¹⁹⁸Pt(13 C,5n γ) **1990Ba31**

		History	
Туре	Author	Citation	Literature Cutoff Date
Full Evaluation	F. G. Kondev	NDS 201,346 (2025)	21-Jan-2025

1990Ba31: Beam: ¹³C, E=78 MeV; Target: 95.8% enriched ¹⁹⁸Pt; Detectors: Compton-suppressed germanium spectrometer, hyper-pure germanium detectors, Ge(Li), and Si(Li) for detecting conversion electrons; Measured: E γ , I γ , $\gamma(t)$, $\gamma\gamma(t)$, $\gamma(\theta)$, Ice, excitation functions.

²⁰⁶ Po	Levels
-------------------	--------

E(level) [†]	$J^{\pi \ddagger}$	T _{1/2}	Comments
0.0	0^{+}	8.8 d 1	$T_{1/2}$: From Adopted Levels.
700.60 10	2+		
1177.60 14	4+		
1434.10 22	4+		
1573.09 17	6+		
1585.6 4	8+	232 ns 4	$T_{1/2}$: Weighted average of four independent $\gamma\gamma(\Delta t)$ measurements using gates on transitions below and above the isomer (1990Ba31).
2200.2 4	8+		
2262.0 4	9-	1.05 µs 6	$T_{1/2}$: Weighted average of four independent $\gamma\gamma(t)$ measurements using gates on transitions below and above the isomer (1990Ba31).
2418.6 4	10^{+}		
2422.9 4	9+		
2432.2 4			
2612.8 4	10^{+}		
2656.2 4	11-	0.5 ns 1	$T_{1/2}$: From 237.6 γ (t) in 1990Ba31. The time dispersion was 0.2 ns/channel.
2780.8 4	11+		
2901.7 4	12^{+}		
3067.9 4	11-		
3210.2 4	12^{+}		
3462.8 4	13-		
3485.6 4	13-		
3548.9 <i>4</i>	14-		
3558.0 5	$12^{(-)}$		
3567.1 5	15-		
3704.2 4			
3951.6 4	14		
4163.0 5	16-		
4230.3 5			
4483.4 4	13		
4494.2 6	13		
4569.0 4	14+		
4613.0 4	15+		
4632.6 5	17-		
4652.0 5	16'		
4685.7 5	17'		
4/11.6.5	16'		
4/44.0 5	1/ 10+		
4831.9 5	18'		
5168.7 5	1/'		
5212.6 5	19'		
5554.4 5	18		
JJ11.4 J 5196 2 6	10		
J480.3 0	10+		
JJ15.9 J	19.		
5025 1 5	20 10 ⁻		
J7JJ.I J	19		

198 **Pt**(13 **C,5n** γ) 1990Ba31 (continued)

²⁰⁶Po Levels (continued)

E(level) [†]	Jπ‡	T _{1/2}	Comments
6009.7 6	20		
6019.6 6			
6050.6 6			
6118.3 5	20^{-}		
6288.2 5	21-		
6343.5 6			
6477.7 6			
6521.8 6	21		
6699.3 6	21		
6756.0 6	22-		
6872.7 6	21		
6958.2 6	22		
6982.5 7			
7121.1 6			
7137.1 6			
7158.4 6	23		
7196.6 6	23		
7267.5 6			
7281.7 7	22		
7412.4 6			
7473.5 6	24		
7502.2.6	24		
/593.6.0			
/823.0 0			
8043.9 /			
8201.0 /			
0210.2 /			
0230.97 9264.07			
834867			
838167			
8/30.8.6			
8627 4 7			
8643 2 7		10 ns 3	$T_{1/2}$: From 212 4 $\nu(t)$ in 1990Ba31. The time dispersion was 0.2 ns/channel
8898 0 8		1.0 115 J	$r_{1/2}$, rion 212, $r_{1/2}$ in 1990ba31. The time dispersion was 0.2 hybridiner.
8994 0 7			
9724.5 8			

 † From a least-squares fit to Ey. ‡ From 1990Ba31, based on deduced transition multipolarities.

							γ(²⁰⁶ Po)	
E_{γ}^{\dagger}	I_{γ}^{\dagger}	E_i (level)	J_i^{π}	E_{f}	\mathbf{J}_{f}^{π}	Mult. [#]	α [@]	Comments
(12.5 1)		1585.6	8+	1573.09	6+			E_{γ} : From 627.1 γ – 614.6 γ γ -ray energy difference.
(18.2 [‡] 4)		3567.1	15^{-}	3548.9	14^{-}			E_{γ} : From 1064.1 γ – 1045.9 γ γ -ray energy difference.
33.7 <i>3</i>	0.10 2	4685.7	17+	4652.0	16+	M1	51.0 15	$\alpha(L)=38.9\ 12;\ \alpha(M)=9.19\ 28$ $\alpha(N)=2.37\ 7;\ \alpha(O)=0.495\ 15;\ \alpha(P)=0.0639\ 19$ Mult.: $\alpha(exp)=50\ 8$.
39.0 <i>3</i>	0.09 2	4652.0	16+	4613.0	15+	M1	33.1 9	$\alpha(L)=25.3$ 7; $\alpha(M)=5.97$ 16 $\alpha(N)=1.54$ 4; $\alpha(O)=0.322$ 9; $\alpha(P)=0.0415$ 11 Mult.: $\alpha(exp)=49$ 7.
^x 43.1 3								
44.0 <i>3</i>	0.08 2	4613.0	15+	4569.0	14+	M1	23.2 6	α (L)=17.7 4; α (M)=4.18 10

γ ⁽²⁰⁶Po) (continued)</sup>

E_{γ}^{\dagger}	I_{γ}^{\dagger}	E _i (level)	\mathbf{J}_i^{π}	E_f	\mathbf{J}_f^{π}	Mult. [#]	α [@]	Comments
61.8 <i>I</i>	45 2	2262.0	9-	2200.2	8+	E1	0.355 5	$\begin{aligned} \alpha(N) &= 1.077 \ 27; \ \alpha(O) &= 0.225 \ 6; \ \alpha(P) &= 0.0291 \ 7 \\ \text{Mult.:} \ \alpha(\exp) &= 37 \ 6. \\ \alpha(L) &= 0.270 \ 4; \ \alpha(M) &= 0.0648 \ 10 \\ \alpha(N) &= 0.01630 \ 24; \ \alpha(O) &= 0.00316 \ 5; \\ \alpha(P) &= 0.000328 \ 5 \end{aligned}$
63.3 <i>3</i>	0.7 5	3548.9	14-	3485.6	13-	[M1]	7.98 16	Mult.: $\alpha(\exp)=0.066\ 26.$ $\alpha(L)=6.09\ 12;\ \alpha(M)=1.438\ 28$ $\alpha(N)=0.370\ 7;\ \alpha(O)=0.0775\ 15;\ \alpha(P)=0.01001\ 20$
85.6 <i>3</i>	21	6958.2	22	6872.7	21			
85.8 <i>3</i> 86.0 <i>1</i>	0.8 4 16.0 5	4569.0 3548.9	14 ⁺ 14 ⁻	4483.4 3462.8	13 13 ⁻	M1	3.27 5	α (L)=2.49 4; α (M)=0.588 8 α (N)=0.1515 22; α (O)=0.0317 5; α (P)=0.00409 6 Mult.: α (exp)=3.0 3.
115.5 <i>3</i> 116.8 <i>3</i> ×119.5 <i>3</i>	0.5 <i>1</i> 0.2 <i>1</i>	6050.6 8381.6		5935.1 8264.9	19-			
120.8 3	0.6 1	2901.7	12+	2780.8	11+	M1	6.48 10	α (K)=5.25 8; α (L)=0.933 15; α (M)=0.2203 35 α (N)=0.0567 9; α (O)=0.01187 19; α (P)=0.001533 24 Mult.: α (exp)=6.0 11.
^x 136.8 3 138.9 3	0.9 <i>1</i> 1.0 <i>1</i>	1573.09	6+	1434.10	4+	E2	1.850 <i>30</i>	α (K)=0.340 5; α (L)=1.119 19; α (M)=0.298 5 α (N)=0.0764 13; α (O)=0.01459 25; α (P)=0.001330 23
146.2 2	5.2 2	4831.9	18+	4685.7	17+	M1	3.76 5	Mult.: $\alpha(\exp)=2.4$ 6. $\alpha(K)=3.05$ 4; $\alpha(L)=0.540$ 8; $\alpha(M)=0.1275$ 19 $\alpha(N)=0.0328$ 5; $\alpha(O)=0.00687$ 10; $\alpha(P)=0.000887$ 13
163.4 <i>3</i> 165.6 <i>3</i>	1.0 2 2.2 2	8381.6 5334.4	18+	8218.2 5168.7	17+	D M1(+E2)	1.8 9	Mult.: $\alpha(\exp)=3.5 \ 3.$ Mult.: $A_2=-0.13 \ 7, \ A_4=-0.03 \ 11.$ $\alpha(K)=1.2 \ 9; \ \alpha(L)=0.45 \ 7; \ \alpha(M)=0.113 \ 23$ $\alpha(N)=0.029 \ 6; \ \alpha(O)=0.0057 \ 9; \ \alpha(P)=0.000620 \ 10$
167.9 <i>3</i>	3.2 3	2780.8	11+	2612.8	10+	M1	2.54 4	Mult.: $\alpha(\exp)=2.0 \ 5.$ $\alpha(K)=2.064 \ 31; \ \alpha(L)=0.364 \ 5; \ \alpha(M)=0.0860 \ 13$ $\alpha(N)=0.02214 \ 33; \ \alpha(O)=0.00463 \ 7;$ $\alpha(P)=0.000599 \ 9$
169.8 2	5.1 5	6288.2	21-	6118.3	20-	M1	2.463 <i>35</i>	Mult.: $\alpha(\exp)=2.6 \ 5.$ $\alpha(K)=2.000 \ 29; \ \alpha(L)=0.353 \ 5; \ \alpha(M)=0.0833 \ 12$ $\alpha(N)=0.02144 \ 31; \ \alpha(O)=0.00449 \ 6;$ $\alpha(P)=0.000580 \ 8$ Mult.: $\alpha(\exp)=2.9 \ 5.$
170.2 <i>3</i> 179.5 <i>3</i>	0.8 2 1.9 2	2432.2 5513.9	19+	2262.0 5334.4	9 ⁻ 18 ⁺	M1	2.106 <i>31</i>	$\alpha(K)=1.710\ 25;\ \alpha(L)=0.302\ 4;\ \alpha(M)=0.0712\ 11$ $\alpha(N)=0.01832\ 27;\ \alpha(O)=0.00383\ 6;$ $\alpha(P)=0.000495\ 7$ Mult: $\alpha(exp)=2.8\ 4$
180.5 <i>3</i> 183.2 <i>2</i>	0.7 2 8.0 5	8381.6 6118.3	20-	8201.0 5935.1	19-	M1	1.988 28	$\alpha(K)=1.615 \ 23; \ \alpha(L)=0.285 \ 4; \ \alpha(M)=0.0672 \ 10$ $\alpha(N)=0.01729 \ 25; \ \alpha(O)=0.00362 \ 5;$ $\alpha(P)=0.000468 \ 7$
189.8 <i>3</i>	2.3 3	2612.8	10+	2422.9	9+	M1	1.800 26	Mult.: $\alpha(\exp)=2.4 \ 3.$ $\alpha(K)=1.462 \ 21; \ \alpha(L)=0.258 \ 4; \ \alpha(M)=0.0608 \ 9$ $\alpha(N)=0.01565 \ 23; \ \alpha(O)=0.00327 \ 5; \ \alpha(P)=0.000423 \ 6$
^x 195.0 3	0.6 1							Muit.: $\alpha(\exp)=2.9 \ 10.$

198 **Pt**(13 **C,5**n γ) 1990Ba31 (continued) γ ⁽²⁰⁶Po) (continued) α[@] E_{γ}^{\dagger} I_{γ}^{\dagger} Mult.# E_i(level) J_i^{π} J_f^{π} Comments \mathbf{E}_{f} x196.7 3 1.9 2 200.3 3 2.5 2 7158.4 23 6958.2 22 D Mult.: $A_2 = -0.34 4$, $A_4 = -0.08 8$. x203.3 3 1.1 2 212.4 3 4.5 2 8643.2 8430.8 D Mult.: A₂=-0.10 4, A₄=-0.04 6. x215.0 3 1.6 2 2656.2 1.3 2 11-2432.2 224.1 3 237.6 1 18.6 4 2656.2 2418.6 10^{+} E1 0.0541 8 $\alpha(K)=0.0439$ 6; $\alpha(L)=0.00782$ 11; $\alpha(M)=0.001844$ 11^{-} 26 α (N)=0.000470 7; α (O)=9.56×10⁻⁵ 13; $\alpha(P)=1.137\times10^{-5}$ 16 Mult.: $\alpha(\exp)=0.21 \ 11, \ \alpha(L)\exp<0.028,$ α (M)exp<0.014. 245.8 3 2.2 2 8627.4 8381.6 D Mult.: A₂=-0.35 5, A₄=0.01 7. 12^{+} 0.0469 7 α(K)=0.0381 5; α(L)=0.00673 10; α(M)=0.001585 252.5 3 1.5 2 3462.8 13^{-} 3210.2 E1 23 α (N)=0.000404 6; α (O)=8.23×10⁻⁵ 12; $\alpha(P)=9.84\times10^{-6}$ 14 Mult.: $\alpha(\exp) < 0.3$. A₂=-0.53 6, A₄=-0.35 9. 4+ Mult.: A₂=-0.17 5, A₄=-0.04 7. 256.4 3 1.7 2 1434.10 1177.60 4+ D x267.7 3 1.4 2 270.6 3 2.2 2 8898.0 8627.4 D Mult.: A₂=-0.40 4, A₄=-0.11 7. 292.9 3 1.5 3 6343.5 6050.6 x300.6 3 1.0 5 317.63 2.3 1 5486.3 5168.7 17^{+} x326.5 3 1.2 1 336.5 3 2.0 27473.5 7137.1 D Mult.: A₂=-0.28 5, A₄=-0.06 8. 343.8 3 2.5 3 7502.2 7158.4 23 D Mult.: A₂=-0.36 5, A₄=0.12 8. 24 x344.2 3 0.347 5 $\alpha(K)=0.283$ 4; $\alpha(L)=0.0493$ 7; $\alpha(M)=0.01161$ 16 1.3 5 (M1) α (N)=0.00299 4; α (O)=0.000625 9; $\alpha(P) = 8.08 \times 10^{-5} 11$ Mult.: $\alpha(K) \exp = 0.65 \ 8$. 350.8 2 7.1 3 8994.0 8643.2 D Mult.: A₂=-0.21 5, A₄=0.15 11. 362.1 3 2.6 3 2780.8 11^{+} 2418.6 10^{+} M1 0.303 4 α(K)=0.2465 35; α(L)=0.0429 6; α(M)=0.01011 14 $\alpha(N)=0.00260$ 4; $\alpha(O)=0.000544$ 8; $\alpha(P)=7.04\times10^{-5}$ 10 Mult.: $\alpha(K) \exp = 0.28$ 6. $\alpha(K)=0.2155 \ 30; \ \alpha(L)=0.0375 \ 5; \ \alpha(M)=0.00882 \ 12$ 380.6 1 12.9 5 5212.6 19^{+} 4831.9 18^{+} M1 0.265 4 α (N)=0.002271 32; α (O)=0.000475 7; $\alpha(P)=6.15\times10^{-5}$ 9 Mult.: $\alpha(K) \exp = 0.27 \ l, \ \alpha(L) \exp = 0.040 \ 5.$ x384.0.3 0.8 2 48 2 $\alpha(K)=0.0364$ 5; $\alpha(L)=0.01621$ 23; $\alpha(M)=0.00414$ 6 395.0 1 3462.8 13-3067.9 11 E2 0.0581 8 α (N)=0.001063 15; α (O)=0.0002098 29; $\alpha(P)=2.203\times10^{-5}$ 31 Mult.: α (K)exp=0.0413 14, α (L)exp=0.0165 11. 395.5 1 94 2 1573.09 6^{+} 1177.60 4+ E2 0.0579 8 $\alpha(K)=0.0363$ 5; $\alpha(L)=0.01614$ 23; $\alpha(M)=0.00412$ 6 *α*(N)=0.001058 *15*; *α*(O)=0.0002089 *29*; $\alpha(P)=2.193\times10^{-5}$ 31 Mult.: $\alpha(K)\exp=0.0381$ 14, $\alpha(L)\exp=0.0165$ 10, and $\alpha(M) \exp = 0.0076 4$. 396.9 3 0.3 2 7593.6 7196.6 23 $402.4 \ 3$ 1.3 5 22^{-} 7158.4 23 6756.0 ^x416.3 3 1.4 2 421.8 3 1.93 7121.1 6699.3 21 D Mult.: A₂=-0.35 6, A₄=0.07 9.

γ ⁽²⁰⁶Po) (continued)</sup>

E_{γ}^{\dagger}	I_{γ}^{\dagger}	E _i (level)	\mathbf{J}_i^{π}	E_f	\mathbf{J}_{f}^{π}	Mult. [#]	α@	Comments
x422.6 <i>3</i> 429.3 <i>3</i>	1.0 <i>3</i> 3.8 <i>4</i>	3210.2	12+	2780.8	11+	M1	0.1914 27	$\alpha(K)=0.1560\ 22;\ \alpha(L)=0.0270\ 4;\ \alpha(M)=0.00636$
440.6 <i>3</i> 457.0 2	3.5 5 8.5 5	7196.6 5168.7	23 17 ⁺	6756.0 4711.6	22 ⁻ 16 ⁺	D M1	0.1619 <i>23</i>	α(N)=0.001638 23; α(O)=0.000343 5; α(P)=4.43×10-5 6 Mult.: α(K)exp=0.175 13, α(L)exp=0.072 11. Mult.: A2=-0.41 8, A4=0.32 19. α(K)=0.1320 19; α(L)=0.02283 32; α(M)=0.00537 8 α(N)=0.001383 19; α(O)=0.000290 4; α(P)=3.75×10-5 5 Mult.: α(K)exp=0.176 9.
^x 457.2 3	1.7 7	2051 6		2405 6	10-	P		
466.0 2 467.7 2	4.7 5 7 1	3951.6 6756.0	14 22 ⁻	3485.6 6288.2	13 ⁻ 21 ⁻	D M1	0.1522 21	Mult.: $A_2 = -0.26$ 3, $A_4 = -0.10$ 5. $\alpha(K) = 0.1241$ 17; $\alpha(L) = 0.02145$ 30; $\alpha(M) = 0.00505$ 7 $\alpha(N) = 0.001299$ 18; $\alpha(O) = 0.000272$ 4; $\alpha(P) = 3.52 \times 10^{-5}$ 5 Multer of Comp. 0.16 4, and $\alpha(L)$ and $\alpha(D) = 0.041$ 7
169 0 2	275	6177 7		6000 7	20			Mult.: $\alpha(\mathbf{K})\exp=0.164$, and $\alpha(\mathbf{L})\exp=0.0417$.
469.6 2	6.3 6	4632.6	17-	4163.0	20 16 ⁻	M1	0.1506 21	$\alpha(K)=0.1228 \ 17; \ \alpha(L)=0.02122 \ 30; \ \alpha(M)=0.00499 \ 7 \ \alpha(N)=0.001285 \ 18; \ \alpha(O)=0.000269 \ 4; \ \alpha(P)=3.48 \times 10^{-5} \ 5$
477.0 <i>1</i>	98.4 <i>4</i>	1177.60	4+	700.60	2+	E2	0.0360 5	Mult.: $\alpha(K) \exp[=0.19 \ 4, \ \alpha(L) \exp[=0.049 \ 9].$ $\alpha(K) = 0.02442 \ 34; \ \alpha(L) = 0.00868 \ 12;$ $\alpha(M) = 0.000562 \ 8; \ \alpha(O) = 0.0001119 \ 16;$ $\alpha(P) = 1.217 \times 10^{-5} \ 17$ Mult.: $\alpha(K) \exp[=0.032 \ 2, \ \alpha(L) \exp[=0.0101 \ 6, \ and \ \alpha(M) \exp[=0.0027 \ 2].$
481.3 <i>3</i>	1.1 2	4711.6	16^{+}	4230.3				
495.8 2 504.9 3 x510.5 3	5.4 <i>3</i> 1.4 <i>3</i> 1.7 <i>2</i>	6009.7 6982.5	20	5513.9 6477.7	19+	D D		Mult.: $A_2 = -0.42$ 3, $A_4 = 0.07$ 4. Mult.: $A_2 = -0.59$ 9, $A_4 = 0.31$ 14.
522.5 <i>3</i>	0.9 2	4685.7	17^{+}	4163.0	16-			
526.2 <i>3</i> 541.7 <i>3</i> ×544 5 3	1.1 2 0.5 <i>1</i> 3 <i>1</i>	4230.3 8043.9		3704.2 7502.2	24	D		Mult.: A ₂ =0.00 3, A ₄ =0.02 5.
557.7 1	11.0 5	5935.1	19-	5377.4	18-	M1	0.0954 13	$\begin{aligned} &\alpha(\text{K}) = 0.0779 \ 11; \ \alpha(\text{L}) = 0.01339 \ 19; \\ &\alpha(\text{M}) = 0.00315 \ 4 \\ &\alpha(\text{N}) = 0.00811 \ 11; \ \alpha(\text{O}) = 0.0001697 \ 24; \\ &\alpha(\text{P}) = 2.196 \times 10^{-5} \ 31 \\ &\text{Mult.:} \ \alpha(\text{K}) \text{exp} = 0.083 \ 5, \ \alpha(\text{L}) \text{exp} < 0.039. \end{aligned}$
x558.1 3 561.1 3	1.1 3	3462.8	13-	2901.7	12+	E1	0.00812 11	$\alpha(K)=0.00669 \ 9; \ \alpha(L)=0.001088 \ 15; \alpha(M)=0.000254 \ 4 \alpha(N)=6.50\times10^{-5} \ 9; \ \alpha(O)=1.343\times10^{-5} \ 19; \alpha(P)=1.678\times10^{-6} \ 24 $
568.2 <i>3</i> 581.0 <i>3</i> 581.1 <i>3</i>	2 <i>1</i> 2.6 5 2.7 5	7267.5 6699.3 4744.0	21 17 ⁻	6699.3 6118.3 4163.0	21 20 ⁻ 16 ⁻	D M1	0.0856 12	Mult.: $A_2 = -0.30$ 11, $A_4 = -0.20$ 20. Mult.: $A_2 = -0.19$ 1, $A_4 = -0.02$ 2. $\alpha(K) = 0.0699$ 10; $\alpha(L) = 0.01200$ 17; $\alpha(M) = 0.00282$ 4 $\alpha(N) = 0.000726$ 10; $\alpha(O) = 0.0001521$ 21;

γ ⁽²⁰⁶Po) (continued)</sup>

E_{γ}^{\dagger}	I_{γ}^{\dagger}	E_i (level)	\mathbf{J}_i^{π}	E_f	\mathbf{J}_{f}^{π}	Mult. [#]	α@	Comments
595.8 <i>1</i>	17.1 5	4163.0	16-	3567.1	15-	M1	0.0801 11	α (P)=1.969×10 ⁻⁵ 28 Mult.: α (K)exp=0.071 6, α (L)exp=0.011 3. α (K)=0.0654 9; α (L)=0.01123 16; α (M)=0.00264
600.8 2	4 1	5935.1	19-	5334.4	18+	E1	0.00708 10	$\alpha(N)=0.000680 \ 10; \ \alpha(O)=0.0001423 \ 20; \alpha(P)=1.842\times10^{-5} \ 26 Mult.: \ \alpha(K)exp=0.07 \ 4, \ \alpha(L)exp=0.025 \ 13. \alpha(K)=0.00585 \ 8; \ \alpha(L)=0.000944 \ 13; \alpha(M)=0.0002203 \ 31 \alpha(N)=5.64\times10^{-5} \ 8; \ \alpha(O)=1.166\times10^{-5} \ 16; \alpha(P)=1.462\times10^{-6} \ 20 $
607.8.3	061	8/30.8		7823.0				Mult.: $A_2 = -0.21 \ 4$, $A_4 = -0.15 \ 6$.
614.6 <i>I</i>	45 1	2200.2	8+	1585.6	8+	M1	0.0738 10	$\alpha(K)=0.0603 \ 8; \ \alpha(L)=0.01034 \ 14;$ $\alpha(M)=0.002432 \ 34$ $\alpha(N)=0.000626 \ 9; \ \alpha(O)=0.0001310 \ 18;$ $\alpha(P)=1.696 \times 10^{-5} \ 24$ Mult.: $\alpha(K)=0.058 \ 2, \ \alpha(L)=0.0105 \ 4, and$
617.3 <i>3</i> 622.9 <i>3</i>	2.4 5 1.7 7	4569.0 5334.4	14 ⁺ 18 ⁺	3951.6 4711.6	14 16 ⁺	(D)		α (M)exp=0.0021 <i>T</i> . Mult.: A ₂ =0.13 8, A ₄ =0.05 <i>13</i> .
620.4 <i>3</i> 627.1 <i>1</i>	1.4 <i>4</i> 1.5 <i>4</i>	2200.2	8+	1573.09	23 6 ⁺	[E2]	0.01913 27	$\alpha(K)=0.01405\ 20;\ \alpha(L)=0.00383\ 5;$ $\alpha(M)=0\ 000948\ 13$
								α (N)=0.0002434 34; α (O)=4.91×10 ⁻⁵ 7; α (P)=5.61×10 ⁻⁶ 8 Mult.: A ₂ =-0.24 12, A ₄ =-0.26 17, but these values are inconsistent with the E2 assignment that follows from the layel scheme
633.3 <i>3</i>	1.8 2	5377.4	18-	4744.0	17-	M1+E2	0.043 25	$\alpha(\text{K})=0.035\ 21;\ \alpha(\text{L})=0.0066\ 29;\ \alpha(\text{M})=0.0016\ 7$ $\alpha(\text{N})=4.1\times10^{-4}\ 17;\ \alpha(\text{O})=8;\ \alpha(\text{P})=1.1\times10^{-5}\ 5$
647.4 <i>3</i> 661.3 <i>3</i> 661.8 <i>3</i> 670.0 <i>3</i>	1.8 2 2.5 5 3.5 5 4 1	6521.8 4613.0 5874.4 6958.2	21 15 ⁺ 20 22	5874.4 3951.6 5212.6 6288.2	20 14 19 ⁺ 21 ⁻	D D D D		Mult.: $A_2 = -0.04$ /, $A_4 = 0.20$ 12. Mult.: $A_2 = -0.52$ 6, $A_4 = 0.33$ 9. Mult.: $A_2 = -0.34$ 2, $A_4 = 0.05$ 3. Mult.: $A_2 = -0.34$ 2, $A_4 = 0.05$ 3. Mult.: $A_2 = -0.29$ 10, $A_4 = -0.15$ 10.
676.4 2	7.9 5	2262.0	9-	1585.6	8+	(E1)	0.00561 8	$\alpha(\mathbf{K})=0.00464 \ 7; \ \alpha(\mathbf{L})=0.000743 \ 10; \\ \alpha(\mathbf{M})=0.0001730 \ 24 \\ \alpha(\mathbf{N})=4.43\times10^{-5} \ 6; \ \alpha(\mathbf{O})=9.18\times10^{-6} \ 13; \\ \alpha(\mathbf{P})=1.156\times10^{-6} \ 16 \\ \mathbf{M} = 0.0010 \ 5 \ \mathbf{M} = 0.0010 \ 5 \ \mathbf{M} = 0.0010 \ \mathbf{M} $
								Mult.: $\alpha(K)\exp=0.015 I$, $\alpha(L)\exp=0.0018 5$ requires E2. The K line may contain contribution from an impurity. Level scheme requires E1.
679.7 <i>3</i> 682.0 <i>3</i>	0.6 <i>1</i> 4 <i>1</i>	6699.3 5513.9	21 19 ⁺	6019.6 4831.9	18+	M1+E2	0.036 20	α(K)=0.029 17; α(L)=0.0054 24; α(M)=0.0013 5
700.6 1	100	700.60	2+	0.0	0+	E2	0.01507 21	$\alpha(N)=3.3\times10^{-4}$ 14; $\alpha(O)=6.9\times10^{-5}$ 30; $\alpha(P)=9$ Mult.: A ₂ =-0.56 4, A ₄ =0.07 6. $\alpha(K)=0.01133$ 16; $\alpha(L)=0.00283$ 4; $\alpha(M)=0.000695$ 10
								α (N)=0.0001785 25; α (O)=3.62×10 ⁻³ 5; α (P)=4.21×10 ⁻⁶ 6 Mult.: α (K)exp=0.0122 5, α (L)exp=0.0027 <i>1</i> , and α (M)exp=0.0008 <i>1</i> .

γ ⁽²⁰⁶Po) (continued)</sup>

E_{γ}^{\dagger}	I_{γ}^{\dagger}	E _i (level)	\mathbf{J}_i^{π}	\mathbf{E}_{f}	\mathbf{J}_f^{π}	Mult. [#]	α [@]	Comments
722.4 2	5 1	5935.1	19-	5212.6	19+	E1	0.00495 7	$\alpha(K)=0.00410 \ 6; \ \alpha(L)=0.000652 \ 9; \\ \alpha(M)=0.0001517 \ 21 \\ \alpha(N)=3.88\times10^{-5} \ 5; \ \alpha(O)=8.06\times10^{-6} \ 11; \\ \alpha(P)=1.017\times10^{-6} \ 14$
730.5 <i>3</i> 733.5 <i>3</i>	1.2 <i>3</i> 1.0 <i>1</i>	9724.5 1434.10	4+	8994.0 700.60	2+	D [E2]	0.01369 <i>19</i>	Mult.: $A_2=0.30 \ I$, $A_4=-0.04 \ 2$, consistent with $\Delta J=0$ transition. Mult.: $A_2=-0.09 \ 9$, $A_4=0.03 \ 14$. $\alpha(K)=0.01037 \ 15; \ \alpha(L)=0.002510 \ 35;$ $\alpha(M)=0.000614 \ 9$ $\alpha(N)=0.0001577 \ 22; \ \alpha(O)=3.20\times10^{-5} \ 4;$ $\alpha(P)=3.75\times10^{-6} \ 5$
744.8 2	7.2 5	5377.4	18-	4632.6	17-	M1	0.0447 6	Mult.: $A_2=0.03 \ 10$, $A_4=-0.13 \ 17$. The A_2 value is inconsistent with the E2 assignment from the level scheme. $\alpha(K)=0.0365 \ 5; \ \alpha(L)=0.00623 \ 9;$ $\alpha(M)=0.001463 \ 21$ $\alpha(N)=0.000376 \ 5; \ \alpha(O)=7.88\times10^{-5} \ 11;$ $\alpha(P)=1.021\times10^{-5} \ 14$
754.5 <i>3</i> 759.9 <i>3</i> 793.6 <i>3</i> *793 8 <i>3</i>	2.2 <i>4</i> 2.6 <i>3</i> 2.0 <i>5</i>	6872.7 7281.7 7137.1	21 22	6118.3 6521.8 6343.5	20 ⁻ 21	D D D		Mult.: α (K)exp=0.028 2, α (L)exp=0.0091 6. Mult.: A ₂ =-0.49 7, A ₄ =0.01 11. Mult.: A ₂ =-0.05 6, A ₄ =0.19 7. Mult.: A ₂ =-0.32 6, A ₄ =0.11 10.
805.9 1	46 5	3067.9	11-	2262.0	9-	E2	0.01128 16	α (K)=0.00867 <i>12</i> ; α (L)=0.001974 <i>28</i> ; α (M)=0.000480 <i>7</i> α (N)=0.0001233 <i>17</i> ; α (O)=2.514×10 ⁻⁵ <i>35</i> ; α (P)=2.98×10 ⁻⁶ <i>4</i>
806.6 <i>1</i>	11 2	3462.8	13-	2656.2	11-	(E2)	0.01126 <i>16</i>	Mult.: α (K)exp=0.0098 5, α (L)exp=0.0028 2. α (K)=0.00866 12; α (L)=0.001970 28; α (M)=0.000479 7 α (N)=0.0001230 17; α (O)=2.509×10 ⁻⁵ 35; α (P)=2.98×10 ⁻⁶ 4 Mult.: A ₂ =0.21 1, A ₄ =-0.06 1, but contaminated with 805 9 α
807.1 <i>3</i> 829.3 <i>2</i>	0.6 <i>3</i> 7.0 <i>5</i>	6019.6 3485.6	13-	5212.6 2656.2	19 ⁺ 11 ⁻	E2	0.01065 15	$\alpha(\mathbf{K})=0.00822\ 12;\ \alpha(\mathbf{L})=0.001839\ 26;\alpha(\mathbf{M})=0.000446\ 6\alpha(\mathbf{N})=0.0001146\ 16;\ \alpha(\mathbf{O})=2.340\times10^{-5}\ 33;\alpha(\mathbf{P})=2.79\times10^{-6}\ 4$
833.0 1	26 2	2418.6	10+	1585.6	8+	E2	0.01055 <i>15</i>	Mult.: α (K)exp<0.034, not M2: A ₂ =0.33 <i>To</i> , $A_4=-0.02 I0.$ α (K)=0.00815 <i>11</i> ; α (L)=0.001818 25; α (M)=0.0001133 <i>I6</i> ; α (O)=2.314×10 ⁻⁵ 32; α (P)=2.76×10 ⁻⁶ 4
837.2 2	92	2422.9	9+	1585.6	8+	M1	0.0329 5	Mult.: E2,(M1) from α (K)exp=0.0131 9, and α (L)exp=0.0037 6. Level scheme requires E2. α (K)=0.0269 4; α (L)=0.00458 6; α (M)=0.001076 15 α (N)=0.000277 4; α (O)=5.80×10 ⁻⁵ 8; α (P)=7.51×10 ⁻⁶ 11 M kr (K) = 0.0222 2
837.2 <i>3</i> 901.8 <i>3</i>	0.3 2 2 1	8430.8 3558.0	12 ⁽⁻⁾	7593.6 2656.2	11-	D		Mult.: α (K)exp=0.023 2. Mult.: A ₂ =-0.99 12, A ₄ =0.18 16.

γ ⁽²⁰⁶Po) (continued)</sup>

E_{γ}^{\dagger}	I_{γ}^{\dagger}	E _i (level)	\mathbf{J}_i^{π}	$\mathbf{E}_f \qquad \mathbf{J}_f^{\pi}$	Mult. [#]	α [@]	Comments
919.2 <i>3</i> 928 6 3	1.4 2	8201.0 8430.8		7281.7 22	D		Mult.: A ₂ =-0.54 8, A ₄ =0.16 12.
936.2 3 936.2 3 957.3 3 977.2 3	1.0 <i>J</i> 2 <i>I</i> 1.0 <i>2</i> 0.7 <i>2</i> 0.9 <i>2</i>	4494.2 8348.6 8430.8 8258.9	13	3558.0 12 ⁽⁻⁾ 7412.4 7473.5 7281.7 22	D D D		Mult.: $A_2 = -0.43$ 5, $A_4 = 0.01$ 7. Mult.: $A_2 = -0.43$ 5, $A_4 = 0.01$ 7. Mult.: $A_2 = -0.54$ 15, $A_4 = -0.33$ 20.
979.2 3 983.2 3 1027.3 2	0.8 <i>I</i> 0.7 <i>I</i> 4.9 <i>4</i>	7267.5 8264.9 2612.8	10+	6288.2 21 7281.7 22 1585.6 8 ⁺	D E2	0.00698 <i>10</i>	Mult.: $A_2 = -0.77 \ 14$, $A_4 = -0.07 \ 24$. $\alpha(K) = 0.00553 \ 8$; $\alpha(L) = 0.001107 \ 16$; $\alpha(M) = 0.000266 \ 4$ $\alpha(N) = 6.82 \times 10^{-5} \ 10$; $\alpha(O) = 1.403 \times 10^{-5} \ 20$; $\alpha(P) = 1.714 \times 10^{-6} \ 24$
1045.9 3	0.9 2	4613.0	15+	3567.1 15-			Mult.: $\alpha(\mathbf{K})$ exp=0.004 2.
1064.1 2	6.1 5	4613.0	15+	3548.9 14-	E1	2.43×10 ⁻³ 3	$ \begin{aligned} &\alpha(\mathrm{K}) = 0.002023\ 28;\ \alpha(\mathrm{L}) = 0.000313\ 4;\\ &\alpha(\mathrm{M}) = 7.26 \times 10^{-5}\ 10\\ &\alpha(\mathrm{N}) = 1.860 \times 10^{-5}\ 26;\ \alpha(\mathrm{O}) = 3.87 \times 10^{-6}\ 5;\\ &\alpha(\mathrm{P}) = 4.95 \times 10^{-7}\ 7 \end{aligned} $
1065.8 <i>3</i>	3.2 4	4632.6	17-	3567.1 15-	E2	0.00651 9	Mult.: $\alpha(K)\exp=0.0025 \ 4.$ $\alpha(K)=0.00517 \ 7; \ \alpha(L)=0.001019 \ 14;$ $\alpha(M)=0.0002439 \ 34$ $\alpha(N)=6.26\times10^{-5} \ 9; \ \alpha(O)=1.290\times10^{-5} \ 18;$ $\alpha(P)=1.582\times10^{-6} \ 22$ Mult.: A ₂ =0.33 7, A ₄ =0.11 12.
1084.8 3 1103.3 3	2.3 <i>3</i> 2.5 <i>3</i>	4652.0 5935.1	16⁺ 19⁻	3567.1 15 ⁻ 4831.9 18 ⁺	E1	2.28×10 ⁻³ 3	$\begin{aligned} &\alpha(\mathrm{K}) = 0.001898\ 27;\ \alpha(\mathrm{L}) = 0.000293\ 4;\\ &\alpha(\mathrm{M}) = 6.80 \times 10^{-5}\ 10\\ &\alpha(\mathrm{N}) = 1.741 \times 10^{-5}\ 24;\ \alpha(\mathrm{O}) = 3.63 \times 10^{-6}\ 5;\\ &\alpha(\mathrm{P}) = 4.64 \times 10^{-7}\ 7;\ \alpha(\mathrm{IPF}) = 7.65 \times 10^{-7}\\ &15\\ &\mathrm{Mult.:}\ \alpha(\mathrm{K}) \exp < 0.004,\ \mathrm{A}_2 = -0.21\ 4,\\ &\mathrm{A}_4 = 0.02\ 6. \end{aligned}$
1124.2 <i>3</i> <i>x</i> 1125.3 <i>3</i> <i>x</i> 1131.0 <i>3</i>	1.4 2	7412.4		6288.2 21-			I_{γ} : For 1124.2γ + 1125.3γ doublet. I_{γ} : Iγ(1124.2γ + 1125.3γ)=1.4 2.
1144.5 2	7.6 5	4711.6	16+	3567.1 15-	E1	2.14×10 ⁻³ 3	$\alpha(K)=0.001780\ 25;\ \alpha(L)=0.000274\ 4;$ $\alpha(M)=6.36\times10^{-5}\ 9$ $\alpha(N)=1.630\times10^{-5}\ 23;\ \alpha(O)=3.40\times10^{-6}\ 5;$ $\alpha(P)=4.35\times10^{-7}\ 6;\ \alpha(IPF)=3.53\times10^{-6}\ 5$ Mult : $\alpha(K)=0.0015\ 2$
1191.2 3	0.8 2	5935.1	19-	4744.0 17-	E2	0.00527 7	$\begin{aligned} \alpha(\mathbf{K}) &= 0.00422 \ 6; \ \alpha(\mathbf{L}) &= 0.000797 \ 11; \\ \alpha(\mathbf{M}) &= 0.0001899 \ 27 \\ \alpha(\mathbf{N}) &= 4.88 \times 10^{-5} \ 7; \ \alpha(\mathbf{O}) &= 1.007 \times 10^{-5} \ 14; \\ \alpha(\mathbf{P}) &= 1.248 \times 10^{-6} \ 17; \ \alpha(\mathbf{IPF}) &= 3.02 \times 10^{-6} \\ 5 \end{aligned}$
1214.3 3	0.6 2	5377.4	18-	4163.0 16-	(E2)	0.00508 7	Mult.: $\alpha(K) \exp=0.0052$ 12. $\alpha(K) = 0.00407$ 6; $\alpha(L) = 0.000765$ 11; $\alpha(M) = 0.0001820$ 25 $\alpha(N) = 4.67 \times 10^{-5}$ 7; $\alpha(O) = 9.65 \times 10^{-6}$ 14; $\alpha(P) = 1.198 \times 10^{-6}$ 17; $\alpha(IPF) = 4.90 \times 10^{-6}$ 7 Mult.: A ₂ =0.11 17, A ₄ =0.13 26.

γ (²⁰⁶Po) (continued)

E_{γ}^{\dagger}	I_{γ}^{\dagger}	E _i (level)	\mathbf{J}_i^{π}	$E_f = J_f^{\pi}$	Mult. [#]	$\alpha^{@}$	Comments
1235.7 3	0.7 2	8218.2		6982.5	D		Mult.: $A_2 = -0.11$ 13, $A_4 = 0.00$ 22.
1273.1 <i>3</i>	1.6 2	4483.4	13	3210.2 12	+ D		Mult.: $A_2 = -0.59$ 6, $A_4 = -0.12$ 10.
1285.6 <i>3</i>	1.1 3	3704.2		2418.6 10	+		
^x 1293.2 <i>3</i>	1.2 2						
1302.7 3	0.8 2	5935.1	19-	4632.6 17	- [E2]	0.00447 6	α (K)=0.00359 5; α (L)=0.000658 9; α (M)=0.0001562 22
							$\alpha(N)=4.01\times10^{-5}$ 6; $\alpha(O)=8.30\times10^{-6}$ 12;
							$\alpha(P)=1.030\times10^{-7} I3; \alpha(PP)=1.550\times10^{-7} 22$ Mult: A = 0.00 I0 A = 0.11 I5 Note that these
							values are inconsistent with the multipolarity derived from the lower scheme α
x1311 5 3	112						derived from the level scheme.
1311.5 5	1.1 2	4569.0	1/1+	3210.2 12	+ F2	0.00414.6	$\alpha(K) = 0.00332.5; \alpha(L) = 0.000602.8;$
1550.9 5	1.9 2	4309.0	14	5210.2 12	E2	0.00414-0	$\alpha(\mathbf{M}) = 0.000352.5, \ \alpha(\mathbf{L}) = 0.000002.8, \ \alpha(\mathbf{M}) = 0.0001426.20$
							$\alpha(N)=3.66\times10^{-5} 5; \alpha(O)=7.59\times10^{-6} 11;$
							α (P)=9.50×10 ⁻⁷ 13; α (IPF)=2.57×10 ⁻⁵ 4
							Mult.: A ₂ =0.17 5, A ₄ =0.03 8.
1581.8 <i>3</i>	1.0 1	4483.4	13	2901.7 12	+		
1667.2 <i>3</i>	1.3 1	4569.0	14+	2901.7 12	+ E2	0.00294 4	$\alpha(K)=0.002304 \ 32; \ \alpha(L)=0.000397 \ 6; \ \alpha(M)=9.33\times10^{-5} \ 13$
							$\alpha(N) = 2.397 \times 10^{-5} 34; \ \alpha(O) = 4.98 \times 10^{-6} 7;$
							$\alpha(P)=6.32\times10^{-7}$ 9; $\alpha(IPF)=0.0001205$ 17
1702 0 2	101	1402 4	10	2700 0 11	+ (0)		Mult.: $A_2=0.28$ 7, $A_4=0.02$ 11.
1/02.9 3	1.0 1	4483.4	13	2780.8 11	· (Q)		Mult.: $A_2=0.18$ 9, $A_4=-0.14$ 14.

[†] From 1990Ba31. Uncertainties in E γ have been assigned by evaluator based on 0.1 keV for strong lines to 0.3 keV for weak lines, as suggested by 1990Ba31.

[±] Unobserved transition inferred from $\gamma\gamma$ coin data. E γ is from level energy difference.

[#] From $\gamma(\theta)$ and ce data. Total conversion coefficients (α) are from 1990Ba31 using intensity balances.

[@] Additional information 1.

 $x \gamma$ ray not placed in level scheme.

¹⁹⁸Pt(¹³C,5nγ) 1990Ba31

 $^{206}_{84}{\rm Po}_{122}$

 $^{206}_{\ 84} Po_{122}$

²⁰⁶₈₄Po₁₂₂

²⁰⁶₈₄Po₁₂₂