206 Pb(α ,4n γ), 206 Pb(3 He,3n γ) 1986Ra24

History									
Туре	Author	Citation	Literature Cutoff Date						
Full Evaluation	F. G. Kondev	NDS 201,346 (2025)	21-Jan-2025						

Beam: E=53 MeV (α ,4n γ); E=27 MeV (³He,3n γ); Target: ²⁰⁶Pb (90.4%), ²⁰⁷Pb (6.7%) and ²⁰⁸Pb (2.9%); Detectors: large co-axial Ge(Li) and small planar Ge(Li). Si(Li). Measured: excitation function, $\gamma(\theta)$, $\gamma\gamma(t)$ coin, $\gamma(t)$, $\gamma(\theta)$, Ice, E γ , I γ .

²⁰⁶Po Levels

E(level) [†]	J ^π ‡	T _{1/2}	Comments
0.0	0^+	8.8 d <i>1</i>	T _{1/2} : From Adopted Levels.
700.4 4	2+ 2+		
1102.04	2 · 4+		
1433 8 6	$\frac{1}{4^{+}}$		
1546.1 7	4 ⁺		
1564.2 8	4^{+}		
1572.9 7	6+		Configuration= $\pi(h_{0/2}^{+2})$.
1585.4 8	8+	210 ns <i>10</i>	T _{1/2} : From 1986Ra ²⁴ , deduced from $395\gamma(t)$, $477\gamma(t)$ and $700\gamma(t)$ after taking into account the contribution from the 9 ⁻ (T _{1/2} =1.0 µs <i>I</i>) isomer Others: 160 ns <i>40</i> (1970Ya03). g-factor=+0.919 <i>I3</i> (1973Br14) using the stroboscopic technique. The value was corrected for Knight shift and diamagnetic effect; g-factor=0.916 <i>I3</i> , weighted average of 0.905 <i>I8</i> (deduced using the stroboscopic technique) and 0.926 <i>I8</i> (deduced using the time-difference PAC technique) (1072Na18). Both using corrected for Knight shift and diamagnetic
			effect.
			Configuration= $\pi(h_{0/2}^{+2})$.
2100.2 7	6+		
2199.8 9	8+		Configuration= $\pi(f_{7/2}^{+1},h_{9/2}^{+1})$.
2261.6 9	9-	1.0 µs 1	T _{1/2} : Unweighted average of 0.95 μ s 10 (62 γ (t)) and 1.1 μ s 2 (614 γ (t)) in 1986Ra24.
2302.0.8	5-		I^{π} . Note that $I^{\pi} = 5^{+}$ in the Adopted Levels
2418.2 9	10^{+}		
2422.2 9	9+		
2590.2 [#] 9	10^{+}		
2656.0 9	11^{-}		Configuration= $\pi(h_{\alpha/2}^{+1},i_{13/2}^{+1})$.
2780.1 9	11^{+}		
3067.5 9	11-		
3462.3 10	13-		
3484.9 11	12		J [*] : 13 in Adopted Levels.
3546.2 11	$14 \\ 12^{-}$		
2604 5 [#] 12	15-		
3950.9 12	13-		I^{π} : 14 ⁻ in Adopted Levels.
4075.1 [#] <i>13</i>	16-		
4105.2 [#] 12	15-		
4144.0 ^{#} 12	15^{-}		
4613.8 [#] <i>13</i>	16-		J^{π} : 15 ⁺ in Adopted Levels.
4692.0 [#] 12	15		
4758.0 [#] 13	16		
5149.0 [#] 13	16		

[†] From a least-squares fit to $E\gamma$.

[‡] From 1986Ra24, based on the deduced transition multipolarities using $\alpha(K)\exp$, $\alpha(L)\exp$ and $\gamma(\theta)$.

[#] This level was excluded from the Adopted Levels.

				²⁰⁶ Pb	(α ,4n	γ) , ²⁰⁶ Pb (³ H	e,3n γ)	1986Ra24 (continued)
							<u>γ(²⁰⁶Po)</u>	
E_{γ}^{\dagger}	Ι _γ @	E _i (level)	\mathbf{J}_i^π	E_f	\mathbf{J}_f^{π}	Mult. ^a	Iγ ^{&}	Comments
12.5 <i>1</i>		1585.4	8+	1572.9	6+	[E2]		E_{γ} : From adopted gammas, based on γ -rays energy difference in ¹⁹⁸ Pt(¹³ C 5n γ) in 1990Ba31
61.8 5	26 4	2261.6	9-	2199.8	8+	E1	4.3 2	Mult.: From γ -ray intensity balance in the out-of-beam data
85.9 5	8 1	3548.2	14-	3462.3	13-	M1		Mult.: From γ -ray intensity balance in the out-of-beam data
146.3 5	2.4 3	3694.5	15-	3548.2	14-	M1		Mult.: $A_2 = -0.27$ 3, $A_4 = -0.11$ 3; γ -ray intensity balance in the out-of-beam data.
168.0 5	2.2 2	2590.2	10+	2422.2	9+	(M1)		Mult.: $A_2 = -0.26 \ 3$, $A_4 = -0.05 \ 3$; absence of measurable lifetime.
189.9 5	2.0 2	2780.1	11+	2590.2	10^{+}	(M1)		Mult.: $A_2 = -0.33 \ 3$, $A_4 = -0.03 \ 3$; absence of measurable lifetime.
237.8 5	17 2	2656.0	11-	2418.2	10+	E1	2.7 3	Mult.: $A_2 = -0.23 I$, $A_4 = 0.01 2$; $A_2 = -0.25 8$, $A_4 = 0.08 I3 (^{206}\text{Pb}(^{3}\text{He},3n\gamma))$; $\alpha(\text{K})\exp=0.05 (^{206}\text{Pb}(\alpha,4n\gamma))$; γ -ray intensity balance in the out of beam data
256.4 [‡] 5		1433.8	4+	1177.4	4+	E2	2.6 3	Mult.: $A_2 = 0.27 2$, $A_4 = 0.02 3 (^{206}\text{Pb}(^3\text{He},3n\gamma))$;
362.0 5	1.8 2	2780.1	11+	2418.2	10+	M1(+E2)		α (K)exp=0.10 3 (²⁰⁰ Pb(³ He,5n\gamma)). Mult.: A ₂ =-0.59 5, A ₄ =0.09 7 α (K)exp=0.48 (²⁰⁶ Pb(α ,4n γ)).
380.6 [#] 5	3.9 5	4075.1	16-	3694.5	15-	M1(+E2)		Mult.: A ₂ =-0.40 3, A ₄ =0.10 4; α (K)exp=0.221 (²⁰⁶ Pb(α ,4n γ)).
384.1 [‡] 5		1546.1	4+	1162.0	2^{+}	E2	1.0 5	Mult.: A ₂ =0.21 8, A ₄ =0.05 10 (206 Pb(3 He,3n γ));
386.8 [‡] 5		1564.2	4+	1177.4	4+	M1(+E2)	3.4 5	Mult.: A ₂ =0.15 4, A ₄ =0.11 6 (206 Pb(3 He,3n γ)); α (K)exp=0.20 4 (206 Pb(3 He 3n γ))
394.8 5	33 4	3462.3	13-	3067.5	11-	(E2)	4 2	Mult.: $\alpha(K)\exp=0.003$ (²⁰⁶ Pb(α ,4n γ)) and 0.039 3 (²⁰⁶ Pb(³ He,3n γ)). Note, that the 394.8 + 395.5 doublet has an average $\alpha(K)\exp$ that agrees with E2.
395.5 5	94 5	1572.9	6+	1177.4	4+	E2	40 2	Mult.: A ₂ =0.17 <i>1</i> , A ₄ =-0.03 <i>2</i> ; A ₂ =0.21 <i>1</i> , A ₄ =0.01 20 (206 Pb(3 He,3n\gamma)); α (K)exp=0.033 (206 Pb(α ,4n\gamma)) and 0.39 <i>3</i> (206 Pb(3 He,3n\gamma)). Note that the 394.8 + 395.5 doublet has an average α (K)exp that agrees with E2.
457.0 [#] 5	5.3 8	5149.0	16	4692.0	15	M1		Mult.: A ₂ =-0.28 2, A ₄ =0.08 2; α (K)exp=0.154 (²⁰⁶ Pb(α ,4n γ)).
461.6 [‡] 5		1162.0	2+	700.4	2+	M1	0.8 2	Mult.: A ₂ =0.24 2, A ₄ =-0.12 2 (206 Pb(3 He,3n γ)); α (K)exp=0.13 L (206 Pb(3 He,3n γ))
466.0 5	2.5 4	3950.9	13-	3484.9	12-	M1(+E2)		Mult.: $A_2 = -0.43 \ 4$, $A_4 = 0.11 \ 5$; $\alpha(K) \exp = 0.15 \ (^{206}Pb(\alpha, 4n\gamma))$.
469.8 [#] 5	1.6 4	4613.8	16-	4144.0	15-	M1		Mult.: $A_2 = -0.19 5$, $A_4 = 0.15 7$; $\alpha(K) \exp = 0.14 ({}^{206}Pb(\alpha, 4n\gamma))$.
477.1 5	98 2	1177.4	4+	700.4	2+	E2	73 3	Mult.: A ₂ =0.10 2, A ₄ =0.00 2; A ₂ =0.18 2, A ₄ =0.02 2 (206 Pb(3 He,3n\gamma)); α (K)exp=0.027 (206 Pb(α ,4n γ)) and 0.13 1 (206 Pb(3 He,3n γ)).
527.4 [‡] 5		2100.2	6+	1572.9	6+	M1	1.4 3	Mult.: $\alpha(K)\exp=0.09 l ({}^{206}Pb({}^{3}He,3n\gamma)).$
557.0 [#] 5	2.8 5	4105.2	15-	3548.2	14-	M1(+E2)		Mult.: A ₂ =-0.07 3, A ₄ =0.18 4; α (K)exp=0.085 (²⁰⁶ Pb(α ,4n γ)).
595.8 [#] 5	6.2 8	4144.0	15-	3548.2	14-	M1(+E2)		Mult.: A ₂ =-0.52 2, A ₄ =0.05 2; α (K)exp=0.094 (²⁰⁶ Pb(α ,4n γ)).
614.4 5	37 2	2199.8	8+	1585.4	8+	M1(+E2)	9.2 5	Mult.: A ₂ =0.08 <i>1</i> , A ₄ =0.02 <i>2</i> ; A ₂ =0.19 <i>2</i> , A ₄ =0.02 <i>3</i>

Continued on next page (footnotes at end of table)

200 Pb(α ,4n γ), 200 Pb(3 He,3n γ) 1986Ra24 (continued)									
γ (²⁰⁶ Po) (continued)									
E_{γ}	I_{γ}	E_i (level)	J_i^n	E_f	\mathbf{J}_{f}^{π}	Mult."	Ιγα	Comments	
676 2 5	5 1	2261.6	0-	1505 /	o +	(E1)	122	$\binom{206}{Pb}(^{3}He,3n\gamma); \alpha(K)exp=0.057$ $\binom{206}{Pb}(\alpha,4n\gamma)$ and 0.060 4 $\binom{206}{Pb}(^{3}He,3n\gamma)$.	
700.3.5	100	2201.0	9 2+	1365.4	0 0+	(E1) F2	1.2.5	Mult: $A_2 = -0.08 I$, $A_4 = 0.10 2$, Mult: $A_2 = -0.11 I$, $A_4 = -0.00 2$	
700.55	100	1422.9	2 4+	700.4	0 2+	E2	67.2	$\mathbf{M}_{1} = \mathbf{M}_{2} = 0.00 \ I \ \mathbf{M}_{2} = 0.00 \ I \ \mathbf{M}_{2} = 0.00 \ I \ \mathbf{M}_{2} = 0.00 \ \mathbf{M}_$	
155.4* 5		1455.8	4	700.4	2	E2	0.7 5	Note, that the A ₂ value is inconsistent with the proposed multipolarity; $\alpha(K)\exp=0.017\ 2\ (^{206}Pb(^{3}He,3n\gamma))$.	
805.9 5	38 2	3067.5	11-	2261.6	9-	E2	4 1	Mult.: A ₂ =0.31 2, A ₄ =0.08 2 α (K)exp=0.010 (²⁰⁶ Pb(α ,4n γ)). Note, that the 805.9 + 806.3 doublet has an average α (K)exp that agrees with E2.	
806.3 5	6 1	3462.3	13-	2656.0	11-	(E2)		Mult.: $\alpha(K)\exp=0.010 \ (^{206}Pb(\alpha,4n\gamma))$. Note that the 805.9 + 806.3 doublet has an average $\alpha(K)\exp$ that agrees with E2.	
828.9 5	4.9 8	3484.9	12^{-}	2656.0	11-	M1(+E2)	0.2 1	Mult.: A ₂ \approx 0; α (K)exp=0.027 (²⁰⁶ Pb(α ,4n γ)).	
832.8 5	23 2	2418.2	10+	1585.4	8+	E2	5.0 5	Mult.: A ₂ =0.31 3, A ₄ =-0.07 4; A ₂ =0.54 12, A ₄ =-0.05 15 (²⁰⁶ Pb(³ He,3n\gamma)); α (K)exp=0.010 (²⁰⁶ Pb(α ,4n γ)) and 0.011 4 (²⁰⁶ Pb(³ He,3n γ)).	
836.8 5	10 1	2422.2	9+	1585.4	8+	M1	5.0 5	Mult.: $A_2 = -0.33 5$, $A_4 = 0.50 7$; α (K)exp=0.029 (206 Pb(α ,4n γ)) and 0.023 5 (206 Pb(3 He,3n γ)).	
868.2 [‡] 5		2302.0	5-	1433.8	4+	E1	3.2 3	Mult.: A ₂ = -0.10 5, A ₄ = 0.11 8 (²⁰⁶ Pb(³ He,3n γ)); α (K)exp< 0.005 (²⁰⁶ Pb(α ,4n γ)).	
901.6 5	1.5 3	3557.6	12-	2656.0	11-	M1	9.2 5	Mult.: A ₂ =-0.22 5, A ₄ =0.64 7; α (K)exp=0.04 (²⁰⁶ Pb(α ,4n γ)).	
922.7 [‡] 5		2100.2	6+	1177.4	4+	E2	3.3 <i>3</i>	Mult.: A ₂ =0.25 6, A ₄ = -0.12 9 (²⁰⁶ Pb(³ He,3n γ));	
1063.5 [#] 5	3.9 5	4758.0	16	3694.5	15-	D		Mult.: $A_2 = -0.35 5$, $A_4 = -0.07 4$.	
1143.8 [#] 5	4.2 5	4692.0	15	3548.2	14^{-}	D		Mult.: A ₂ =-0.31 3, A ₄ =0.08 4.	
1162.1 [‡] 5		1162.0	2^{+}	0.0	0^+	E2	0.8 2	Mult.: $A_2=0.20$ 7, $A_4=-0.13$ 10 (²⁰⁶ Pb(³ He, 3n\gamma)).	

206 206

[†] From 1986Ra24. $\Delta E\gamma$ =0.5 keV was assigned by the evaluator.

[‡] Seen only in 206 Pb(3 He,3n γ).

[#] Different placement in the Adopted Levels, gammas. [@] From 206 Pb(α ,4n γ) experiment at 53 MeV in 1986Ra24.

& From ${}^{206}Pb({}^{3}He,3n\gamma)$ experiment at 27 MeV in 1986Ra24.

^{*a*} Deduced from $\alpha(K)$ exp and $\gamma(\theta)$ data (1986Ra24). The $\alpha(K)$ exp are normalized to $\alpha(K)$ (700.3 γ)=0.0114 E2 (theory) value. The A₂ and A₄ values given in the comments section are from the ²⁰⁶Pb(α ,4n γ) data set, unless otherwise stated.

 $^{206}_{\ 84} Po_{122}$

4