			Туре	Author	History Citation	Literature Cutoff Date
		Fu	ll Evaluation	F. G. Kondev	NDS 201,346 (2025)	21-Jan-2025
$Q(\beta^{-}) = -5749$ S(2n)=15990	9 14; S(11, S(2	n)=8739 <i>11</i> ; 2p)=7657 <i>4</i> , Q	S(p)=4412 6; $Q(\varepsilon)=1840 9 (2)$	$Q(\alpha) = 5327.0 \ 13$ 2021Wa16).	2021Wa16	
					²⁰⁶ Po Levels	
				Cross R	eference (XREF) Flags	
			A B C D	²⁰⁶ At ε decay ²¹⁰ Rn α decay ¹⁹⁸ Pt(¹² C,4n γ) ¹⁹⁸ Pt(¹³ C,5n γ)	E Au(10 B,xn γ),Pb(F 204 Pb(16 O, 14 C γ) G 206 Pb(α ,4n γ), 206 H Coulomb excitati	$(\alpha, xn\gamma)$ Pb(³ He, 3n γ)
E(level) [†]	\mathbf{J}^{π}	T _{1/2}	XREF		C	Comments
0.0	0^{+}	8.8 d 1	ABCDEFGH	%α=5.45 5; %ε	$\epsilon + \% \beta^+ = 94.55 5$	
				%α is from 196 (1947Te01) a T _{1/2} : From 195 (1961Be25), Eα=5223.7 keV $\delta < r^2 > (^{208}Po, ^{20}O)$	57Le08. $%ε + %β^+$ has normalized for the formula f	bt been measured directly. Others: $\%\alpha$ =10 7Te01), 8.83 d (1957Ar61), 9.5 d 8 1991Ry01. 32).
700.66 3	2+	4.3 ps 7	ABCDEFGH	J^{π} : 700.66y E2 B(E2) \uparrow =0.64 + E2 matrix ele T _{1/2} : From τ =6 into account + <i>13</i> - <i>11</i> in 20 the high-lvin	to 0 ⁺ . 48-32 from E2 matrix e ement=-2.0 eb +40-29 5.2 ps 0.5 (stat) 0.9 (syst) the feedings from the 2 ⁺ ₂ 023Ka31 using RDDS and g 4 ⁺ and 4 ⁺ ₂ states: 2.6 fr	element=+0.8 eb +3-2 (2016Gr17). Diagonal (2016Gr17). in 2024Ko23 using RDDS and by taking ', 4_1^+ and 4_2^+ states. Others: 4.8 ps nd by taking into account the feeding from ps +19-13 from B(E2) \uparrow in 2016Gr17.
1162.2 5	2^{+}_{+}	(2) 7	FG	J ^π : 461.5γ M1,	$\Delta J=0$ to 2^+ , 1162.2 γ E2	2 to 0 ⁺ .
1177.80 4	4+	63 ps 5	A CDEFG	J ^{n} : 477.10 γ E2 T _{1/2} : Weighted and 58.6 ps -	to 2 ⁺ . average 62 ps 5 (2019S +54-50 (2023Ka31.RDD	t13,γγ(Δ t)), 70 ps 6 (2023St05,γγ(Δ t)) oS).
1434.35 5	4+	<3.5 ps	A D FG	J ^{π} : 256.53 γ M1 T _{1/2} : From 202 effective leve account.	$1(+E2)$ to 4^+ , 733.73 γ (E 23Ka31 using the RDDS 1 half-life, since the side	E2) to 2^+ , 138.9 γ E2 from 6^+ . technique. Value corresponds to the -feeding components were not taken into
1546.3 7	4 ⁺		G	J^{π} : 384.1 γ E2 t	to 2 ⁺ .	
1564.70 5 1573.38 6	$(3)^+$ 6 ⁺	184 ps 50	A G A CDEFG	J^{π} : 386.9 γ M1(J^{π} : 395.54 γ E2 $T_{1/2}$: From $\gamma\gamma$ (Configuration=0	+E2) to 4 ⁺ , 864.3 γ (M1 to 4 ⁺ . (Δ t) in 2023St05. dominant π (h ⁺² ₊).	+E2) to 2 ⁺ .
1585.96 9	8+	232 ns 4	A DEFG	μ =+7.34 7; Q= μ : From 1973B (g=0.915 13, Q: From 1987N J ^{π} : μ ; systemati T _{1/2} : Weighted transitions be (1986Ra24), Configuration=:	(-)1.02 4 (g=0.912) stroboscopic and time-d Ma65,2021StZZ (time-dif ics of known 8 ⁺ isomers average of four indepen elow and above the isomer 160 ns 40 (1970Ya03) a $\pi(h_{0.2}^{+2})$.	13, stroboscopic technique) and 1973Na18 lifference PAC technique). ference PAC technique). in neighboring nuclei. dent $\gamma\gamma$ (t) measurements using gates on er in 1990Ba31. Others: 210 ns 10 nd 212 ns 5 (1970BrZO).
1915.87 8 2100.79 6	$(4)^+$ $(5)^+$		A A G	J ^π : 342.5γ (E2) J ^π : 527.27γ M1) to $6^{1/2+}$, 738.0 γ to 4^+ . 1(+E2) to 6^+ , 923.12 γ N	I1+E2 to 4 ⁺ .

Continued on next page (footnotes at end of table)

²⁰⁶Po Levels (continued)

E(level) [†]	\mathbf{J}^{π}	$T_{1/2}$	2	KREF	Comments
2138 92 7	$(4 5)^+$	· · · · · ·	Δ		I^{π} : 565 55v to 6 ⁺ 704 66v M1+F2 to 4 ⁺
2200.40 9	(4,5) 8 ⁺		A	D FG	J^{π} : 614.4 γ M1 to 8 ⁺ , 627.1 γ to 6 ⁺ ; 61.8 γ from 9 ⁻ favors 8 ⁺ rather than
					7+.
2262.17 10	9-	1.05 μs 6	Α	DE G	J^{n} : 61.766 γ E1 and 676.4 γ (E1) to 8 ⁺ .
					$T_{1/2}$: From $\gamma\gamma(t)$ in 1990Ba31. Others: 1.0 μ s <i>I</i> in 1986Ra24 and >200 ns in 1976Be12.
					Configuration= $\nu(f_{5/2}^{-1}, i_{13/2}^{-1})$.
2302.62 6	$(5)^+$		Α	G	J^{π} : 729.27 γ E2+MI to 6 ⁺ , 1124.77 γ M1+E2 to 4 ⁺ .
2418.94 13	10+			DEFG	J^{π} : 833.0 γ E2 to 8 ⁺ .
2423.23 20	9+			DG	J^{π} : 837.2 γ M1 to 8 ⁺ , 189.8 γ M1 from 10 ⁺ .
2432.40 24	-1 -1			D	
2500.60 8	5+,6+		Α		J^{π} : 399.98 γ M1(+E2) to (5) ⁺ , 927.09 γ M1+E2 to 6 ⁺ .
2581.56 7	$(4,5,6)^+$		Α	_	J^{π} : 279.88 γ M1(+E2) to (5 ⁺).
2613.18 19	10'	051		D	J^{π} : 1027.3 γ E2 to 8 ⁺ .
2656.53 14	11-	0.5 ns <i>I</i>		DE G	J^{n} : 237.6 γ E1 to 10 ⁺ .
					$T_{1/2}$: From 237.6 γ (t) in 1990Ba31.
	±				Configuration=dominant $\pi(h_{9/2}^{+1},i_{13/2}^{+1})$.
2781.06 20	11+			DG	J^{π} : 167.9 γ and 362.1 γ M1 to 10 ⁺ .
2901.97 22	12+			D	J^{n} : 120.8 γ MI to 11 ⁺ .
					Configuration= $\nu(\overline{i_{13/2}})$.
2917.02 7	$(4^+, 5^+, 6^+)$		Α		J^{π} : 614.40 γ M1(+E2) to (5 ⁺).
3068.09 13	11-			DG	J^{π} : 805.9 γ E2 to 9 ⁻ .
3210.50 22	12+			D	J^{n} : 429.3 γ MI to 11 ⁺ .
3361.96 7			A		J [*] : 444.73 γ M1(+E2) to (4 ⁺ ,5 ⁺ ,6 ⁺).
3396.49 12	12-		A		
3463.11 14	13			DEG	$J^{*}: 252.5\gamma \text{ E1 to } 12^{\circ}, 395.0\gamma \text{ E2 to } 11^{\circ}$.
3483.87 20	15				J^{**}_{**} 829.37 E2 10 11 .
2559.2 1	14				J^{*} : 60.07 WII to 15 . π . 001 Set M1 to 11 ⁻
2567 1 2	12			DG	J^{-1} , 901.87 MI to 11 . I^{π} , 1065 M E2 from 17 ⁻
3507.4 5	15		۸	D	$J = 1003.87 \pm 2.1101117$.
3704 47 23			А	л	
3872 15 9			Δ	D	
3951 92 23	14-		n	DG	I^{π} : 466 0y M1 to 13 ⁻
4038 84 8	14		Α	D U	J . 1 00.07 MII to 15 .
4163.2.3	16-			D	I^{π} 595 8y M1 to 15 ⁻
4230.6.3	10			D	5. 595107 HI to 15 .
4410.04 9			Α	-	
4419.63 11			A		
4483.71 24	(13)			D	J^{π} : 1273.1 γ D to 12 ⁺ , 1702.9 γ (O) to 11 ⁺ .
4494.5 5	(13)			D	J^{π} : 936.2 γ D to 12 ⁻ .
4569.31 22	14+			D	J^{π} : 1358.9 γ E2 to 12 ⁺ .
4613.25 21	15+			D	J^{π} : 44.0 γ M1 to 14 ⁺ , 1064.1 γ E1 to 14 ⁻ .
4632.9 <i>3</i>	17-			D	J^{π} : 469.6 γ M1 to 16 ⁻ .
4652.2 <i>3</i>	16+			D	J^{π} : 39.0 γ M1 to 15 ⁺ .
4685.9 <i>3</i>	17+			D	J^{π} : 33.7 γ M1 to 16 ⁺ .
4697.77 16			Α		
4711.9 <i>3</i>	16+			D	J^{π} : 1144.5 γ E1 to 15 ⁻ .
4744.3 4	17-			D	J^{π} : 581.1 γ M1 to 16 ⁻ .
4832.2 <i>3</i>	18+			D	J^{π} : 146.2 γ M1 to 17 ⁺ .
5168.9 4	17+			D	J^{π} : 457.0 γ M1 to 16 ⁺ .
5212.8 3	19+			D	J^{n} : 380.6 M1 to 18 ⁺ .
5334.6 3	18+			D	J^{π} : 165.6 γ M1(+E2) to 17 ⁺ , 622.9 γ to 16 ⁺ .
5377.7 3	18-			D	J [*] : 744.8 γ M1 to 17 ⁻ , 1214.3 γ (E2) to 16 ⁻ .
5486.5 <i>5</i>				D	

²⁰⁶Po Levels (continued)

E(level) [†]	J^{π}	T _{1/2}	XREF	Comments
5514.2 4	19+		D	J^{π} : 179.5 γ M1 to 18 ⁺ .
5874.6 5	20		D	J^{π} : 661.8 γ D to 19 ⁺ .
5935.4 <i>3</i>	19-		D	J^{π} : 1103.3 γ E1 to 18 ⁺ , 1191.2 γ E2 to 17 ⁻ .
6009.9 4	20		D	J^{π} : 495.8 γ D to 19 ⁺ .
6019.9 4			D	,
6050.9 4			D	
6118.6 4	20^{-}		D	J^{π} : 183.2 γ M1 to 19 ⁻ .
6288.5 4	21^{-}		D	J^{π} : 169.8 γ M1 to 20 ⁻ .
6343.7 5			D	
6477.9 5			D	
6522.1 5	21		D	J^{π} : 647.4 γ D to 20 ⁻ .
6699.6 <i>4</i>	21		D	J^{π} : 581.0 γ D to 20 ⁻ .
6756.2 4	22-		D	J^{π} : 467.7 γ M1 to 21 ⁻ .
6873.0 5	21		D	J^{π} : 754.5 γ D to 20 ⁻ .
6958.5 5	22		D	J^{π} : 670.0 γ D to 21 ⁻ .
6982.8 6			D	
7121.4 5			D	
7137.3 5			D	
7158.7 5	23		D	$J^{\pi}: 200.3\gamma$ D to 22.
7196.9 5	23		D	J^{n} : 440.6 γ D to 22 ⁻ .
7267.7 5	22		D	
7282.0 6	22		D	J^{*} : 759.9 γ D to 21.
7412.7 5			D	
7502 5 5	(24)		D	π , 242 8, D to (22)
7502.5 5	(24)		D	J : 545.6γ D 10 (25).
7393.0 5			D	
8044.2.6			D	
8201.3.6			D	
8218 5 6			D	
8259.2.6			D	
8265.1.6			D	
8348.9 6			D	
8381.9 6			D	
8431.1 5			D	
8627.7 7			D	
8643.5 6		1.0 ns 3	D	$T_{1/2}$: From 212.4 γ (t) in 1990Ba31.
8898.3 7			D	
8994.3 6			D	
9724.8 7			D	

 † From a least-squares fit to Ey.

	Adopted Levels, Gammas (continued)											
							$\gamma(^{206}\text{Po})$					
E _i (level)	\mathbf{J}_i^{π}	E_{γ}^{\dagger}	I_{γ}^{\dagger}	$\mathbf{E}_f = \mathbf{J}_f^{\pi}$	Mult.	$\delta^{@}$	α &	Comments				
700.66	2+	700.66 3	100	0.0 0+	E2	_	0.01507 21	$\begin{aligned} &\alpha(\text{K}) = 0.01132 \ 16; \ \alpha(\text{L}) = 0.00283 \ 4; \ \alpha(\text{M}) = 0.000695 \ 10 \\ &\alpha(\text{N}) = 0.0001785 \ 25; \ \alpha(\text{O}) = 3.62 \times 10^{-5} \ 5; \ \alpha(\text{P}) = 4.21 \times 10^{-6} \ 6 \\ &\text{B(E2)(W.u.)} = 10.6 \ 18 \\ &\text{Mult.:} \ \alpha(\text{K}) \text{exp} = 0.0114, \ \alpha(\text{L}) \text{exp} = 0.0029 \ \text{and} \ \alpha(\text{M}) \text{exp} = 0.0012 \\ &(1977\text{Li16}); \ \alpha(\text{K}) \text{exp} = 0.0122 \ 5, \ \alpha(\text{L}) \text{exp} = 0.0027 \ 1, \ \text{and} \\ &\alpha(\text{M}) \text{exp} = 0.0008 \ 1 \ (1990\text{Ba31}); \ \text{A}_2 = 0.11 \ 1, \ \text{A}_4 = 0.00 \ 2 \ (1986\text{Ra24}). \end{aligned}$				
1162.2	2+	461.5 [#] 7	100 [#] 20	700.66 2+	M1		0.1577 23	α (K)=0.1286 <i>19</i> ; α (L)=0.02224 <i>32</i> ; α (M)=0.00523 <i>8</i> α (N)=0.001347 <i>20</i> ; α (O)=0.000282 <i>4</i> ; α (P)=3.65×10 ⁻⁵ <i>5</i> Mult.: A ₂ =0.24 <i>2</i> , A ₄ =-0.12 <i>2</i> , consistent with Δ J=0 transition, and α (K)exp=0.13 <i>1</i> (1986Ra24).				
		1162.2 [#] 7	100 [#] 20	0.0 0+	E2		0.00552 8	$\alpha(K)=0.00441\ 6;\ \alpha(L)=0.000841\ 12;\ \alpha(M)=0.0002005\ 28$ $\alpha(N)=5.15\times10^{-5}\ 7;\ \alpha(O)=1.063\times10^{-5}\ 15;\ \alpha(P)=1.314\times10^{-6}\ 18;$ $\alpha(IPF)=1.390\times10^{-6}\ 35$ Mult: $\alpha_{2}=0.20\ 7;\ A_{4}=-0.13\ 10\ (1986Ra24).$				
1177.80	4+	477.10 3	100	700.66 2+	E2		0.0360 5	$\begin{aligned} \alpha(K) = 0.02441 \ 34; \ \alpha(L) = 0.00867 \ 12; \ \alpha(M) = 0.002186 \ 31 \\ \alpha(N) = 0.000561 \ 8; \ \alpha(O) = 0.0001118 \ 16; \ \alpha(P) = 1.216 \times 10^{-5} \ 17 \\ B(E2)(W.u.) = 4.9 \ 4 \\ Mult.: \ \alpha(K) exp = 0.025 \ 3, \ \alpha(L) exp = 0.0090 \ 12 \ and \ \alpha(M) exp = 0.0023 \ 12 \\ (1977Li16) \ and \ \alpha(K) exp = 0.026 \ 8 \ (1982Br07); \ \alpha(K) exp = 0.032 \ 2, \\ \alpha(L) exp = 0.0101 \ 6, \ and \ \alpha(M) exp = 0.0027 \ 2 \ (1990Ba31); \ A_2 = 0.10 \ 2, \\ A_4 = 0.00 \ 2 \ and \ A_2 = 0.18 \ 2, \ A_4 = 0.02 \ 2 \ (1986Ra24). \end{aligned}$				
1434.35	4+	256.53 8	43 4	1177.80 4+	M1(+E2)	≤0.6	0.70 8	$\begin{aligned} &\alpha(\mathbf{K}) = 0.56 \ 7; \ \alpha(\mathbf{L}) = 0.107 \ 4; \ \alpha(\mathbf{M}) = 0.0255 \ 7 \\ &\alpha(\mathbf{N}) = 0.00656 \ 19; \ \alpha(\mathbf{O}) = 0.00136 \ 5; \ \alpha(\mathbf{P}) = 0.000171 \ 11 \\ \mathbf{I}_{7}: \ \text{Other: } 100 \ 12 \ (1990\text{Ba31}). \end{aligned}$ Mult.: $\alpha(\mathbf{K}) \exp = 0.67 \ 9, \ \alpha(\mathbf{L}) \exp = 0.11 \ 2 \ \text{and} \ \alpha(\mathbf{M}) \exp = 0.022 \ 11 \\ &(1977\text{Li16}) \ \text{and} \ \alpha(\mathbf{K}) \exp = 0.60 \ 6 \ \text{and} \ \alpha(\mathbf{L}) \exp = 0.107 \ 22 \ (1982\text{Br07}); \\ &A_2 = 0.27 \ 2, \ A_4 = 0.02 \ 3 \ \text{and} \ \alpha(\mathbf{K}) \exp = 0.10 \ 3 \ (1986\text{Ra24}); \ A_2 = -0.17 \ 5, \\ &A_4 = -0.04 \ 7 \ (1990\text{Ba31}). \end{aligned}$				
		733.73 5	100 7	700.66 2+	(E2)		0.01368 <i>19</i>	$\alpha(K)=0.01037 \ I5; \ \alpha(L)=0.002508 \ 35; \ \alpha(M)=0.000614 \ 9 \ \alpha(N)=0.0001576 \ 22; \ \alpha(O)=3.20\times10^{-5} \ 4; \ \alpha(P)=3.75\times10^{-6} \ 5 \ I_{\gamma}: \ Other: \ 59 \ 6 \ (1990Ba31).$ Mult.: $\alpha(K)exp=0.0145 \ 23 \ (1982Br07)$, but this value suggests E2+M1 assignment; $A_2=0.09 \ I$, $A_4=0.03 \ I \ (1986Ra24)$ and $A_2=0.03 \ I0$, $A_4=-0.13 \ I7 \ (1990Ba31)$. The A_2 value is inconsistent with E2 assignment from the level scheme.				
1546.3	4+	384.1 [#] 5	100 [#]	1162.2 2+	E2		0.0626 9	α (K)=0.0387 6; α (L)=0.01786 26; α (M)=0.00457 7 α (N)=0.001173 17; α (O)=0.0002313 34; α (P)=2.415×10 ⁻⁵ 35 Mult.: A ₂ =0.21 8, A ₄ =0.05 10 (1986Ra24).				

4

From ENSDF

 $^{206}_{84}\mathrm{Po}_{122}\text{-}4$

L

	Adopted Levels, Gammas (continued)													
	γ ⁽²⁰⁶ Po) (continued)													
E _i (level)	\mathbf{J}_i^{π}	E_{γ}^{\dagger}	I_{γ}^{\dagger}	$E_f J_f^{\pi}$	Mult.	$\delta^{@}$	a&	Comments						
1564.70	(3)+	386.894 ^{<i>a</i>} 19	100 ^{<i>a</i>} 14	1177.80 4+	M1(+E2)	≤0.3	0.245 9	$\alpha(K)=0.199\ 7;\ \alpha(L)=0.0351\ 9;\ \alpha(M)=0.00827\ 20$ $\alpha(N)=0.00213\ 5;\ \alpha(O)=0.000445\ 11;\ \alpha(P)=5.73\times10^{-5}\ 17$ Mult.: $\alpha(K)\exp=0.037\ 19,\ \alpha(L)\exp=0.015\ 7$ in 1977Li16 requires E2, but $\alpha(K)\exp=0.29\ 5$ in 1982Br07 and $\alpha(K)\exp=0.20\ 4$ in 1986Ra24 suggest dominant M1; $A_2=0.15\ 4,\ A_4=0.11\ 6$ in (1986Ra24).						
		864.30 11	61 4	700.66 2+	(M1+E2)		0.020 10	$\alpha(K)=0.016 \ 9; \ \alpha(L)=0.0029 \ 13; \ \alpha(M)=7.0\times10^{-4} \ 29 \ \alpha(N)=1.8\times10^{-4} \ 8; \ \alpha(O)=3.7\times10^{-5} \ 16; \ \alpha(P)=4.7\times10^{-6} \ 22 \ Mult.: \ \alpha(K)exp\approx0.011 \ (1982Br07).$						
1573.38	6+	138.9 [‡] <i>3</i>	1.06 [‡] 11	1434.35 4+	E2		1.850 <i>30</i>	$\alpha(K)=0.340 \ 5; \ \alpha(L)=1.119 \ 19; \ \alpha(M)=0.298 \ 5 \\ \alpha(N)=0.0764 \ 13; \ \alpha(O)=0.01459 \ 25; \ \alpha(P)=0.001330 \ 23 \\ B(E2)(W.u.)=8.0 \ +32-19 \\ Mult : \ \alpha(exp)=2.4.6 \ (1990B_{2.3}1) \\ \end{array}$						
		395.54 4	100	1177.80 4+	E2		0.0579 8	a(K)=0.0363 5; α(L)=0.01613 23; α(M)=0.00412 6 α(N)=0.001058 15; α(O)=0.0002088 29; α(P)=2.193×10 ⁻⁵ 31 B(E2)(W.u.)=4.0 +16-9 Mult.: α(K)exp=0.037 5, α(L)exp=0.016 2 and α(M)exp=0.004 2 (1977Li16) and α(K)exp=0.038 4 (1982Br07); α(K)exp=0.0381 14, α(L)exp=0.0165 10, and α(M)exp=0.0076 4 (1990Ba31); A ₂ =0.17 1, A ₄ =-0.03 2 and A ₂ =0.21 1, A ₄ =0.01 20 (1986Ra24).						
1585.96	8+	(12.5 [‡] <i>I</i>)	100 [‡]	1573.38 6+	[E2]		4.52×10 ⁴ 19	$\alpha(M)=3.46 \times 10^4 \ I5$ $\alpha(N)=8.8 \times 10^3 \ 4; \ \alpha(O)=1.66 \times 10^3 \ 7; \ \alpha(P)=144 \ 6$ B(E2)(W.u.)=2.45 \ I5 E _y : From 627.1y - 614.6y \ y-ray energy difference in 1990Ba31						
1915.87	(4)+	342.51 19	100 13	1573.38 6+	(E2)		0.0857 12	$\alpha(K)=0.0498\ 7;\ \alpha(L)=0.0269\ 4;\ \alpha(M)=0.00693\ 10$ $\alpha(N)=0.001778\ 25;\ \alpha(O)=0.000349\ 5;\ \alpha(P)=3.57\times10^{-5}\ 5$ Mult.: From 1977Li16, but no arguments were presented.						
		738.03 12	80 7	1177.80 4+	[M1]		0.0457 6	$\alpha(K) = 0.0374 5; \alpha(L) = 0.00638 9; \alpha(M) = 0.001498 21 \alpha(N) = 0.000386 5; \alpha(Q) = 8.07 \times 10^{-5} 11; \alpha(P) = 1.046 \times 10^{-5} 15$						
2100.79	(5)+	527.27 7	53 5	1573.38 6+	M1(+E2)	≤0.43	0.104 7	$\alpha(K)=0.085\ 6;\ \alpha(L)=0.0148\ 7;\ \alpha(M)=0.00350\ 17$ $\alpha(K)=0.0090\ 4;\ \alpha(O)=0.000188\ 9;\ \alpha(P)=2.42\times10^{-5}\ 13$ Mult.: $\alpha(K)\exp=0.07\ 3\ (1977Li16),\ 0.091\ 11\ (1982Br07),\ \alpha(K)\exp=0.09\ 1\ (1986Ba24).$						
		923.12 6	100 11	1177.80 4+	M1+E2	≈1.1	≈0.01628	$\alpha(K) \approx 0.01316; \ \alpha(L) \approx 0.002382; \ \alpha(M) \approx 0.000564$ $\alpha(N) \approx 0.0001451; \ \alpha(O) \approx 3.02 \times 10^{-5}; \ \alpha(P) \approx 3.82 \times 10^{-6}$						

S

²⁰⁶₈₄Po₁₂₂-5

Adopted Levels, Gammas (continued) γ ⁽²⁰⁶Po) (continued) $\delta^{@}$ α**&** E_{γ}^{\dagger} Iγ[†] \mathbf{E}_{f} J_f^{π} Comments Mult. Mult.: $\alpha(K)\exp\approx 0.013$ (1982Br07); A₂=0.25 6, A₄=-0.12 9 (1986Ra24). 565.55 12 1573.38 6+ 54 5 $\alpha(K) \approx 0.0283; \ \alpha(L) \approx 0.00523; \ \alpha(M) \approx 0.001241$ 704.66 9 100 10 1434.35 4+ M1+E2 ≈0.9 ≈0.0352 $\alpha(N) \approx 0.000319; \ \alpha(O) \approx 6.63 \times 10^{-5}; \ \alpha(P) \approx 8.38 \times 10^{-6}$ Mult : $\alpha(K) \approx 0.029, \ (1982Br07)$

		627.1 [‡] <i>1</i>	3.3 [‡] 9	1573.38 6+	
2262.17	9-	61.766 [‡] <i>19</i>	100 [‡] 4	2200.40 8+	Е

6

 E_i (level)

2138.92

 J_i^{π}

 $(4,5)^+$

		060 02 12	22.0.16	1177 80 4+				Mult.: $\alpha(K) \exp \approx 0.029 (1982Br07)$.
2200.40	8+	614.40 <i>5</i>	25.0 <i>10</i> 100 <i>10</i>	1585.96 8+	M1(+E2)	≤0.32	0.0714 27	$ \begin{aligned} &\alpha(\mathrm{K}) = 0.0582\ 23;\ \alpha(\mathrm{L}) = 0.01006\ 32;\ \alpha(\mathrm{M}) = 0.00237\ 7\\ &\alpha(\mathrm{N}) = 0.000609\ 19;\ \alpha(\mathrm{O}) = 0.000127\ 4;\ \alpha(\mathrm{P}) = 1.65 \times 10^{-5}\ 6\\ &\mathrm{Mult.:}\ \alpha(\mathrm{K}) \exp = 0.063\ 17\ (1977\mathrm{Li16}),\ 0.060\ 4\\ &(1982\mathrm{Br07}, 1986\mathrm{Ra24});\ \alpha(\mathrm{K}) \exp = 0.058\ 2,\ \alpha(\mathrm{L}) \exp = 0.0105\\ &4,\ \mathrm{and}\ \alpha(\mathrm{M}) \exp = 0.0021\ I\ (1990\mathrm{Ba31});\ \mathrm{A_2} = 0.08\ I,\\ &\mathrm{A_4} = 0.02\ 2,\ \mathrm{A_2} = 0.19\ 2,\ \mathrm{A_4} = 0.02\ 3\ (1986\mathrm{Ra24}). \end{aligned} $
		627.1 [‡] 1	3.3 [‡] 9	1573.38 6+				
2262.17	9-	61.766 [‡] <i>19</i>	100 [‡] 4	2200.40 8+	E1		0.355 5	$\begin{aligned} &\alpha(L) = 0.271 \ 4; \ \alpha(M) = 0.0649 \ 9 \\ &\alpha(N) = 0.01632 \ 23; \ \alpha(O) = 0.00316 \ 4; \ \alpha(P) = 0.000329 \ 5 \\ &B(E1)(W.u.) = 5.1 \times 10^{-7} \ 3 \\ &Mult.: \ (\alpha(L1)exp + \alpha(L2)exp) \approx 0.22, \ \alpha(L3)exp \approx 0.15 \\ &(1982Br07); \ \alpha(exp) = 0.066 \ 26 \ in \ 1990Ba31, \ consistent \\ &only \ with \ Mult. = E1. \end{aligned}$
		676.4 [‡] 2	17.6 [‡] <i>11</i>	1585.96 8+	(E1)		0.00561 8	$\alpha(K)=0.00464\ 7;\ \alpha(L)=0.000743\ 10;\ \alpha(M)=0.0001730\ 24$ $\alpha(N)=4.43\times10^{-5}\ 6;\ \alpha(O)=9.18\times10^{-6}\ 13;\ \alpha(P)=1.156\times10^{-6}\ 16$ B(E1)(W.u.)= $6.9\times10^{-11}\ 6$ Mult.: $\alpha(K)\exp=0.015\ 1$ and $\alpha(L)\exp=0.0018\ 5$ (1990Ba31), but the value is somewhat larger for Mult.=E1, presumably due to penetration.
2302.62	(5)+	201.84 12	71 8	2100.79 (5) ⁺				Mult.: Note Mult.=E1 suggested in 1977Li16, but arguments were not presented. The level scheme requires M1.
		386.894 ^a 19	37 ^a 5	1915.87 (4)+				
		729.27 15	12.8 <i>13</i>	1573.38 6+	E2+M1	2.3 12	0.019 10	α (K)=0.015 8; α (L)=0.0032 12; α (M)=7.7×10 ⁻⁴ 27 α (N)=2.0×10 ⁻⁴ 7; α (O)=4.1×10 ⁻⁵ 15; α (P)=4.9×10 ⁻⁶ 21 Mult.: α (K)exp=0.015 9 (1982Br07).
		868.27 5	100 10	1434.35 4+	(E2)		0.00971 14	$\alpha(K)=0.00754 \ 11; \ \alpha(L)=0.001643 \ 23; \ \alpha(M)=0.000398 \ 6$ $\alpha(N)=0.0001022 \ 14; \ \alpha(O)=2.089\times10^{-5} \ 29; \ \alpha(P)=2.504\times10^{-6} \ 35$ Mult.: $\alpha(K)\exp\approx0.0074 \ (1982Br07).$
		1124.77 10	24 3	1177.80 4+	M1+E2	≈0.5	≈0.01347	$\alpha(K) \approx 0.01101; \ \alpha(L) \approx 0.001877; \ \alpha(M) \approx 0.000441$ $\alpha(N) \approx 0.0001135; \ \alpha(O) \approx 2.374 \times 10^{-5}; \ \alpha(P) \approx 3.07 \times 10^{-6};$

					Adopt	ed Levels, Gamma	s (continued)	
						γ ⁽²⁰⁶ Po) (contin	uued)	
E _i (level)	\mathbf{J}_i^{π}	${\rm E_{\gamma}}^{\dagger}$	I_{γ}^{\dagger}	E_f	\mathbf{J}_{f}^{π} Mult.	$\delta^{@}$	α &	Comments
2418.94	10+	157 ^b 833.0 [‡] 1	100 [‡]	2262.17 9 1585.96 8	- + E2		0.01055 15	$\alpha(\text{IPF})\approx 6.79\times 10^{-7}$ Mult.: $\alpha(\text{K})\exp\approx 0.011$ (1982Br07). E _y : From 1976Be12. $\alpha(\text{K})=0.00815$ 11; $\alpha(\text{L})=0.001818$ 25; $\alpha(\text{M})=0.000441$ 6 $\alpha(\text{N})=0.0001133$ 16; $\alpha(\text{O})=2.314\times 10^{-5}$ 32; $\alpha(\text{P})=2.76\times 10^{-6}$ 4
2423.23	9+	837.2 [‡] 2	100 [‡]	1585.96 8	+ M1		0.0329 5	Mult.: $A_2=0.31 \ 3$, $A_4=-0.07 \ 4$, $A_2=0.54 \ 12$, $A_4=-0.05 \ 15$ (1986Ra24); $\alpha(K)\exp=0.011 \ 4$ (1986Ra24); $\alpha(K)\exp=0.015 \ 1$, $\alpha(L)\exp=0.0018 \ 5$ (1990Ba31). $\alpha(K)=0.0269 \ 4$; $\alpha(L)=0.00458 \ 6$; $\alpha(M)=0.001076 \ 15$ $\alpha(N)=0.000277 \ 4$; $\alpha(O)=5.80\times10^{-5} \ 8$; $\alpha(P)=7.51\times10^{-6} \ 11$ Mult.: $\alpha(K)\exp=0.023 \ 2$ (1990Ba31) and 0.023 \ 5 (1986Ra24); $A_2=-0.33 \ 5$, $A_4=0.50 \ 7$ (1986Ra24).
2432.40 2500.60	5+,6+	170.2 [‡] 3 197.98 <i>12</i>	100 [‡] 100 <i>13</i>	2262.17 9 2302.62 (:	 5) ⁺ M1(+E2)	≤0.34	1.54 6	$\alpha(K)=1.24 \ 6; \ \alpha(L)=0.2291 \ 33; \ \alpha(M)=0.0544 \ 9 \\ \alpha(N)=0.01400 \ 23; \ \alpha(O)=0.00292 \ 4; \ \alpha(P)=0.000371 \ 7 \\ Mult.: \ \alpha(K)exp=1.43 \ 22, \ \alpha(L)exp=0.25 \ 7 \ and \\ \alpha(M)exp\approx0.06 \ (1977Li16) \ and \ \alpha(K)exp=1.43 \ 20 \\ (1002D \ 07)$
		399.98 16	44 6	2100.79 (5) ⁺ M1(+E2)	≤0.8	0.197 34	$\alpha(K)=0.159\ 30;\ \alpha(L)=0.0294\ 34;\ \alpha(M)=0.0070\ 7$ $\alpha(N)=0.00180\ 19;\ \alpha(O)=0.00037\ 4;\ \alpha(P)=4.7\times10^{-5}\ 6$
		927.09 14	63 6	1573.38 6	+ M1+E2	≈0.2	≈0.02465	Mult.: $\alpha(K)\exp=0.20$ 7 (1982Br07). $\alpha(K)\approx0.02016$; $\alpha(L)\approx0.00343$; $\alpha(M)\approx0.000805$ $\alpha(N)\approx0.0002071$; $\alpha(O)\approx4.34\times10^{-5}$; $\alpha(P)\approx5.61\times10^{-6}$ Mult : $\alpha(K)\exp\approx0.02$ (1982Br07)
2581.56	(4,5,6)+	278.88 5	100 11	2302.62 (5) ⁺ M1+E2	1.52 +19-15	0.296 22	$\alpha(K)=0.207\ 20;\ \alpha(L)=0.0673\ 17;\ \alpha(M)=0.01688\ 35$ $\alpha(N)=0.00434\ 9;\ \alpha(O)=0.000867\ 21;\ \alpha(P)=9.59\times10^{-5}\ 35$ Mult.: $\alpha(K)exp=0.52\ 7\ (1977Li16)\ and\ \alpha(K)exp=0.18\ 2$ (1982Br07).
2613.18	10+	1008.64 28 189.8 [‡] 3	47 [‡] 6	1373.38 0 2423.23 9	+ M1		1.800 26	α (K)=1.462 21; α (L)=0.258 4; α (M)=0.0608 9 α (N)=0.01565 23; α (O)=0.00327 5; α (P)=0.000423 6 Mult.: α (exp)=2.9 10.
		1027.3 [‡] 2	100 [‡] 8	1585.96 8	+ E2		0.00698 10	$\begin{aligned} &\alpha(\mathrm{K}) = 0.00553 \ 8; \ \alpha(\mathrm{L}) = 0.001107 \ 16; \ \alpha(\mathrm{M}) = 0.000266 \ 4 \\ &\alpha(\mathrm{N}) = 6.82 \times 10^{-5} \ 10; \ \alpha(\mathrm{O}) = 1.403 \times 10^{-5} \ 20; \\ &\alpha(\mathrm{P}) = 1.714 \times 10^{-6} \ 24 \\ &\mathrm{Mult.:} \ \alpha(\mathrm{K}) \exp = 0.004 \ 2. \end{aligned}$

 \neg

						γ(²⁰⁶ Po)	(continue	d)	
E _i (level)	\mathbf{J}_i^{π}	E_{γ}^{\dagger}	I_{γ}^{\dagger}	E _f	J_f^π	Mult.	$\delta^{@}$	α ^{&}	Comments
2656.53	11-	224.1 [‡] 3 237.6 [‡] 1	$ 7.0^{\ddagger} 11 \\ 100.0^{\ddagger} 22 $	2432.40 2418.94 10	+	E1		0.0541 8	B(E1)(W.u.)= $2.6 \times 10^{-5} 6$ $\alpha(K)=0.0439 6; \alpha(L)=0.00782 11; \alpha(M)=0.001844 26$ $\alpha(N)=0.000470 7; \alpha(O)=9.56 \times 10^{-5} 13;$ $\alpha(P)=1.137 \times 10^{-5} 16$ Mult.: $\alpha(\exp)=0.21 11, \alpha(L)\exp<0.028, \alpha(M)\exp<0.014$ (1000Pc21): $\Delta_{12}=0.224 L, \Delta_{12}=0.012$ $\Delta_{12}=0.25$ 8
		395 ^b		2262 17 9-					$A_4=0.08 \ 13 \text{ and } \alpha(\text{K})\exp=0.05 \ (1986\text{Ra}24).$
2781.06	11+	167.9 [‡] 3	100 [‡] 9	2613.18 10	ı+	M1		2.54 4	$\begin{aligned} &\alpha(\mathbf{K}) = 2.064 \ 31; \ \alpha(\mathbf{L}) = 0.364 \ 5; \ \alpha(\mathbf{M}) = 0.0860 \ 13 \\ &\alpha(\mathbf{N}) = 0.02214 \ 33; \ \alpha(\mathbf{O}) = 0.00463 \ 7; \ \alpha(\mathbf{P}) = 0.000599 \ 9 \\ &\text{Mult.:} \ \alpha(\exp) = 2.6 \ 5 \ (1990\text{Ba}31); \ A_2 = -0.33 \ 3, \ A_4 = -0.03 \\ &\beta \ (1986\text{Ra}24). \end{aligned}$
		362.1 [‡] 3	81 [‡] 9	2418.94 10	y +	M1		0.303 4	α (K)=0.2465 35; α (L)=0.0429 6; α (M)=0.01011 14 α (N)=0.00260 4; α (O)=0.000544 8; α (P)=7.04×10 ⁻⁵ 10 Mult.: α (K)exp=0.28 6 (1990Ba31); A ₂ =-0.59 5, A ₄ =0.09 7 (1986Ra24).
2901.97	12+	120.8 [‡] 3	100 [‡]	2781.06 11	+	M1		6.48 10	α (K)=5.25 8; α (L)=0.933 15; α (M)=0.2203 35 α (N)=0.0567 9; α (O)=0.01187 19; α (P)=0.001533 24 Mult.: α (exp)=6.0 11 (1990Ba31).
2917.02	(4 ⁺ ,5 ⁺ ,6 ⁺)	416.41 <i>12</i> 614.40 <i>5</i>	20.6 <i>16</i> 100 <i>10</i>	2500.60 5 ⁺ 2302.62 (5)	7,6 ⁺) ⁺	M1(+E2)	≤0.31	0.0715 26	$\alpha(K)=0.0583\ 22;\ \alpha(L)=0.01008\ 31;\ \alpha(M)=0.00237\ 7$ $\alpha(N)=0.000610\ 18;\ \alpha(O)=0.000128\ 4;\ \alpha(P)=1.65\times10^{-5}\ 5$ Mult.: $\alpha(K)$ exp=0.063 17 (1977Li16).
3068.09	11-	805.9 [‡] 1	100 [‡]	2262.17 9-		E2		0.01128 <i>16</i>	$\alpha(K)=0.00867 \ 12; \ \alpha(L)=0.001974 \ 28; \ \alpha(M)=0.000480 \ 7 \\ \alpha(N)=0.0001233 \ 17; \ \alpha(O)=2.514\times10^{-5} \ 35; \\ \alpha(P)=2.98\times10^{-6} \ 4 \\ Mult.: \ \alpha(K)exp=0.0098 \ 5, \ \alpha(L)exp=0.0028 \ 2 \\ (1990Ba31); \ A_{2}=0.31 \ 2, \ A_{4}=0.08 \ 2 \ (1986Ra24).$
3210.50	12+	429.3 [‡] 3	100‡	2781.06 11	+	M1		0.1914 27	$\alpha(K)=0.1560\ 22;\ \alpha(L)=0.0270\ 4;\ \alpha(M)=0.00636\ 9$ $\alpha(N)=0.001638\ 23;\ \alpha(O)=0.000343\ 5;\ \alpha(P)=4.43\times10^{-5}\ 6$ Mult.: $\alpha(K)$ exp=0.175 13, $\alpha(L)$ exp=0.072 11 (1990Ba31)
3361.96		444.73 <i>23</i>	37 3	2917.02 (4	+,5+,6+)	M1(+E2)	≤0.9	0.145 29	$\alpha(K)=0.117\ 25;\ \alpha(L)=0.0215\ 31;\ \alpha(M)=0.0051\ 7$ $\alpha(N)=0.00131\ 18;\ \alpha(O)=0.00027\ 4;\ \alpha(P)=3.5\times10^{-5}\ 6$ Mult.: $\alpha(K)\exp=0.15\ 8\ (1977Li16,1982Br07).$

 ∞

From ENSDF

γ (²⁰⁶Po) (continued)

E _i (level)	\mathbf{J}_i^{π}	E_{γ}^{\dagger}	I_{γ}^{\dagger}	E_f	\mathbf{J}_f^{π}	Mult.	α &	Comments
3361.96		1059.38 <i>5</i> 1446.08 <i>12</i>	100 <i>11</i> 37 <i>3</i>	2302.62 (5 1915.87 (4	5) ⁺ 4) ⁺			α(K)exp=0.046 14 (1982Br07) suggests M2 assignment.
3396.49		1257.53 <i>12</i> 2218.76 <i>18</i>	100 8 42 8	2138.92 (4 1177.80 4	4,5)+ .+			
3463.11	13-	252.5 [‡] 3	3.1 [‡] 4	3210.50 1	2+	E1	0.0469 7	α (K)=0.0381 5; α (L)=0.00673 10; α (M)=0.001585 23 α (N)=0.000404 6; α (O)=8.23×10 ⁻⁵ 12; α (P)=9.84×10 ⁻⁶ 14 Mult.: α (exp)<0.3. A ₂ =-0.53 6, A ₄ =-0.35 9 (1990Ba31);
		395.0 [‡] 1	100 [‡] 4	3068.09 1	1-	E2	0.0581 8	$ \begin{array}{l} \alpha(\mathrm{K}) = 0.0364 \ 5; \ \alpha(\mathrm{L}) = 0.01621 \ 23; \ \alpha(\mathrm{M}) = 0.00414 \ 6 \\ \alpha(\mathrm{N}) = 0.001063 \ 15; \ \alpha(\mathrm{O}) = 0.0002098 \ 29; \ \alpha(\mathrm{P}) = 2.203 \times 10^{-5} \ 31 \\ \mathrm{Mult.:} \ \alpha(\mathrm{K}) \exp = 0.0413 \ 14, \ \alpha(\mathrm{L}) \exp = 0.0165 \ 11 \ (1990\mathrm{Ba31}); \ \alpha(\mathrm{K}) \exp = 0.039 \ 3 \\ (1986\mathrm{Ra24}). \end{array} $
		561.1 [‡] 3	2.3 [‡] 6	2901.97 1	2+	E1	0.00812 11	α (K)=0.00669 9; α (L)=0.001088 15; α (M)=0.000254 4 α (N)=6.50×10 ⁻⁵ 9; α (O)=1.343×10 ⁻⁵ 19; α (P)=1.678×10 ⁻⁶ 24 Mult.: A ₂ =-0.36 11, A ₄ =-0.26 20 (1990Ba31).
		806.6 [‡] 1	23 [‡] 4	2656.53 1	1-	(E2)	0.01126 <i>16</i>	$\alpha(K)=0.00866\ 12;\ \alpha(L)=0.001970\ 28;\ \alpha(M)=0.000479\ 7$ $\alpha(N)=0.0001230\ 17;\ \alpha(O)=2.509\times10^{-5}\ 35;\ \alpha(P)=2.98\times10^{-6}\ 4$ Mult.: A ₂ =0.21 <i>I</i> , A ₄ =-0.06 <i>I</i> (1990Ba31); $\alpha(K)$ exp=0.010 (1986Ra24), but the γ rays is a doublet.
3485.87	13-	829.3 [‡] 2	100 [‡]	2656.53 1	1-	E2	0.01065 15	α (K)=0.00822 <i>12</i> ; α (L)=0.001839 <i>26</i> ; α (M)=0.000446 <i>6</i> α (N)=0.0001146 <i>16</i> ; α (O)=2.340×10 ⁻⁵ <i>33</i> ; α (P)=2.79×10 ⁻⁶ <i>4</i> Mult.: α (K)exp<0.054; A ₂ =0.35 <i>10</i> , A ₄ =-0.02 <i>10</i> (1990Ba31).
3549.12	14-	63.3 [‡] 3	4 [‡] 3	3485.87 1	3-			
		86.0 [‡] 1	100 [‡] 3	3463.11 1	3-	M1	3.27 5	α (L)=2.49 4; α (M)=0.588 8 α (N)=0.1515 22; α (O)=0.0317 5; α (P)=0.00409 6 Mult.: α (exp)=3.0 3 (1990Ba31).
3558.3	12-	901.8 [‡] 3	100‡	2656.53 1	1-	M1	0.0272 4	$\alpha(K)=0.02224 \ 31; \ \alpha(L)=0.00377 \ 5; \ \alpha(M)=0.000885 \ 12$ $\alpha(N)=0.0002278 \ 32; \ \alpha(O)=4.77\times10^{-5} \ 7; \ \alpha(P)=6.18\times10^{-6} \ 9$ Mult.: A ₂ =-0.99 \ 12, A ₄ =0.18 \ 16 \ (1990Ba31); A ₂ =-0.22 \ 5, A ₄ =0.64 \ 7 \ and \ \alpha(K)exp=0.04 \ (1986Ra24).
3567.4	15-	(18.2 [‡] 4)	100 [‡]	3549.12 1	4-			$\alpha(L)=238 \ 4; \ \alpha(M)=57.1 \ 8; \ \alpha(N+)=18.2 \ 3$ $\alpha(N)=14.70 \ 2I; \ \alpha(O)=3.08 \ 5; \ \alpha(P)=0.397 \ 6$ E : From 1064 $1_{N} = -1045 \ 9_{N} \ \gamma_{rray}$ energy difference in 1990Ba31
3595.45		233.55 9	100 9	3361.96		(E2)	0.278 4	$\alpha(K)=0.1181 \ 17; \ \alpha(L)=0.1186 \ 17; \ \alpha(M)=0.0312 \ 4 \ \alpha(N)=0.00800 \ 11; \ \alpha(O)=0.001545 \ 22; \ \alpha(P)=0.0001486 \ 21$
		1013.82 <i>12</i> 1094.89 <i>12</i> 1292.84 <i>21</i>	94 9 22 <i>3</i> 22 <i>3</i>	2581.56 (4 2500.60 5 2302.62 (5	$(4,5,6)^+$ $(+,6^+)^+$ $(5)^+$			a(.,
3704.47		1047.9 [‡] <i>3</i>	100 [‡] 10	2656.53 1	1-			

9

From ENSDF

γ (²⁰⁶Po) (continued)

E _i (level)	\mathbf{J}_i^{π}	E_{γ}^{\dagger}	I_{γ}^{\dagger}	$\mathbf{E}_f \qquad \mathbf{J}_f^{\pi}$	Mult.	$\delta^{@}$	α &	Comments
3704.47		1285.6 [‡] 3	37 10	2418.94 10+				
3872.15		955.20 8	100 13	2917.02 (4 ⁺ ,5 ⁺ ,6 ⁺)) M1+E2	≈1.0	≈0.01573	$\alpha(K) \approx 0.01274; \ \alpha(L) \approx 0.002277; \ \alpha(M) \approx 0.000538$ $\alpha(N) \approx 0.0001385; \ \alpha(O) \approx 2.88 \times 10^{-5}; \ \alpha(P) \approx 3.67 \times 10^{-6}$ Mult.: $\alpha(K) \exp \approx 0.013 \ (1982 Br 07).$
		1290.44 11	47 7	2581.56 (4,5,6)+				
		2298.75 24	53 7	1573.38 6+				
3951.92	14-	466.0 [‡] 2	100 [‡]	3485.87 13-	M1		0.1537 22	α (K)=0.1253 18; α (L)=0.02166 30; α (M)=0.00510 7 α (N)=0.001312 18; α (O)=0.000275 4; α (P)=3.55×10 ⁻⁵ 5 Mult.: A ₂ =-0.26 3, A ₄ =-0.10 5 (1990Ba31); A ₂ =-0.43 4, A ₄ =0.11 5 and α (K)exp=0.15 (1986Ra24).
4038.84		1736.25 11	69 8	2302.62 (5)+				
		1899.84 <i>12</i>	39 8	2138.92 (4,5)+				
		1938.07 11	100 8	$2100.79 (5)^+$				
4163.2	16-	595.8 [‡] 1	100‡	3567.4 15-	M1		0.0801 11	α (K)=0.0654 9; α (L)=0.01123 16; α (M)=0.00264 4 α (N)=0.000680 10; α (O)=0.0001423 20; α (P)=1.842×10 ⁻⁵ 26 Mult.: α (K)exp=0.07 4, α (L)exp=0.025 13 (1990Ba31).
4230.6		526.2 [‡] 3	100‡	3704.47	D			Mult.: A ₂ =0.00 3, A ₄ =0.02 5 (1990Ba31).
4410.04		1048.18 <i>11</i>	100 9	3361.96	(M1)		0.01842 26	$\alpha(K)=0.01509\ 21;\ \alpha(L)=0.00255\ 4;\ \alpha(M)=0.000598\ 8$ $\alpha(N)=0.0001538\ 22;\ \alpha(O)=3.22\times10^{-5}\ 5;\ \alpha(P)=4.18\times10^{-6}\ 6$ Mult.: $\alpha(K)\exp\approx0.021\ (1982Br07).$
		1492.85 15	94	2917.02 (4+,5+,6+))			
		1909.33 19	26 4	2500.60 5+,6+				
1110 (0		2271.14 12	13 4	$2138.92 (4,5)^+$			0.044.00	
4419.63		380.81 21	62.8	4038.84	M1(+E2)	≤0.5	0.244 20	$\alpha(K)=0.198 \ I8; \ \alpha(L)=0.0355 \ 20; \ \alpha(M)=0.0084 \ 4$ $\alpha(N)=0.00216 \ I1; \ \alpha(O)=0.000451 \ 24; \ \alpha(P)=5.8\times10^{-5} \ 4$ Mult : $\alpha(K)$ exp=0.23.7 (1977Li16) and 0.27.11 (1982Br07)
		824.22 9	100 8	3595.45				(1) (1) (1) (1) (1) (1) (1) (1) (1) (1)
		2318.58 21	38 8	2100.79 (5)+				
4483.71	(13)	1273.1 [‡] 3	100 [‡] <i>13</i>	3210.50 12+	D			Mult.: $A_2 = -0.59$ 6, $A_4 = -0.12$ 10 (1990Ba31).
		1581.8 [‡] 3	63 [‡] 6	2901.97 12+				
		1702.9 [‡] 3	63 [‡] 6	2781.06 11+	(O)			Mult.: $A_2=0.18$ 9, $A_4=-0.14$ 14 (1990Ba31).
4494.5	(13)	936.2 [‡] 3	100^{\ddagger}	3558.3 12-	D			Mult.: $A_2 = -0.435$, $A_4 = 0.017$ (1990Ba31).
4569.31	14+	85.8 [‡] 3	33 17	4483.71 (13)	_			
10 07 10 1		617.3 [‡] 3	$100^{\ddagger} 21$	3951.92 14-	(D)			α (K)=0.037 23; α (L)=0.007 4; α (M)=0.0017 7; α (N+)=0.00054 23
								α (N)=0.00044 <i>19</i> ; α (O)=9; α (P)=1.1×10 ⁻⁵ 6 Mult.: A ₂ =0.13 8, A ₄ =0.05 <i>13</i> (1990Ba31), consistent with Δ J=0.

10

²⁰⁶₈₄Po₁₂₂-10

L

γ (²⁰⁶Po) (continued)

E _i (level)	\mathbf{J}_i^{π}	E_{γ}^{\dagger}	I_{γ}^{\dagger}	E_f	\mathbf{J}_{f}^{π}	Mult.	α &	Comments
4569.31	14+	1358.9 [‡] 3	79 [‡] 8	3210.50	12+	E2	0.00414 6	α (K)=0.00332 5; α (L)=0.000602 8; α (M)=0.0001426 20 α (N)=3.66×10 ⁻⁵ 5; α (O)=7.59×10 ⁻⁶ 11; α (P)=9.50×10 ⁻⁷ 13; α (IPF)=2.57×10 ⁻⁵ 4 Mult.: A ₂ =0.17 5, A ₄ =0.03 8 (1990Ba31).
		1667.2 [‡] 3	54 [‡] 4	2901.97	12+	E2	0.00294 4	α (K)=0.002304 32; α (L)=0.000397 6; α (M)=9.33×10 ⁻⁵ 13 α (N)=2.397×10 ⁻⁵ 34; α (O)=4.98×10 ⁻⁶ 7; α (P)=6.32×10 ⁻⁷ 9; α (IPF)=0.0001205 17 Mult.: A ₂ =0.28 7, A ₄ =0.02 11 (1990Ba31).
4613.25	15+	44.0 [‡] 3	1.3 [‡] 3	4569.31	14+	M1	23.2 6	α (L)=17.7 4; α (M)=4.18 10 α (N)=1.077 27; α (O)=0.225 6; α (P)=0.0291 7 Mult.: α (exp)=37 6 (1990Ba31).
		661.3 [‡] <i>3</i>	41 [‡] 8	3951.92	14-	E1	0.00587 8	α (K)=0.00485 7; α (L)=0.000777 11; α (M)=0.0001811 25 α (N)=4.63×10 ⁻⁵ 7; α (O)=9.60×10 ⁻⁶ 13; α (P)=1.208×10 ⁻⁶ 17 Mult.: A ₂ =-0.34 2, A ₄ =0.05 3 (1990Ba31) implies D, but level π =+ suggest Mult.=E1.
		1045.9 [‡] <i>3</i>	15 [‡] 3	3567.4	15-			
		1064.1 [‡] 2	100 [‡] 8	3549.12	14-	E1	2.43×10 ⁻³ 3	α (K)=0.002023 28; α (L)=0.000313 4; α (M)=7.26×10 ⁻⁵ 10 α (N)=1.860×10 ⁻⁵ 26; α (O)=3.87×10 ⁻⁶ 5; α (P)=4.95×10 ⁻⁷ 7 Mult.: α (K)exp=0.0025 4 (1990Ba31).
4632.9	17-	469.6 [‡] 2	100 [‡] <i>10</i>	4163.2	16-	M1	0.1506 21	$\alpha(K)=0.1228 \ 17; \ \alpha(L)=0.02122 \ 30; \ \alpha(M)=0.00499 \ 7$ $\alpha(N)=0.001285 \ 18; \ \alpha(O)=0.000269 \ 4; \ \alpha(P)=3.48\times10^{-5} \ 5$ Mult.: $\alpha(K)\exp=0.19 \ 4, \ \alpha(L)\exp=0.049 \ 9 \ (1990Ba31).$
		1065.8 [‡] 3	51 [‡] 6	3567.4	15-	E2	0.00651 9	α (K)=0.00517 7; α (L)=0.001019 14; α (M)=0.0002439 34 α (N)=6.26×10 ⁻⁵ 9; α (O)=1.290×10 ⁻⁵ 18; α (P)=1.582×10 ⁻⁶ 22 Mult.: A ₂ =0.33 7, A ₄ =0.11 12 (1990Ba31).
4652.2	16+	39.0 [‡] 3	3.9 [‡] 9	4613.25	15+	M1	33.1 9	α (L)=25.3 7; α (M)=5.97 16 α (N)=1.54 4; α (O)=0.322 9; α (P)=0.0415 11 Mult.: α (exp)=49 7 (1990Ba31).
		1084.8 [‡] <i>3</i>	100 [‡] <i>13</i>	3567.4	15-			
4685.9	17+	33.7 [‡] <i>3</i>	11.1 [‡] 22	4652.2	16+	M1	51.0 <i>15</i>	α (L)=38.9 <i>12</i> ; α (M)=9.19 <i>28</i> α (N)=2.37 <i>7</i> ; α (O)=0.495 <i>15</i> ; α (P)=0.0639 <i>19</i> Mult.: α (exp)=50 <i>8</i> (1990Ba31).
4697.77		522.5 [‡] 3 2116.07 18 2559.07 25	100 [‡] 22 100 20 80 20	4163.2 2581.56 2138.92	16 ⁻ (4,5,6) ⁺ (4,5) ⁺			
4711.9	16^{+}	481.3 [‡] <i>3</i>	15 [‡] 3	4230.6				
		1144.5 [‡] 2	100 [‡] 7	3567.4	15^{-}	E1	$2.14 \times 10^{-3} 3$	$\alpha(K)=0.001780\ 25;\ \alpha(L)=0.000274\ 4;\ \alpha(M)=6.36\times10^{-5}\ 9$

11

²⁰⁶₈₄Po₁₂₂-11

					A	dopted Levels	s, Gammas (continued)	
γ ⁽²⁰⁶ Po) (continued)								
E _i (level)	\mathbf{J}_i^{π}	E_{γ}^{\dagger}	I_{γ}^{\dagger}	$\mathbf{E}_f = \mathbf{J}_f^{\pi}$	Mult.	α &	Comments	
							α (N)=1.630×10 ⁻⁵ 23; α (O)=3.40×10 ⁻⁶ 5; α (P)=4.35×10 ⁻⁷ 6; α (IPF)=3.53×10 ⁻⁶ 5	
		+	+				Mult.: α (K)exp=0.0015 2 (1990Ba31).	
4744.3	17-	581.1# 3	100+	4163.2 16	MI	0.0856 12	$\alpha(K)=0.0699 \ 10; \ \alpha(L)=0.01200 \ 17; \ \alpha(M)=0.00282 \ 4$ $\alpha(N)=0.000726 \ 10; \ \alpha(O)=0.0001521 \ 21; \ \alpha(P)=1.969\times10^{-5} \ 28$ Mult.: $\alpha(K)\exp=0.071 \ 6, \ \alpha(L)\exp=0.011 \ 3 \ (1990Ba31).$	
4832.2	18+	146.2 [‡] 2	100‡	4685.9 17	M1	3.76 5	$\alpha(K)=3.05 4; \alpha(L)=0.540 8; \alpha(M)=0.1275 19$ $\alpha(N)=0.0328 5; \alpha(O)=0.00687 10; \alpha(P)=0.000887 13$ Mult: $\alpha(exp)=3.5.3$ (1990Ba31).	
5168.9	17+	457.0 [‡] 2	100 [‡]	4711.9 16	M1	0.1619 23	$\alpha(K)=0.1320 \ 19; \ \alpha(L)=0.02283 \ 32; \ \alpha(M)=0.00537 \ 8 \ \alpha(N)=0.001383 \ 19; \ \alpha(O)=0.000290 \ 4; \ \alpha(P)=3.75\times10^{-5} \ 5 \ Mult.: \ \alpha(K)exp=0.176 \ 9 \ (1990Ba31).$	
5212.8	19+	380.6 [‡] 1	100 [‡]	4832.2 18	- M1	0.265 4	$\alpha(K)=0.2155 \ 30; \ \alpha(L)=0.0375 \ 5; \ \alpha(M)=0.00882 \ 12$ $\alpha(N)=0.002271 \ 32; \ \alpha(O)=0.000475 \ 7; \ \alpha(P)=6.15\times10^{-5} \ 9$ Mult.: $\alpha(K)\exp=0.27 \ 1, \ \alpha(L)\exp=0.040 \ 5 \ (1990Ba31).$	
5334.6	18+	165.6 [‡] 3	100 [‡] 9	5168.9 17	M1(+E2)	1.8 9	$\alpha(K)=1.2 \ 9; \ \alpha(L)=0.45 \ 7; \ \alpha(M)=0.113 \ 23 \ \alpha(N)=0.029 \ 6; \ \alpha(O)=0.0057 \ 9; \ \alpha(P)=0.000620 \ 10 \ Mult.: \ \alpha(exp)=2.0 \ 5 \ (1990Ba31).$	
		622.9 [‡] 3	77 [‡] 32	4711.9 16				
5377.7	18-	633.3 [‡] 3	25 [‡] 3	4744.3 17	M1+E2	0.043 25	α (K)=0.035 21; α (L)=0.0066 29; α (M)=0.0016 7 α (N)=4.1×10 ⁻⁴ 17; α (O)=8; α (P)=1.1×10 ⁻⁵ 5 Mult.: A ₂ =-0.04 7, A ₄ =0.20 12 (1990Ba31).	
		744.8 [‡] 2	100 [‡] 7	4632.9 17	M1	0.0447 6	$\alpha(K)=0.0365\ 5;\ \alpha(L)=0.00623\ 9;\ \alpha(M)=0.001463\ 21$ $\alpha(N)=0.000376\ 5;\ \alpha(O)=7.88\times10^{-5}\ 11;\ \alpha(P)=1.021\times10^{-5}\ 14$ Mult : $\alpha(K)\exp=0.028\ 2,\ \alpha(L)\exp=0.0091\ 6\ (1990Ba31)$	
		1214.3 [‡] 3	8 [‡] 3	4163.2 16	(E2)	0.00508 7	$\alpha(K)=0.00407 \ 6; \ \alpha(L)=0.000765 \ 11; \ \alpha(M)=0.0001820 \ 25 \\ \alpha(N)=4.67\times10^{-5} \ 7; \ \alpha(O)=9.65\times10^{-6} \ 14; \ \alpha(P)=1.198\times10^{-6} \ 17; \ \alpha(IPF)=4.90\times10^{-6} \\ 7 \\ Mult.: \ A_{2}=0.11 \ 17, \ A_{4}=0.13 \ 26 \ (1990Ba31).$	
5486.5		317.6 [‡] 3	100‡	5168.9 17	-			
5514.2	19+	179.5 [‡] 3	48 [‡] 5	5334.6 18	- M1	2.106 <i>31</i>	α (K)=1.710 25; α (L)=0.302 4; α (M)=0.0712 11 α (N)=0.01832 27; α (O)=0.00383 6; α (P)=0.000495 7 Mult.: α (exp)=2.8 4 (1990Ba31).	
		682.0 [‡] 3	100 [‡] 25	4832.2 18	M1+E2	0.036 20	α (K)=0.029 <i>17</i> ; α (L)=0.0054 <i>24</i> ; α (M)=0.0013 <i>5</i> α (N)=3.3×10 ⁻⁴ <i>14</i> ; α (O)=6.9×10 ⁻⁵ <i>30</i> ; α (P)=9 Mult.: A ₂ =-0.56 <i>4</i> , A ₄ =0.07 <i>6</i> (1990Ba31).	

12

L

γ (²⁰⁶Po) (continued)

E_i (level)	\mathbf{J}_i^{π}	E_{γ}^{\dagger}	I_{γ}^{\dagger}	$E_f J_f^{\pi}$	Mult.	α &	Comments
5874.6	20	661.8 [‡] 3	100 [‡]	5212.8 19	D		Mult.: $A_2 = -0.34$ 2, $A_4 = 0.05$ 3 (1990Ba31).
5935.4	19-	557.7 [‡] 1	100 [‡] 5	5377.7 18	- M1	0.0954 13	$\alpha(K)=0.0779 \ 11; \ \alpha(L)=0.01339 \ 19; \ \alpha(M)=0.00315 \ 4$ $\alpha(N)=0.000811 \ 11; \ \alpha(O)=0.0001697 \ 24; \ \alpha(P)=2.196\times10^{-5} \ 31$ Mult.: $\alpha(K)\exp=0.083 \ 5, \ \alpha(L)\exp<0.039 \ (1990Ba31).$
		600.8 [‡] 2	36 [‡] 9	5334.6 18	E1	0.00708 10	$\alpha(K)=0.00585\ 8;\ \alpha(L)=0.000944\ 13;\ \alpha(M)=0.0002203\ 31$ $\alpha(N)=5.64\times10^{-5}\ 8;\ \alpha(O)=1.166\times10^{-5}\ 16;\ \alpha(P)=1.462\times10^{-6}\ 20$ Mult.: A ₂ =-0.21 4, A ₄ =-0.15 6 (1990Ba31).
		722.4 [‡] 2	46 [‡] 9	5212.8 19	E1	0.00495 7	α (K)=0.00410 6; α (L)=0.000652 9; α (M)=0.0001517 21 α (N)=3.88×10 ⁻⁵ 5; α (O)=8.06×10 ⁻⁶ 11; α (P)=1.017×10 ⁻⁶ 14 Mult.: A ₂ =0.30 1, A ₄ =-0.04 2 (1990Ba31), Δ J=0 transition.
		1103.3 [‡] 3	23 [‡] 3	4832.2 18	E1	2.28×10 ⁻³ 3	$\begin{aligned} &\alpha(\mathrm{K}) = 0.001898\ 27;\ \alpha(\mathrm{L}) = 0.000293\ 4;\ \alpha(\mathrm{M}) = 6.80 \times 10^{-5}\ 10\\ &\alpha(\mathrm{N}) = 1.741 \times 10^{-5}\ 24;\ \alpha(\mathrm{O}) = 3.63 \times 10^{-6}\ 5;\ \alpha(\mathrm{P}) = 4.64 \times 10^{-7}\ 7;\\ &\alpha(\mathrm{IPF}) = 7.65 \times 10^{-7}\ 15\\ &\mathrm{Mult.:}\ \alpha(\mathrm{K}) \exp < 0.004,\ \mathrm{A}_2 = -0.21\ 4,\ \mathrm{A}_4 = 0.02\ 6\ (1990\mathrm{Ba31}). \end{aligned}$
		1191.2 [‡] 3	7.3 [‡] 18	4744.3 17	E2	0.00527 7	$\alpha(K)=0.00422\ 6;\ \alpha(L)=0.000797\ 11;\ \alpha(M)=0.0001899\ 27$ $\alpha(N)=4.88\times10^{-5}\ 7;\ \alpha(O)=1.007\times10^{-5}\ 14;\ \alpha(P)=1.248\times10^{-6}\ 17;$ $\alpha(IPF)=3.02\times10^{-6}\ 5$ Mult.: $\alpha(K)\exp=0.0032\ 12\ (1990Ba31).$
		1302.7 [‡] 3	7.3 [‡] 18	4632.9 17			
6009.9	20	495.8 [‡] 2	100‡	5514.2 19	D		Mult.: $A_2 = -0.42 \ 3$, $A_4 = 0.07 \ 4 \ (1990Ba31)$.
6019.9		807.1 [‡] 3	100‡	5212.8 19-			
6050.9		115.5 [‡] 3	100‡	5935.4 19 ⁻	-		
6118.6	20-	183.2 [‡] 2	100 [‡]	5935.4 19	- M1	1.988 28	α (K)=1.615 23; α (L)=0.285 4; α (M)=0.0672 10 α (N)=0.01729 25; α (O)=0.00362 5; α (P)=0.000468 7 Mult.: α (exp)=2.4 3 (1990Ba31).
6288.5	21-	169.8 [‡] 2	100 [‡]	6118.6 20	- M1	2.463 35	α (K)=2.000 29; α (L)=0.353 5; α (M)=0.0833 12 α (N)=0.02144 31; α (O)=0.00449 6; α (P)=0.000580 8 Mult.: α (exp)=2.9 5 (1990Ba31).
6343.7		292.9 [‡] 3	100 [‡]	6050.9			
6477.9		468.0 [‡] 3	100 [‡]	6009.9 20			
6522.1	21	647.4 [‡] 3	100 [‡]	5874.6 20	D		Mult.: A ₂ =-0.52 6, A ₄ =0.33 9 (1990Ba31).
6699.6	21	581.0 [‡] 3	100 [‡] <i>19</i>	6118.6 20	D		Mult.: $A_2 = -0.19 \ I$, $A_4 = -0.02 \ 2 \ (1990Ba31)$.
		679.7 [‡] 3	23 [‡] 4	6019.9			
6756.2	22-	467.7 [‡] 2	100 [‡]	6288.5 21	M1	0.1522 <i>21</i>	α (K)=0.1241 <i>17</i> ; α (L)=0.02145 <i>30</i> ; α (M)=0.00505 <i>7</i> α (N)=0.001299 <i>18</i> ; α (O)=0.000272 <i>4</i> ; α (P)=3.52×10 ⁻⁵ <i>5</i> Mult.: α (K)exp=0.16 <i>4</i> , and α (L)exp=0.041 <i>7</i> (1990Ba31).

From ENSDF

γ (²⁰⁶Po) (continued)

E _i (level)	\mathbf{J}_i^{π}	E_{γ}^{\dagger}	I_{γ}^{\dagger}	E_f J ²	f Mult.	Comments
6873.0	21	754.5 [‡] 3	100‡	6118.6 20	- D	Mult.: $A_2 = -0.49$ 7, $A_4 = 0.01$ 11 (1990Ba31).
6958.5	22	85.6 [‡] 3	50 [‡] 25	6873.0 21		
		670.0 [‡] 3	100 [‡] 25	6288.5 21	- D	Mult.: $A_2 = -0.29 \ 10, \ A_4 = -0.15 \ 10 \ (1990Ba31).$
6982.8		504.9 [‡] 3	100 [‡]	6477.9	D	Mult.: $A_2 = -0.59 \ 9$, $A_4 = 0.31 \ 14 \ (1990Ba31)$.
7121.4		421.8 [‡] 3	100 [‡]	6699.6 21	D	Mult.: $A_2 = -0.35 6$, $A_4 = 0.07 9$ (1990Ba31).
7137.3		793.6 [‡] 3	100‡	6343.7	D	Mult.: A ₂ =-0.32 6, A ₄ =0.11 10 (1990Ba31).
7158.7	23	200.3 [‡] 3	100 [‡] 8	6958.5 22	D	Mult.: $A_2 = -0.34 4$, $A_4 = -0.08 8$ (1990Ba31).
		402.4 [‡] 3	52 [‡] 20	6756.2 22	_	
7196.9	23	440.6 [‡] 3	100‡	6756.2 22	- D	Mult.: A ₂ =-0.41 8, A ₄ =0.32 19 (1990Ba31).
7267.7		568.2 [‡] 3	100 [‡] 50	6699.6 21		
		979.2 [‡] 3	40 [‡] 5	6288.5 21	-	
7282.0	22	759.9 [‡] 3	100‡	6522.1 21	D	Mult.: $A_2 = -0.05 6$, $A_4 = 0.19 7$ (1990Ba31).
7412.7		1124.2 [‡] 3	100 [‡]	6288.5 21	-	
7473.8		336.5 [‡] <i>3</i>	100 [‡]	7137.3	D	Mult.: $A_2 = -0.28 5$, $A_4 = -0.06 8$ (1990Ba31).
7502.5	(24)	343.8 [‡] <i>3</i>	100‡	7158.7 23	D	Mult.: A ₂ =-0.36 5, A ₄ =0.12 8 (1990Ba31).
7593.8		396.9 [‡] <i>3</i>	100 [‡]	7196.9 23		
7823.3		626.4 [‡] 3	100 [‡]	7196.9 23		
8044.2		541.7 [‡] 3	100 [‡]	7502.5 (24	4)	
8201.3		919.2 [‡] 3	100 [‡]	7282.0 22	D	Mult.: $A_2 = -0.54 \ 8$, $A_4 = 0.16 \ 12 \ (1990Ba31)$.
8218.5		1235.7 [‡] 3	100 [‡]	6982.8	D	Mult.: $A_2 = -0.11 \ I3$, $A_4 = 0.00 \ 22 \ (1990Ba31)$.
8259.2		977.2 [‡] 3	100 [‡]	7282.0 22		
8265.1		983.2 [‡] 3	100 [‡]	7282.0 22	D	Mult.: $A_2 = -0.77 \ 14$, $A_4 = -0.07 \ 24 \ (1990Ba31)$.
8348.9		936.2 [‡] 3	100 [‡]	7412.7	D	Mult.: $A_2 = -0.43 5$, $A_4 = 0.01 7$ (1990Ba31).
8381.9		116.8 [‡] 3	20 [‡] 10	8265.1		
		163.4 [‡] 3	100 [‡] 20	8218.5	D	Mult.: $A_2 = -0.13$ 7, $A_4 = -0.03$ 11 (1990Ba31).
		180.5 [‡] 3	70 [‡] 20	8201.3		
8431.1		607.8 [‡] 3	60 [‡] 10	7823.3		
		837.2 [‡] 3	30 [‡] 20	7593.8		
		928.6 [‡] 3	100 [‡] <i>30</i>	7502.5 (24	4)	
		957.3 [‡] 3	70 ⁷ / ₄ 20	7473.8	D	Mult.: $A_2 = -0.54 \ 15$, $A_4 = -0.33 \ 20 \ (1990Ba31)$.
8627.7		245.8 [‡] 3	1007	8381.9	D	Mult.: $A_2 = -0.35 5$, $A_4 = 0.01 7$ (1990Ba31).
8643.5		212.4 [‡] 3	1007	8431.1	D	Mult.: $A_2 = -0.10 4$, $A_4 = -0.04 6$ (1990Ba31).
8898.3		270.6 [‡] 3	100‡	8627.7	D	Mult.: $A_2 = -0.40 4$, $A_4 = -0.11 7$ (1990Ba31).

14

²⁰⁶₈₄Po₁₂₂-14

γ (²⁰⁶Po) (continued)

E _i (level)	E_{γ}^{\dagger}	I_{γ}^{\dagger}	E_f	Mult.	Comments				
8994.3	350.8 [‡] 2	100 [‡]	8643.5	D	Mult.: $A_2 = -0.21$ 5, $A_4 = 0.15$ 11 (1990Ba31).				
9724.8	730.5 [‡] 3	100 [‡]	8994.3	D	Mult.: $A_2 = -0.09 \ 9$, $A_4 = 0.03 \ 14 \ (1990Ba31)$.				
[†] From ²⁰ [‡] From ¹⁹ [#] From ²⁰ [@] Determi ^{&} Addition	[†] From ²⁰⁶ At $\varepsilon + \beta^+$ decay, unless otherwise stated. [‡] From ¹⁹⁸ Pt(¹³ C,5n γ). [#] From ²⁰⁶ Pb(α ,4n γ), ²⁰⁶ Pb(³ He,3n γ). [@] Determined using the briccmixing code and the α (K)exp and α (L)exp data in ²⁰⁶ At $\varepsilon + \beta^+$ decay. ^{&} Additional information 1.								

^a Multiply placed with undivided intensity.
 ^b Placement of transition in the level scheme is uncertain.

Level Scheme

Intensities: Relative photon branching from each level

Level Scheme (continued)

Intensities: Relative photon branching from each level

²⁰⁶₈₄Po₁₂₂

Level Scheme (continued)

Intensities: Relative photon branching from each level

Legend

Level Scheme (continued)

Intensities: Relative photon branching from each level

 $--- \rightarrow \gamma$ Decay (Uncertain)

 $^{206}_{\ 84} Po_{122}$

Level Scheme (continued)

Intensities: Relative photon branching from each level & Multiply placed: undivided intensity given

²⁰⁶₈₄Po₁₂₂