204 Pb(16 O, 14 C γ) 2023Ka31

History									
Туре	Author	Citation	Literature Cutoff Date						
Full Evaluation	F. G. Kondev	NDS 201,346 (2025)	21-Jan-2025						

2023Ka31,2024Ko23: ²⁰⁶Po was produced in the ²⁰⁴Pb(¹⁶O,¹⁴C) reaction with E(¹⁶O)=84 MeV; Target: 0.6 mg/cm² ²⁰⁴Pb evaporated on a 0.3 mg/cm² natural V foil. Level lifetimes were measured by the Cologne plunger and the Recoil-Distance-Doppler-Shift (RDDS) technique. γ rays were detected by eleven HPGe detectors placed in two rings at 45° and 142°. Recoiling beam-like ions were detected by six photovoltaic pin diodes placed at backward angles and covering angles between 120° and 165°.

²⁰⁶Po Levels

E(level) [†]	$J^{\pi \ddagger}$	T _{1/2}	Comments		
0	0^{+}				
701.70 20	2+	4.3 ps 7	T _{1/2} : From τ =6.2 ps 0.5 (stat) 0.9 (syst) using RDDS and by taking into account the feedings from the high-lying 2 ⁺ ₂ , 4 ⁺ ₁ and 4 ⁺ ₂ states in 2024Ko23. Other: 4.8 ps +13–11 in 2023Ka31 using RDDS and by taking into account the feeding from the high-lying 4 ⁺ ₁ and 4 ⁺ ₂ states.		
1163.2 8	2+				
1178.85 23	4+	58.6 ps +54-50	$T_{1/2}$: From 2023Ka31 by taking into account the feeding from the high-lying 4^+_2 and 6^+_1 states (2023Ka31).		
1435.35 24	4+	<3.5 ps	T _{1/2} : From 2023Ka31.		
1574.45 25	6+	1.5 ns 4	$T_{1/2}$: From 2023Ka31. Value corresponds to the effective level half-life, since the side-feeding components were not taken into account.		
1585.96 9	8+		Additional information 1. E(level): Erom Adopted Levels		
2200.36 <i>5</i> 2418.96 <i>10</i>	8 ⁺ 10 ⁺				

[†] From a least-squares fit to $E\gamma$ unless otherwise stated.

[‡] From Adopted Levels.

E_{γ}^{\dagger}	I_{γ}^{\dagger}	E_i (level)	\mathbf{J}_i^{π}	E_f	\mathbf{J}_f^{π}
256.53 [‡] 8 395.6 <i>1</i>	<2 23.8 <i>3</i>	1435.35 1574.45	$4^+_{6^+}$	1178.85 1178.85	4+ 4+
461.5 [‡] 7 477.2 <i>1</i>	58.2 4	1163.2 1178.85	2^+ 4^+	701.70 701.70	2^+ 2^+
614.40 [‡] 5 701.7 2 733 2 3	2.8 5 100.0 8	2200.36 701.70	8^+ 2^+ 4^+	1585.96 0 701.70	
833.0 [‡] 1	1.8 4	2418.96	4 ⁺ 10 ⁺	1585.96	2+ 8+

[†] From 2023Ka31, unless otherwise stated. Accurate energies and their uncertainties were provided to the evaluator by the first author (V. Karayonchev/April 7, 2024).

[‡] From adopted gammas.

 $\gamma(^{206}\text{Po})$

