01347	$I_{\gamma}: \text{ Other: } ≤0.15 (1982Br07).$ %Iγ=1.87 20 α(K)≈0.01101; α(L)≈0.001877; α(M)≈0.000441 α(N)≈0.0001135; α(O)≈2.374×10 ⁻⁵ ; α(P)≈3.07×10 ⁻⁶ ; α(IPF)≈6.79×10 ⁻⁷ I _γ : Other: 1.85 10 (1982Br07).
^x 1196.86 <i>11</i>	1.5 2								Mult.: α(K)exp≈0.011 (1982Br07). %Iγ=1.48 20
1257.53 12	1.2 <i>1</i>	3396.49		2138.92	(4,5)+				I _{γ} : Other: 1.04 6 (1982Br07). %I γ =1.18 <i>10</i> I _{γ} : Other: 1.10 7 (1982Br07).

²⁰⁶At ε + β ⁺ decay 1977Li16,1982Br07 (continued)

γ (²⁰⁶Po) (continued)

E_{γ}^{\dagger}	$I_{\gamma}^{\dagger a}$	E _i (level)	E_f	\mathbf{J}_{f}^{π}	Comments
1290.44 11	0.7 1	3872.15	2581.57	(4,5,6)+	%Iy=0.69 10
1292.84 <i>21</i>	0.7 1	3595.45	2302.62	$(5)^{+}$	I_{y} : Other: $\leq 0.06 \ (1982Br07)$. % $I_{y}=0.69 \ I0$
X1004.00.10	0.7.1			(-)	L_{y} : Other: $\leq 0.06 \ (1982Br07)$.
~1294.89 <i>12</i>	0.71				$\%_{1\gamma=0.69} I_0$ I _v : Other: <0.06 (1982Br07).
^x 1349.52 <i>14</i>	0.7 1				%Iγ=0.69 <i>10</i>
1446.08 12	1.3 <i>I</i>	3361.96	1915.87	$(4)^+$	I_{y} : Other: $\leq 0.02 \ (1982 Br07)$. % $I_{y}=1.28 \ I0$
					I_{γ} : Other: ≤ 0.2 (1982Br07).
1492.85 <i>15</i>	0.2 1	4410.04	2917.02	$(4^+, 5^+, 6^+)$	%Iy=0.20 10
~1637.41 9	1.2 1				$\%1\gamma = 1.18 \ IU$ I · Other: 0.96 7 (1982Br07)
1736.25 11	0.9 1	4038.84	2302.62	$(5)^{+}$	$%I_{\gamma} = 0.89 \ I0$
					I_{γ} : Other: $\leq 0.07 \ (1982Br07)$.
^x 1745.56 [‡] 20	0.7 [‡] 1				
^x 1855.85 [‡] 65	0.4 [‡] 1				
1899.84 12	0.5 1	4038.84	2138.92	$(4,5)^+$	$\% I\gamma = 0.49 \ I0$
1909.33 19	0.6 1	4410.04	2500.60	$5^{+}.6^{+}$	I_{γ} : Other: $\leq 0.06 (1982B107)$. % $I_{\gamma}=0.59 \ 10$
				- ,-	I_{γ} : Other: 0.31 5 (1982Br07).
x1928.17 19	0.7 1				%Iy=0.69 10
1038 07 11	131	1038 84	2100.80	$(5)^+$	I_{γ} : Other: $\approx 0.3 (1982Br07)$.
1956.07 11	1.5 1	4050.04	2100.00	(5)	I_{γ} : Other: 1.15 5 (1982Br07).
^x 2075.54 [‡] 45	0.4 [‡] 1				
2116.07 18	0.5 1	4697.77	2581.57	$(4,5,6)^+$	%Iy=0.49 <i>10</i>
2210 76 10	051	2206 40	1177.00	4+	L_{γ} : Other: 0.50 <i>10</i> (1982Br07).
2218.70 78	0.5 1	5590.49	11/7.00	4	$V_{1} = 0.49 \ 10^{-10}$ Ly: Other: 0.28 3 (1982Br07).
2271.14 12	0.3 1	4410.04	2138.92	$(4,5)^+$	%Iy=0.30 10
2208 75 24	0.8.1	2072 15	1572.29	6+	I_{γ} : Other: $\leq 0.1 \ (1982Br07)$.
2298.13 24	0.8 1	3072.13	1373.30	0	$V_{1} = 0.79 \ 10^{-10}$ Ly: Other: 0.55 6 (1982Br07).
2318.58 21	0.5 1	4419.63	2100.80	$(5)^+$	%Iy=0.49 10
	-1-				I_{γ} : Other: 0.19 3 (1982Br07).
x2495.17+ 21	$0.2^+ 1$	1607 77	2129.02	$(1.5)^+$	
2559.07 25	0.4 1	4097.77	2138.92	(4,3)	$\%(\gamma=0.5) = 10$ L. Other <0.15 (1982Br07)

From ENSDF

γ (²⁰⁶Po) (continued)

$I_{\nu}^{\dagger a}$ E_{γ}^{\dagger} E_i(level)

[†] From 1977Li16, unless otherwise stated. Values from 1982Br07 are given in the comments section.

[‡] From 1977Li16, but not assigned with certainty to ²⁰⁶At decay.

From 1982Br07.
@ From ce measurements in 1977Li16 and 1982Br07.
& Additional information 2.

^{*a*} For absolute intensity per 100 decays, multiply by 0.9763 8.

^b Multiply placed with undivided intensity.

 $x \gamma$ ray not placed in level scheme.

²⁰⁶At ε+β⁺ decay 1977Li16,1982Br07

²⁰⁶At ε + β ⁺ decay 1977Li16,1982Br07

