## <sup>206</sup>Bi $\varepsilon$ + $\beta$ <sup>+</sup> decay 1972Ma63,1972Ka30

|                 |              | History            |                        |
|-----------------|--------------|--------------------|------------------------|
| Туре            | Author       | Citation           | Literature Cutoff Date |
| Full Evaluation | F. G. Kondev | NDS 201,346 (2025) | 21-Jan-2025            |

Parent: <sup>206</sup>Bi: E=0.0; J<sup> $\pi$ </sup>=6<sup>+</sup>; T<sub>1/2</sub>=6.243 d *3*; Q( $\varepsilon$ )=3757 8; % $\varepsilon$ +% $\beta$ <sup>+</sup> decay=100 <sup>206</sup>Bi-J<sup> $\pi$ </sup>,T<sub>1/2</sub>: From <sup>206</sup>Bi Adopted Levels.

<sup>206</sup>Bi-Q( $\varepsilon$ + $\beta$ <sup>+</sup>): From 2021Wa16.

1972Ma63: Chemically purified and isotopically separated <sup>206</sup>Bi source was produced in (p,xn) reactions with  $E_p$ =30.5 MeV on a lead target. Detectors: two 35-cm<sup>3</sup> Ge(Li) detectors, 7-cm<sup>3</sup> Ge(Li) detector. Measure  $\gamma$ -ray singles and  $\gamma\gamma$  coin.

1972Ka30: Chemically purified <sup>206</sup>Bi source. Decay was studied with high-resolution, iron-free  $\beta$  spectrometer and a 35 cm<sup>3</sup> Ge(Li) detector.

See also: 1971Ka16, 1970AlZV, 1971Al03, 1971Ru01, 1973Ka35, 1977Ko47, 1977Mc01, 1980Ba19. The level scheme is taken from 1972Ma63 and 1972Ka30.

## <sup>206</sup>Pb Levels

| E(level) <sup>†</sup> | $J^{\pi \ddagger}$ | T <sub>1/2</sub> ‡ | Comments                                                                                                                                                                                                                                                                                  |
|-----------------------|--------------------|--------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 0.0                   | $0^{+}$            |                    |                                                                                                                                                                                                                                                                                           |
| 803.10 5              | 2+                 | 8.17 ps 8          | $\mu = -0.02 \ 14$<br>$\mu$ : From g=-0.01 7 using $\gamma\gamma$ perturbed angular correlation (1970Za03).                                                                                                                                                                               |
| 1340.55 6             | 3+                 |                    |                                                                                                                                                                                                                                                                                           |
| 1684.04 6             | 4+                 |                    |                                                                                                                                                                                                                                                                                           |
| 1997.70 7             | 4+                 |                    |                                                                                                                                                                                                                                                                                           |
| 2200.22 7             | 7-                 | 125.1 μs <i>12</i> | T <sub>1/2</sub> : Values from <sup>206</sup> Bi $\varepsilon$ decay are 145 $\mu$ s <i>15</i> (1953Al47), 128 $\mu$ s <i>5</i> (1957To22), 123 $\mu$ s <i>4</i> (1957As65), 123 $\mu$ s <i>3</i> (1960Be36), 130.5 $\mu$ s <i>15</i> (1962Th12), and 123.3 $\mu$ s <i>11</i> (1968Ta13). |
| 2384.23 7             | 6-                 | 30 ps 10           | $\mu$ =+0.78 42<br>$\mu$ : From g=+0.13 7 using $\gamma\gamma$ perturbed angular correlation (1970Za03).<br>T <sub>1/2</sub> : From 1963Si12.                                                                                                                                             |
| 2391.40? 9            |                    |                    | -1/2                                                                                                                                                                                                                                                                                      |
| 2647.86 8             | 3-                 | 0.087 ps 21        |                                                                                                                                                                                                                                                                                           |
| 2782.25 7             | 5-                 | 1                  |                                                                                                                                                                                                                                                                                           |
| 2826.38 7             | $(4)^{-}$          |                    |                                                                                                                                                                                                                                                                                           |
| 2864.61 8             | 7-                 |                    |                                                                                                                                                                                                                                                                                           |
| 2939.55 7             | 6-                 |                    |                                                                                                                                                                                                                                                                                           |
| 3016.49 7             | 5-                 |                    |                                                                                                                                                                                                                                                                                           |
| 3225.47 8             | $(6,7)^{-}$        |                    |                                                                                                                                                                                                                                                                                           |
| 3244.31 7             | 4-                 |                    |                                                                                                                                                                                                                                                                                           |
| 3279.28 7             | 5-                 |                    | Probable dominant configuration: $v(f_{5/2}^{-1}, g_{0/2}^{+1})$ .                                                                                                                                                                                                                        |
| 3402.71 7             | 5-                 |                    | Probable dominant configuration: $v(f_2, g_2)$ .                                                                                                                                                                                                                                          |
| 3562.93 7             | 5-                 |                    | Sector ( 2/2,09/2)                                                                                                                                                                                                                                                                        |

<sup>†</sup> From least-squares fit to  $E\gamma$ .

<sup>‡</sup> Froma Adopted Levels, unless otherwise stated.

 $\varepsilon, \beta^+$  radiations

av E $\beta$ : Additional information 2.

| E(decay) | E(level) | $\mathrm{I}\varepsilon^{\dagger @}$ | $\log ft^{\#}$  | $I(\varepsilon + \beta^+)^{\ddagger @}$ | Comments                                  |
|----------|----------|-------------------------------------|-----------------|-----------------------------------------|-------------------------------------------|
| (194 8)  | 3562.93  | 2.42 5                              | 7.18 6          | 2.42 5                                  | εK=0.603 16; εL=0.290 11; εM+=0.1068 38   |
| (354 8)  | 3402.71  | 49.2 4                              | 6.581 <i>32</i> | 49.2 4                                  | εK=0.7288 28; εL=0.2016 20; εM+=0.0697 7  |
| (478 8)  | 3279.28  | 43.8 <i>3</i>                       | 6.946 24        | 43.8 <i>3</i>                           | εK=0.7562 14; εL=0.1821 9; εM+=0.06170 36 |

Continued on next page (footnotes at end of table)

|                                            |          |                        | <sup>206</sup> <b>Bi</b> ε          | + $\beta^+$ decay | 1972Ma63,19                             | 72Ka30 (continued)                                             |  |  |  |  |  |
|--------------------------------------------|----------|------------------------|-------------------------------------|-------------------|-----------------------------------------|----------------------------------------------------------------|--|--|--|--|--|
| $\epsilon, \beta^+$ radiations (continued) |          |                        |                                     |                   |                                         |                                                                |  |  |  |  |  |
| E(decay)                                   | E(level) | Ιβ <sup>+</sup> @      | $\mathrm{I}\varepsilon^{\dagger @}$ | $\log ft^{\#}$    | $I(\varepsilon + \beta^+)^{\ddagger @}$ | Comments                                                       |  |  |  |  |  |
| (532 8)                                    | 3225.47  |                        | 0.252 15                            | 9.294 34          | 0.252 15                                | εK=0.7634 11; εL=0.1770 7; εM+=0.05964 30                      |  |  |  |  |  |
| (817 8)                                    | 2939.55  |                        | 0.11 11                             | ≥9.6              | 0.11 11                                 | εK=0.78373 45; εL=0.16245 29; εM+=0.05382 15                   |  |  |  |  |  |
| (892 8)                                    | 2864.61  |                        | 0.262 15                            | 9.781 29          | 0.262 15                                | εK=0.78665 38; εL=0.16036 25; εM+=0.05299 14                   |  |  |  |  |  |
| (975 8)                                    | 2782.25  |                        | 3.57 27                             | 8.730 <i>36</i>   | 3.57 27                                 | εK=0.78929 33; εL=0.15848 21; εM+=0.05223 13                   |  |  |  |  |  |
| (1373 8)                                   | 2384.23  | $3.996 \times 10^{-5}$ | 0.3 9                               | ≥8.8              | 0.3 9                                   | av Eβ=178.0 37; εK=0.79714 20; εL=0.15276 12;                  |  |  |  |  |  |
|                                            |          |                        |                                     |                   |                                         | εM+=0.04996 10                                                 |  |  |  |  |  |
| (1557 8)                                   | 2200.22  | 0.0013 8               | 1.6 10                              | 9.51 27           | 1.6 10                                  | av Eβ=261.1 36; εK=0.79881 18; εL=0.15108 10;<br>εM+=0.04930 9 |  |  |  |  |  |

<sup>†</sup> Note that 1962Pe08 measured a total positron intensity of 0.00084 14 and assumed it was feeding the 1684-keV level. Such a feeding cannot be accounted for by the  $\gamma$  intensity balance. Their end-point was 977 keV 33.

<sup>‡</sup> From transition intensity balances.

# Additional information 1.
@ Absolute intensity per 100 decays.

| 206<br>82 |
|-----------|
| РЬ        |
| 124       |
| င်္သ      |

| <sup>206</sup> Bi $\varepsilon + \beta^+$ decay | 1972Ma63,1972Ka30 | (continued) |
|-------------------------------------------------|-------------------|-------------|
|-------------------------------------------------|-------------------|-------------|

## $\gamma(^{206}\text{Pb})$

I $\gamma$  normalization: From I( $\gamma$ +ce)(803 $\gamma$ )=100% and by assuming no direct  $\varepsilon$ + $\beta$ <sup>+</sup> feeding to the ground state ( $\Delta$ J=6 transition).

ω

| $E_{\gamma}^{\dagger}$        | $I_{\gamma}^{\dagger}$ & | E <sub>i</sub> (level) | $\mathbf{J}_i^{\pi}$ | $E_f  J_f^{\pi}$ | Mult.#  | δ#             | α <sup>@</sup> | Comments                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|-------------------------------|--------------------------|------------------------|----------------------|------------------|---------|----------------|----------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 34.954 <sup>‡</sup> 18        | 0.0172 10                | 3279.28                | 5-                   | 3244.31 4-       | M1+E2   | 0.023 18       | 38.2 12        | $\begin{aligned} &\alpha(L)=29.2 \; 9; \; \alpha(M)=6.86 \; 22 \\ &\alpha(N)=1.74 \; 6; \; \alpha(O)=0.347 \; 10; \; \alpha(P)=0.0367 \; 6 \\ &\%_{I}\gamma=0.0170 \; 10 \\ &I_{\gamma}: \; \text{Determined by the evaluator from the measured } ce \; \text{in} \\ &1972\text{Ka30 ce}(L1)[34.954\gamma]=55.6 \; 31, \; \text{theoretical (BRICC)} \\ &\alpha(L1)[34.954\gamma]=25.9 \; 4, \; \text{using } \delta=0.023 \; 18, \; \text{and} \\ &\alpha(K)[803.1\gamma]=0.00803 \; 11. \\ &\text{Mult.: } L1:L2:M:N=55.6 \; 31: \; 6.30 \; 41: \; 13.9 \; 23: \; 3.74 \; 61 \\ &(1972\text{Ka30}). \end{aligned}$ |
| 44.110 <sup>‡</sup> <i>18</i> | 0.0075 9                 | 2826.38                | (4) <sup>-</sup>     | 2782.25 5-       | M1(+E2) | 0.04 4         | 19.4 <i>13</i> | $\alpha(L)=14.8 \ 10; \ \alpha(M)=3.49 \ 26$<br>$\alpha(N)=0.89 \ 7; \ \alpha(O)=0.176 \ 12; \ \alpha(P)=0.0185 \ 4$<br>%Iy=0.0074 9<br>I <sub>y</sub> : Determined by the evaluator from the measured <i>ce</i> in<br>1972Ka30 ce(L1)[44.11y]=12.2 \ 15, theoretical (BRICC)<br>$\alpha[44.11y]=13.01 \ 19, using \ \delta=0.04 \ 4, and$<br>$\alpha(K)[803.1y]=0.00803 \ 11.$<br>Whit: L kL 2 2M=12.2 \ 151 \ 27 \ 40; \ 2.61 \ 84 \ (1072Ka20)                                                                                                                                                                    |
| 123.42 <i>3</i>               | 0.023 2                  | 3402.71                | 5-                   | 3279.28 5-       | M1+E2   | 0.18 <i>13</i> | 5.05 16        | Mult.: L1:L2:M=12.2 $I3:1.3740$ : 2.01 84 (1972Ra50).<br>$\alpha(K)=4.0622; \alpha(L)=0.755; \alpha(M)=0.17815$<br>$\alpha(N)=0.0454; \alpha(O)=0.00906; \alpha(P)=0.00091714$<br>%Iy=0.022820<br>Mult.: K:L1:L2:M=11.524: 2.5814: 0.27076: 0.5113<br>(1072K620); $\alpha_{1}(\alpha_{1}p)=4.05110$                                                                                                                                                                                                                                                                                                                  |
| 157.52 10                     | 0.036 4                  | 2939.55                | 6-                   | 2782.25 5-       | M1(+E2) | <0.32          | 2.49 8         | $\alpha(K) = 2.01 \ 9; \ \alpha(L) = 0.370 \ 10; \ \alpha(M) = 0.0874 \ 30$<br>$\alpha(N) = 0.0222 \ 7; \ \alpha(O) = 0.00439 \ 12; \ \alpha(P) = 0.000451 \ 10$<br>$\% Iy = 0.036 \ 4$<br>Mult.: K:L1:L2:M=6.4 $13:1.03 \ 12: \ 0.123 \ 51: \ 0.234 \ 59$<br>$(1972Ka30); \ \alpha_u(xp) = 1.44 \ 50 \ (1972Ma63)$                                                                                                                                                                                                                                                                                                  |
| 158.386 <i>21</i>             | 0.083 8                  | 3402.71                | 5-                   | 3244.31 4-       | M1(+E2) | <0.2           | 2.50 5         | $\alpha(K) = 2.03 4; \ \alpha(L) = 0.359 6; \ \alpha(M) = 0.0844 \ 16$<br>$\alpha(N) = 0.0215 \ 4; \ \alpha(O) = 0.00426 \ 7; \ \alpha(P) = 0.000448 \ 7$<br>$\% I_{Y} = 0.082 \ 8$<br>Mult.: K:L1:L2:M=27.3 15: 4.39 22: 0.460 90: 1.14 14<br>(1972Ka30): $\alpha_{Y}(\exp) = 2 \ 66 \ 37 \ (1972Ma63)$                                                                                                                                                                                                                                                                                                             |
| 184.02 <i>3</i>               | 16.0 3                   | 2384.23                | 6-                   | 2200.22 7-       | M1(+E2) | -0.006 31      | 1.654 23       | $\begin{aligned} &\alpha(K) = 1.350 \ 19; \ \alpha(L) = 0.2325 \ 33; \ \alpha(M) = 0.0545 \ 8\\ &\alpha(N) = 0.01385 \ 19; \ \alpha(O) = 0.00276 \ 4; \ \alpha(P) = 0.000295 \ 4\\ &\% Iy = 15.84 \ 30\\ &Mult.: \ K:L1:L2:L3:M:N:O = 3350 \ 130:509 \ 21:55.0 \ 25:3.67 \ 19:\\ &135 \ 5: \ 33.7 \ 19:7.59 \ 44 \ (1972Ka30); \ \alpha_{K}(exp) = 1.69 \ 10\\ &(1972Ma63); \ \gamma\gamma(\theta) \ in \ 1980Ba19.\\ &\delta: \ Other: \ -0.013 \ 25 \ (1980Ba19). \end{aligned}$                                                                                                                                   |

|                         |                 |                        |             |                        | <sup>206</sup> Bi $\varepsilon$ + $\beta$ <sup>+</sup> de | ecay 1972N                  | 4a63,1972K      | a30 (continued)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|-------------------------|-----------------|------------------------|-------------|------------------------|-----------------------------------------------------------|-----------------------------|-----------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                         |                 |                        |             |                        |                                                           | $\gamma(^{206}\text{Pb})$ ( | continued)      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| $E_{\gamma}^{\dagger}$  | $I_{\gamma}$ †& | E <sub>i</sub> (level) | $J_i^{\pi}$ | E <sub>f</sub> J       | $\frac{\pi}{f}$ Mult. <sup>#</sup>                        | δ#                          | α <sup>@</sup>  | Comments                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| 190.04 <sup>‡</sup> 3   | 0.022 19        | 3016.49                | 5-          | 2826.38 (4             | ) <sup>-</sup> [M1,E2]                                    |                             | 1.0 5           | $\alpha(K)=0.75; \alpha(L)=0.226\ 14; \alpha(M)=0.056\ 7$<br>$\alpha(N)=0.0143\ 16; \alpha(O)=0.00270\ 18; \alpha(P)=2.1\times10^{-4}\ 6$<br>$\%_{I\gamma}=0.022\ 19$<br>$I_{\gamma}:$ Determined by the evaluator from the measured <i>ce</i> in 1972Ka30<br>$ce(K)[190.04\gamma]=1.90\ 22$ , theoretical (BRICC) $\alpha(K)[190.04\gamma]=0.7$<br>$f_{\alpha}$ and $\alpha(K)[803\ 1\alpha]=0.00803\ 11$                                                                                                                                                                                                                      |
| 202.44 10               | 0.044 4         | 2200.22                | 7-          | 1997.70 4 <sup>+</sup> | E3                                                        |                             | 3.78 5          | $\begin{aligned} \alpha(\mathbf{K}) = 0.426 \ 6; \ \alpha(\mathbf{L}) = 2.470 \ 35; \ \alpha(\mathbf{M}) = 0.678 \ 10 \\ \alpha(\mathbf{N}) = 0.1726 \ 25; \ \alpha(\mathbf{O}) = 0.0311 \ 4; \ \alpha(\mathbf{P}) = 0.001533 \ 22 \\ \%_{I\gamma} = 0.044 \ 4 \\ \text{Mult.: } \mathbf{K}: \mathbf{L}1: \mathbf{L}2: \mathbf{L}3: \mathbf{M}2: \mathbf{M}3: \mathbf{N}: \mathbf{O} = 2.25 \ 18: 0.684 \ 23: 7.87 \ 44: 3.78 \ 21: \\ 3.46 \ 20: \ 0.907 \ 94: 1.24 \ 12: \ 0.223 \ 50 \ (1972 \mathbf{K} \mathbf{a} 30); \ \alpha_{\mathbf{K}}(\mathbf{exp}) = 0.414 \\ 78 \ (1972 \mathbf{M} \mathbf{a} 6_3). \end{aligned}$ |
| 227.65 <sup>‡a</sup> 20 | 0.003 3         | 3244.31                | 4-          | 3016.49 5              | [M1,E2]                                                   |                             | 0.59 32         | %Iγ=0.003 3<br>$\alpha$ (K)=0.43 31; $\alpha$ (L)=0.120 8; $\alpha$ (M)=0.0297 5<br>$\alpha$ (N)=0.00751 15; $\alpha$ (O)=0.00143 9; $\alpha$ (P)=1.2×10 <sup>-4</sup> 5<br>E <sub>γ</sub> : Uncertainty increased 4σ by the evaluator.<br>I <sub>γ</sub> : Determined by the evaluator from the measured <i>ce</i> in 1972Ka30<br>ce(K)[227.65γ]=0.153 70, theoretical (BRICC)<br>$\alpha$ (K)[227.65γ]=0.153 70, theoretical (BRICC)                                                                                                                                                                                          |
| 234.26 7                | 0.244 12        | 3016.49                | 5-          | 2782.25 5-             | M1(+E2)                                                   | ) <0.19                     | 0.832 16        | $\begin{aligned} \alpha(\text{K}) &= 0.678 \ 14; \ \alpha(\text{L}) = 0.1178 \ 17; \ \alpha(\text{M}) = 0.0276 \ 4 \\ \alpha(\text{N}) &= 0.00702 \ 10; \ \alpha(\text{O}) = 0.001398 \ 20; \ \alpha(\text{P}) = 0.0001484 \ 26 \\ \% \text{I}\gamma &= 0.242 \ 12 \\ \text{Mult.: K:L1:L2:M:N=25.3 \ 12:3.78 \ 21: \ 0.404 \ 38: \ 0.86 \ 16: \ 0.200 \ 76 \\ (1972\text{Ka30}); \ \alpha_{\text{K}}(\text{exp}) = 0.840 \ 85 \ (1972\text{Ma63}). \end{aligned}$                                                                                                                                                              |
| x257.31+ 5<br>262.71 5  | 3.05 5          | 3279.28                | 5-          | 3016.49 5-             | M1+E2                                                     | 0.13 10                     | 0.607 <i>17</i> | $\begin{aligned} &\alpha(\text{K}) = 0.495 \ 16; \ \alpha(\text{L}) = 0.0855 \ 14; \ \alpha(\text{M}) = 0.02005 \ 31 \\ &\alpha(\text{N}) = 0.00510 \ 8; \ \alpha(\text{O}) = 0.001015 \ 17; \ \alpha(\text{P}) = 0.0001079 \ 27 \\ &\% \text{I}\gamma = 3.02 \ 5 \\ &\text{Mult.: K:L1:L2:M:N:O} = 208 \ 9:33.9 \ 18: \ 3.58 \ 20: \ 7.93 \ 43: \ 2.84 \ 17: \\ &0.507 \ 62 \ (1972\text{Ka30}); \ \alpha_{\text{K}}(\text{exp}) = 0.551 \ 35 \ (1972\text{Ma63}). \end{aligned}$                                                                                                                                              |
| 283.75 <sup>‡</sup> 6   | 0.005 4         | 3562.93                | 5-          | 3279.28 5              | [M1,E2]                                                   |                             | 0.32 18         | $\alpha(K)=0.24 \ 17; \ \alpha(L)=0.058 \ 11; \ \alpha(M)=0.0142 \ 21$<br>$\alpha(N)=0.0036 \ 5; \ \alpha(O)=0.00069 \ 13; \ \alpha(P)=6.1\times10^{-5} \ 27$<br>$\%_{I\gamma}=0.005 \ 4$<br>$I_{\gamma}: Determined by the evaluator from the measured ce in 1972Ka30 ce(K)[283.75\gamma]=0.156 \ 68, theoretical (BRICC)\alpha(K)[283.75\gamma]=0.18 \ 10 and \alpha(K)[803 \ 1\gamma]=0.00803 \ 11$                                                                                                                                                                                                                          |
| 313.67 7                | 0.363 10        | 1997.70                | 4+          | 1684.04 44             | M1+E2                                                     | -0.22 7                     | 0.365 10        | $\alpha(K) = 0.297 \ 9; \ \alpha(L) = 0.0517 \ 10; \ \alpha(M) = 0.01214 \ 21$<br>$\alpha(N) = 0.00308 \ 5; \ \alpha(O) = 0.000614 \ 11; \ \alpha(P) = 6.48 \times 10^{-5} \ 16$<br>$\% I\gamma = 0.359 \ 10$<br>Mult.: K:N=14.80 75:0.101 34 (1972Ka30); \ \alpha_{K}(exp) = 0.330 \ 27                                                                                                                                                                                                                                                                                                                                        |

|                                                |                 |                        |                    |          | <sup>206</sup> B     | Si $\varepsilon$ + $\beta^+$ decay | y <b>1972M</b> a                 | a63,1972Ka3    | 0 (continued)                                                                                                                                                                                                                                      |
|------------------------------------------------|-----------------|------------------------|--------------------|----------|----------------------|------------------------------------|----------------------------------|----------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                                |                 |                        |                    |          |                      |                                    | $\gamma$ <sup>(206</sup> Pb) (co | ontinued)      |                                                                                                                                                                                                                                                    |
| ${\rm E_{\gamma}}^{\dagger}$                   | $I_{\gamma}$ †& | E <sub>i</sub> (level) | $\mathbf{J}_i^\pi$ | $E_f$    | $\mathbf{J}_f^{\pi}$ | Mult. <sup>#</sup>                 | δ <b>#</b>                       | α <sup>@</sup> | Comments                                                                                                                                                                                                                                           |
| 220.05                                         | 0.12.0          | 2270.20                |                    | 2020 55  | -                    |                                    |                                  | 0.10.11        | (1972Ma63).<br>$\delta$ : From adopted gammas.                                                                                                                                                                                                     |
| 339.85* 0                                      | 0.13 9          | 3279.28                | 5                  | 2939.55  | 6                    | [M1,E2]                            |                                  | 0.19 11        | $\alpha(K)=0.15 \ I0; \ \alpha(L)=0.033 \ 9; \ \alpha(M)=0.0080 \ I9$<br>$\alpha(N)=0.0020 \ 5; \ \alpha(O)=3.9\times10^{-4} \ I1; \ \alpha(P)=3.6\times10^{-5} \ I8$<br>$\%I\gamma=0.13 \ 9$                                                      |
|                                                |                 |                        |                    |          |                      |                                    |                                  |                | I <sub>γ</sub> : Determined by the evaluator from the measured <i>ce</i> in<br>1972Ka30 ce(K)[339.85γ]=2.48 27, theoretical (BRICC)<br>$\alpha$ (K)[339.85γ]=0.15 <i>10</i> and $\alpha$ (K)[803.1γ]=0.00803 <i>11</i> .                           |
| 343.51 <i>3</i>                                | 23.7 3          | 1684.04                | 4+                 | 1340.55  | 3+                   | M1(+E2)                            | +0.001 3                         | 0.295 4        | $\alpha(K)=0.2413 \ 34; \ \alpha(L)=0.0411 \ 6; \ \alpha(M)=0.00961 \ 13 \ \alpha(N)=0.002443 \ 34; \ \alpha(O)=0.000487 \ 7; \ \alpha(P)=5.21\times10^{-5} \ 7 \ \%$                                                                              |
|                                                |                 |                        |                    |          |                      |                                    |                                  |                | Mult.: $\gamma(\theta)$ in 1973Ka35; $\gamma\gamma(\theta)$ in 1977Mc01; $\gamma\gamma(\theta)$ in<br>1980Ba19; K:L1:L2:L3:M:N:O=675 27:108 4:11.3 6:0.797<br>59:42.4 18: 10.6 4:1.71 7 (1972Ka30); $\alpha_{\rm K}(\exp)=0.230$ 13<br>(1972Ma63). |
| 360.82 <sup>‡</sup> 6                          | 0.006 5         | 3225.47                | (6,7)-             | 2864.61  | 7-                   | [M1,E2]                            |                                  | 0.16 10        | $\alpha(K)=0.13 \ 8; \ \alpha(L)=0.028 \ 8; \ \alpha(M)=0.0066 \ 18 \ \alpha(N)=0.0017 \ 5; \ \alpha(O)=3.3\times10^{-4} \ 10; \ \alpha(P)=3.0\times10^{-5} \ 15$                                                                                  |
|                                                |                 |                        |                    |          |                      |                                    |                                  |                | %Iγ=0.006 5<br>I <sub>γ</sub> : Determined by the evaluator from the measured <i>ce</i> in<br>1972Ka30 ce(K)[360.82γ]=0.089 41, theoretical (BRICC)<br>α(K)[360.82γ]=0.13 9 and α(K)[803.1γ]=0.00803 11.                                           |
| <sup>x</sup> 380.83 <sup>‡</sup> 6<br>386.20 7 | 0.522 10        | 3402.71                | 5-                 | 3016.49  | 5-                   | M1+E2                              | 0.15 11                          | 0.212 7        | α(K)=0.173 6; α(L)=0.0295 7; α(M)=0.00692 16                                                                                                                                                                                                       |
|                                                |                 |                        |                    |          |                      |                                    |                                  |                | $\alpha$ (N)=0.00176 4; $\alpha$ (O)=0.000350 9; $\alpha$ (P)=3.73×10 <sup>-5</sup> 12<br>%I $\gamma$ =0.517 10<br>Mult : K:I I:I 2=11.0 5: 2.35 15: 0.177 17 (1072K 230):                                                                         |
| 398.00 <i>3</i>                                | 10.86 10        | 2782.25                | 5-                 | 2384.23  | 6-                   | M1+E2                              | 0.038 9                          | 0.1981 28      | $\alpha_{\rm K}(\exp)=0.171 \ 12 \ (1972{\rm Ma63}).$<br>$\alpha({\rm K})=0.1622 \ 23; \ \alpha({\rm L})=0.0275 \ 4; \ \alpha({\rm M})=0.00644 \ 9$                                                                                                |
|                                                |                 |                        |                    |          |                      |                                    |                                  |                | $\alpha$ (N)=0.001635 23; $\alpha$ (O)=0.000326 5; $\alpha$ (P)=3.49×10 <sup>-5</sup> 5 %I $\gamma$ =10.75 10                                                                                                                                      |
|                                                |                 |                        |                    |          |                      |                                    |                                  |                | I <sub><math>\gamma</math></sub> : Authors in 1972Ma63 reported I $\gamma$ =10.86 <i>l</i> , but the evaluator assumed that the uncertainty is a typo and increased it.<br>Mult.: K:L1:L2:L3:M:N:O=208 8:32.9 <i>15</i> :3.58 27:0.235 42: 8.33    |
|                                                |                 |                        |                    |          |                      |                                    |                                  |                | 45: 2.23 <i>12</i> : 0.357 <i>36</i> (1972Ka30); $\gamma(\theta)$ in 1973Ka35;<br>$\alpha_{\rm K}(\exp)=0.155$ <i>5</i> (1972Ma63); $\gamma\gamma(\theta)$ in 1980Ba19.<br>δ: Other: +0.038 <i>3</i> (1973Ka35) and 0.028 <i>42</i> (1980Ba19).    |
| 434.89 10                                      | 0.023 2         | 2826.38                | (4) <sup>-</sup>   | 2391.40? |                      | M1,E2                              |                                  | 0.10 6         | $\alpha(K)=0.08 5; \alpha(L)=0.016 6; \alpha(M)=0.0038 13$<br>$\alpha(N)=9.7\times10^{-4} 32; \alpha(O)=1.9\times10^{-4} 7; \alpha(P)=1.8\times10^{-5} 9$<br>%Iy=0.0228 20<br>Mult : $\alpha_{V}(\exp)=0.049 17$ (1972Ma63)                        |

S

| $\frac{206}{\text{Bi}}\varepsilon + \beta^{+} \text{ decay} \qquad 1972\text{Ma63,1972Ka30} \text{ (continued)}$ |                          |                        |                      |                                     |                    |                               |                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|------------------------------------------------------------------------------------------------------------------|--------------------------|------------------------|----------------------|-------------------------------------|--------------------|-------------------------------|-----------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                                                                                                  |                          |                        |                      |                                     |                    | $\gamma$ ( <sup>206</sup> Pb) | (continued)     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| $E_{\gamma}^{\dagger}$                                                                                           | $I_{\gamma}^{\dagger}\&$ | E <sub>i</sub> (level) | $\mathbf{J}_i^{\pi}$ | $\mathbf{E}_f = \mathbf{J}_f^{\pi}$ | Mult. <sup>#</sup> | $\delta^{\#}$                 | α <sup>@</sup>  | Comments                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| 442.14 10                                                                                                        | 0.038 4                  | 2826.38                | (4) <sup>-</sup>     | 2384.23 6-                          | (E2)               |                               | 0.0398 6        | $\alpha(K)=0.0270 \ 4; \ \alpha(L)=0.00960 \ 13; \ \alpha(M)=0.002407 \ 34$<br>$\alpha(N)=0.000609 \ 9; \ \alpha(O)=0.0001143 \ 16; \ \alpha(P)=8.45\times10^{-6} \ 12$<br>$\%I\gamma=0.038 \ 4$<br>Multiple of $(P)=0.028 \ 16 \ (1072)Me(2)$                                                                                                                                                                                                                                                                                                                                  |
| 443.20 <sup>‡</sup> 7                                                                                            | 0.011 9                  | 3225.47                | (6,7) <sup>-</sup>   | 2782.25 5-                          | [M1,E2]            |                               | 0.09 5          | $\alpha(K)=0.07 \ 5; \ \alpha(L)=0.015 \ 6; \ \alpha(M)=0.0036 \ 12 \\ \alpha(N)=9.1\times10^{-4} \ 31; \ \alpha(O)=1.8\times10^{-4} \ 7; \ \alpha(P)=1.7\times10^{-5} \ 9 \\ \%I\gamma=0.011 \ 9$                                                                                                                                                                                                                                                                                                                                                                              |
| 452.84 8                                                                                                         | 0.158 8                  | 3279.28                | 5-                   | 2826.38 (4)                         | - M1(+E2)          | <0.27                         | 0.137 4         | I <sub>γ</sub> : Determined by the evaluator from the measured <i>ce</i> in<br>1972Ka30 ce(K)[443.20γ]=0.153 70, theoretical (BRICC)<br>$\alpha$ (K)[443.20γ]=0.07 5 and $\alpha$ (K)[803.1γ]=0.00803 11.<br>$\alpha$ (K)=0.1120 34; $\alpha$ (L)=0.0191 4; $\alpha$ (M)=0.00447 10<br>$\alpha$ (N)=0.001135 26; $\alpha$ (O)=0.000226 5; $\alpha$ (P)=2.41×10 <sup>-5</sup> 7<br>%Iγ=0.156 8                                                                                                                                                                                   |
| 462.92 10                                                                                                        | 0.054 5                  | 3402.71                | 5-                   | 2939.55 6-                          | M1(+E2)            | <0.7                          | 0.117 <i>16</i> | Mult.: K:L1=2.56 <i>15</i> : 0.426 <i>42</i> (1972Ka30); $\alpha_{\rm K}(\exp)=0.131$ <i>15</i><br>(1972Ma63).<br>$\alpha({\rm K})=0.095$ <i>14</i> ; $\alpha({\rm L})=0.0167$ <i>17</i> ; $\alpha({\rm M})=0.0039$ <i>4</i><br>$\alpha({\rm N})=0.00100$ <i>9</i> ; $\alpha({\rm O})=0.000198$ <i>20</i> ; $\alpha({\rm P})=2.07\times10^{-5}$ <i>26</i><br>%Iy=0.053 <i>5</i><br>Mult.: K:M:N=1.07 <i>11</i> : 0.0420 86: 0.0180 60 (1072Ka30);                                                                                                                               |
| 480.38 10                                                                                                        | 0.090 9                  | 2864.61                | 7-                   | 2384.23 6-                          | M1(+E2)            | <0.4                          | 0.114 6         | Mult.: K:M:N=1.07 11: 0.0429 80: 0.0180 60 (1972Ka30);<br>$\alpha_{\rm K}(\exp)=0.16$ 4 (1972Ma63).<br>$\alpha({\rm K})=0.093$ 5; $\alpha({\rm L})=0.0160$ 7; $\alpha({\rm M})=0.00374$ 15<br>$\alpha({\rm N})=0.00095$ 4; $\alpha({\rm O})=0.000189$ 8; $\alpha({\rm P})=2.01\times10^{-5}$ 10<br>%Iy=0.089 9<br>Multi- Val 1 4 2 - 126 00 204 20 (1072K-20); $\alpha_{\rm C}(\exp)=0.112$ 22                                                                                                                                                                                  |
| 497.06 <i>4</i>                                                                                                  | 15.48 <i>15</i>          | 3279.28                | 5-                   | 2782.25 5-                          | M1+E2              | -0.09 5                       | 0.1090 18       | Mult.: K:L1+L2=1.26 9:0.204 39 (1972Ka30); $\alpha_{\rm K}(\exp)=0.115$ 22<br>(1972Ma63).<br>$\alpha({\rm K})=0.0893$ 15; $\alpha({\rm L})=0.01508$ 23; $\alpha({\rm M})=0.00352$ 5<br>$\alpha({\rm N})=0.000896$ 14; $\alpha({\rm O})=0.0001786$ 27; $\alpha({\rm P})=1.912\times10^{-5}$ 31<br>$\%_{\rm I}\gamma=15.32$ 15<br>May 15.32 15                                                                                                                                                                                                                                    |
| 516.18 <i>4</i>                                                                                                  | 41.2 4                   | 2200.22                | 7-                   | 1684.04 4+                          | E3                 |                               | 0.0886 12       | Mult.: K:L1+L2:L3:M:N=169 /: 28.6 14: 0.189 21: 6.75 35: 2.10<br>20 (1972Ka30); $\alpha_{\rm K}(\exp)=0.088 5$ (1972Ma63).<br>$\delta$ : Others: -0.09 2 (1973Ka35), -0.02 11 (1980Ba19), -0.194 21<br>(1977Mc01).<br>$\alpha({\rm K})=0.0483 7$ ; $\alpha({\rm L})=0.0301 4$ ; $\alpha({\rm M})=0.00782 11$<br>$\alpha({\rm N})=0.001988 28$ ; $\alpha({\rm O})=0.000370 5$ ; $\alpha({\rm P})=2.64\times10^{-5} 4$<br>%I $\gamma$ =40.8 4<br>Mult.: K:L1:L2:L3:M:N+O=242 10:48.1 24:90.9 39:23.1 11: 42.9<br>20: 13 3 7 (1972Ka30): $\alpha_{\rm K}(\exp)=0.048 2$ (1972Ma63) |
| 537.45 4                                                                                                         | 30.8 <i>3</i>            | 1340.55                | 3+                   | 803.10 2+                           | M1(+E2)            | +0.001 5                      | 0.0892 12       | δ: Other: 0.013 23 (1980Ba19). $ α(K)=0.0731 10; α(L)=0.01230 17; α(M)=0.00287 4 $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |

From ENSDF

 $^{206}_{82}\text{Pb}_{124}$ -6

|                         |                          |                        |                      |                   | <sup>206</sup> Bi $\varepsilon$ + $\beta$ <sup>+</sup> c | lecay 1972                    | Ma63,1972Ka3   | 30 (continued)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|-------------------------|--------------------------|------------------------|----------------------|-------------------|----------------------------------------------------------|-------------------------------|----------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                         |                          |                        |                      |                   |                                                          | $\gamma$ ( <sup>206</sup> Pb) | (continued)    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| $E_{\gamma}^{\dagger}$  | $I_{\gamma}^{\dagger}\&$ | E <sub>i</sub> (level) | $\mathbf{J}_i^{\pi}$ | $E_f = J_f^{\pi}$ | Mult. <sup>#</sup>                                       | $\delta^{\#}$                 | α <sup>@</sup> | Comments                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| 555.30 10               | 0.038 4                  | 2939.55                | 6-                   | 2384.23 6-        | M1+E2                                                    | 1.0 +8-4                      | 0.052 16       | α(N)=0.000730 10; α(O)=0.0001456 20; α(P)=1.561×10 <sup>-5</sup> 22<br>%Iγ=30.49 30<br>Mult.: ce-ce(θ) measurements of 1964Sa37 indicate that the 537γ<br>is of predominantly M1 character; γ(θ) in 1973Ka35; γγ(θ)<br>in 1977Mc01; γγ(θ) in 1980Ba19; K:L1+L2:L3:M:N+O=257<br>10:46.3 21:0.253 33:8.43 44:3.23 18 (1972Ka30);<br>α <sub>K</sub> (exp)=0.068 3 (1972Ma63).<br>δ: Others: -0.221 80 (1977Mc01) and -0.05 10 (1980Ba19).<br>α(K)=0.042 13; α(L)=0.0080 17; α(M)=0.0019 4<br>α(N)=0.00048 10; α(O)=9.5×10 <sup>-5</sup> 20; α(P)=9.4×10 <sup>-6</sup> 26<br>%Iγ=0.038 4 |
| ×                       |                          |                        |                      |                   |                                                          |                               |                | Mult.: $\alpha_{\rm K}(\exp)=0.041 \ 13 \ (1972{\rm Ma63}).$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| x573.72+ 9<br>576.36 10 | 0.113 10                 | 3402.71                | 5-                   | 2826.38 (4)-      | M1(+E2)                                                  | <0.7                          | 0.065 9        | $\alpha$ (K)=0.053 8; $\alpha$ (L)=0.0092 10; $\alpha$ (M)=0.00217 22<br>$\alpha$ (N)=0.00055 6; $\alpha$ (O)=0.000109 12; $\alpha$ (P)=1.15×10 <sup>-5</sup> 15<br>%I $\gamma$ =0.112 10<br>Mult.: K:L1+L2:M:N=0.892 52: 0.140 30: 0.045 12: 0.0110 29                                                                                                                                                                                                                                                                                                                              |
| 581.97 8                | 0.490 25                 | 2782.25                | 5-                   | 2200.22 7-        | E2                                                       |                               | 0.02061 29     | (1972Ka30); $\alpha_{\rm K}(\exp)=0.064$ 10 (1972Ma63).<br>$\alpha({\rm K})=0.01516$ 21; $\alpha({\rm L})=0.00413$ 6; $\alpha({\rm M})=0.001015$ 14<br>$\alpha({\rm N})=0.000257$ 4; $\alpha({\rm O})=4.90\times10^{-5}$ 7; $\alpha({\rm P})=4.06\times10^{-6}$ 6<br>%I $\gamma=0.485$ 25<br>Mult.: K:L1+L2:M:N=1.13 7:0.352 60: 0.057 15:0.020 11:                                                                                                                                                                                                                                  |
| 620.48 5                | 5.82 6                   | 3402.71                | 5-                   | 2782.25 5-        | M1+E2                                                    | -0.082 22                     | 0.0609 9       | (1972Ka30).<br>$\alpha(K)=0.0500\ 7;\ \alpha(L)=0.00837\ 12;\ \alpha(M)=0.001955\ 28$<br>$\alpha(N)=0.000497\ 7;\ \alpha(O)=9.91\times10^{-5}\ 14;\ \alpha(P)=1.062\times10^{-5}\ 15$<br>%I $\gamma=5.76\ 6$<br>Mult.: K:L1+L2:L3:NO=38.8 17: 6.39 35: 0.035 14: 0.471 32<br>(1972Ka30);\ \alpha_{K}(exp)=0.054\ 3\ (1972Ma63).                                                                                                                                                                                                                                                      |
| 632.25 5                | 4.52 5                   | 3016.49                | 5-                   | 2384.23 6-        | M1+E2                                                    | -0.12 4                       | 0.0577 9       | α: Otners: -0.35 29 (1980Ba19) and -0.082 10 (1977Mc01).<br>α(K)=0.0473 8; α(L)=0.00793 12; α(M)=0.001852 28<br>α(N)=0.000470 7; α(O)=9.38×10 <sup>-5</sup> 14; α(P)=1.006×10 <sup>-5</sup> 16<br>%Iγ=4.47 5<br>Mult.: K:L1:M:N:O=24.5 12:3.91 45: 1.11 7: 0.308 23: 0.112 22<br>(1972Ka30); α <sub>K</sub> (exp)=0.044 3 (1972Ma63).<br>δ: Other: -0.12 2 11080Pa10 ext(0)]                                                                                                                                                                                                         |
| 657.16 <i>5</i>         | 1.93 <i>3</i>            | 1997.70                | 4+                   | 1340.55 3+        | M1+E2                                                    | 0.15 3                        | 0.0518 8       | a: Other: $-0.122$ [1980Ba19, γγ(θ)].<br>$\alpha(K)=0.0425$ 7; $\alpha(L)=0.00713$ 11; $\alpha(M)=0.001665$ 25<br>$\alpha(N)=0.000423$ 6; $\alpha(O)=8.43\times10^{-5}$ 13; $\alpha(P)=9.03\times10^{-6}$ 14<br>%Iγ=1.910 30<br>Mult.: K:L1+L2:L3:M:N=10.2 5:1.71 10:0.033 19:0.431 35: 0.14<br>30 (1972Ka30); $\alpha_{K}(\exp)=0.043$ 3 (1972Ma63).<br>δ: From adopted gammas.                                                                                                                                                                                                     |

 $^{206}_{82}\text{Pb}_{124}$ -7

|                                 |                          |                        |                      | 2                | <sup>206</sup> Bi      | $\varepsilon + \beta^+$ decay | y <b>1972</b>              | Ma63,1972Ka3   | 30 (continued)                                                                                                                                                                                                                                                                                                                                                                                                                    |
|---------------------------------|--------------------------|------------------------|----------------------|------------------|------------------------|-------------------------------|----------------------------|----------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                 |                          |                        |                      |                  |                        |                               | <u>γ(<sup>206</sup>Pb)</u> | (continued)    |                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| $\mathrm{E}_{\gamma}^{\dagger}$ | $I_{\gamma}^{\dagger}\&$ | E <sub>i</sub> (level) | $\mathbf{J}_i^{\pi}$ | $\mathbf{E}_{f}$ | $\mathbf{J}_{f}^{\pi}$ | Mult. <sup>#</sup>            | $\delta^{\#}$              | α <sup>@</sup> | Comments                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 664.17 10                       | 0.099 5                  | 2864.61                | 7-                   | 2200.22          | 7-                     | M1(+E2)                       | <0.9                       | 0.043 8        | $\alpha$ (K)=0.035 7; $\alpha$ (L)=0.0061 9; $\alpha$ (M)=0.00143 21<br>$\alpha$ (N)=0.00036 5; $\alpha$ (O)=7.2×10 <sup>-5</sup> 11; $\alpha$ (P)=7.6×10 <sup>-6</sup> 13<br>%I $\gamma$ =0.098 5                                                                                                                                                                                                                                |
| 739.24 8                        | 0.159 8                  | 2939.55                | 6-                   | 2200.22          | 7-                     | M1(+E2)                       | <0.5                       | 0.0361 27      | Mult.: K:L1+L2:M=0.540 95:0.088 22: 0.0221 60 (1972Ka30);<br>$\alpha_{\rm K}(\exp)=0.044 \ 11 \ (1972Ma63).$<br>$\alpha({\rm K})=0.0296 \ 23; \ \alpha({\rm L})=0.00498 \ 32; \ \alpha({\rm M})=0.00117 \ 7$<br>$\alpha({\rm N})=0.000296 \ 19; \ \alpha({\rm O})=5.9\times10^{-5} \ 4; \ \alpha({\rm P})=6.3\times10^{-6} \ 5$<br>%Iy=0.157 8                                                                                    |
| 754.96 7                        | 0.533 10                 | 3402.71                | 5-                   | 2647.86          | 3-                     | E2                            |                            | 0.01172 16     | Mult.: K:L1+L2:M=0.622 40:0.142 37: 0.030 13 (1972Ka30);<br>$\alpha_{\rm K}(\exp)=0.032$ 4 (1972Ma63).<br>$\alpha({\rm K})=0.00904$ 13; $\alpha({\rm L})=0.002035$ 29; $\alpha({\rm M})=0.000492$ 7<br>$\alpha({\rm N})=0.0001247$ 17; $\alpha({\rm O})=2.408\times10^{-5}$ 34; $\alpha({\rm P})=2.174\times10^{-6}$ 30<br>%Ly=0.528 10<br>Mult.: K:L1+L2=0.571 52: 0.135 45 (1972Ka30):                                          |
| 780.66 <sup>‡</sup> <i>10</i>   | 0.05 3                   | 3562.93                | 5-                   | 2782.25          | 5-                     | [M1,E2]                       |                            | 0.022 11       | $\alpha_{\rm K}(\exp)=0.0087 \ 10 \ (1972{\rm Ma63}).$<br>$\alpha({\rm K})=0.018 \ 10; \ \alpha({\rm L})=0.0032 \ 14; \ \alpha({\rm M})=7.6\times10^{-4} \ 31$<br>$\alpha({\rm N})=1.9\times10^{-4} \ 8; \ \alpha({\rm O})=3.8\times10^{-5} \ 16; \ \alpha({\rm P})=3.9\times10^{-6} \ 19$<br>$\%_{\rm I}\gamma=0.050 \ 30$<br>L <sub>2</sub> : Determined by the evaluator from the measured <i>ce</i> in                        |
| 784.58 7                        | 0.542 10                 | 2782.25                | 5-                   | 1997.70          | 4+                     | E1                            |                            | 0.00391 5      | <sup>1972Ka30</sup> ce(K)[780.66 $\gamma$ ]=0.105 <i>36</i> , theoretical (BRICC)<br>$\alpha$ (K)[780.66 $\gamma$ ]=0.24 <i>17</i> and $\alpha$ (K)[803.1 $\gamma$ ]=0.00803 <i>11</i> .<br>$\alpha$ (K)=0.00326 5; $\alpha$ (L)=0.000504 7; $\alpha$ (M)=0.0001166 <i>16</i><br>$\alpha$ (N)=2.95×10 <sup>-5</sup> 4; $\alpha$ (O)=5.83×10 <sup>-6</sup> 8; $\alpha$ (P)=5.93×10 <sup>-7</sup> 8<br>%[ $\gamma$ =0.537 <i>10</i> |
| 803.10 5                        | 100                      | 803.10                 | 2+                   | 0.0              | 0+                     | E2                            |                            | 0.01031 14     | Mult.: K:L1+L2:L3=0.216 46:0.108 27: 0.0242 98 (1972Ka30).<br>$\alpha(K)=0.00803 \ 11; \ \alpha(L)=0.001741 \ 24; \ \alpha(M)=0.000419 \ 6$<br>$\alpha(N)=0.0001063 \ 15; \ \alpha(O)=2.059\times10^{-5} \ 29; \ \alpha(P)=1.889\times10^{-6} \ 26$<br>$\%_{IY}=98.980 \ 14$                                                                                                                                                      |
| 016 <b>05</b> <sup>†</sup> 40   | 0.051.20                 | 2016 40                | -                    | 2200.22          | -                      |                               |                            | 0.00000.14     | Mult.: ce-ce( $\theta$ ) measurements of 1964Sa57 indicate that the<br>803 $\gamma$ is of E2 character; $\gamma(\theta)$ in 1973Ka35;<br>K:L1+L2:L3:M:N=100:21.6 <i>11</i> :1.99 <i>11</i> :5.35 <i>27</i> :1.73 <i>10</i><br>(1972Ka30).                                                                                                                                                                                         |
| 816.25* <i>10</i>               | 0.051 20                 | 3016.49                | 5-                   | 2200.22          | /-                     | [E2]                          |                            | 0.00998 14     | $\alpha(K)=0.007/8$ 11; $\alpha(L)=0.0016/3$ 23; $\alpha(M)=0.000402$ 6<br>$\alpha(N)=0.0001020$ 14; $\alpha(O)=1.977\times10^{-5}$ 28; $\alpha(P)=1.822\times10^{-6}$ 26<br>%I $\gamma$ =0.051 20<br>I $_{\gamma}$ : Determined by the evaluator from the measured <i>ce</i> in<br>1972Ka30 ce(K)[816.25 $\gamma$ ]=0.049 19, theoretical (BRICC)<br>(V)[816.25 $\gamma$ ]=0.049 19, theoretical (BRICC)                         |
| 841.28 7                        | 0.188 9                  | 3225.47                | (6,7)-               | 2384.23          | 6-                     | M1+E2                         | 0.6 5                      | 0.023 5        | $\alpha(K)[810.25\gamma]=0.007/8$ 11 and $\alpha(K)[803.1\gamma]=0.00803$ 11.<br>$\alpha(K)=0.019$ 4; $\alpha(L)=0.0032$ 6; $\alpha(M)=0.00075$ 14                                                                                                                                                                                                                                                                                |

From ENSDF

 $^{206}_{82} \mathrm{Pb}_{124}\text{-}8$ 

|                                                                                                                              |                          |                        |                      |         | <sup>206</sup> E       | Bi $\varepsilon$ + $\beta^+$ deca | y <b>1972M</b> a                 | a63,1972Ka30   | (continued)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|------------------------------------------------------------------------------------------------------------------------------|--------------------------|------------------------|----------------------|---------|------------------------|-----------------------------------|----------------------------------|----------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                                                                                                              |                          |                        |                      |         |                        |                                   | $\gamma$ <sup>(206</sup> Pb) (co | ontinued)      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| ${\rm E_{\gamma}}^{\dagger}$                                                                                                 | $I_{\gamma}^{\dagger}$ & | E <sub>i</sub> (level) | $\mathbf{J}_i^{\pi}$ | $E_f$   | $\mathbf{J}_{f}^{\pi}$ | Mult. <sup>#</sup>                | δ <b>#</b>                       | α <sup>@</sup> | Comments                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| 881.01 5                                                                                                                     | 66.9 7                   | 1684.04                | 4+                   | 803.10  | 2+                     | E2                                |                                  | 0.00855 12     | $\begin{aligned} \alpha(N) = 0.00019 \ 4; \ \alpha(O) = 3.8 \times 10^{-5} \ 7; \ \alpha(P) = 4.0 \times 10^{-6} \ 9 \\ \% I\gamma = 0.186 \ 9 \\ \text{Mult.: K:L1:M:N} = 0.443 \ 45:0.0730 \ 16: \ 0.0154 \ 61: \ 0.0166 \ 86 \\ (1972 \text{Ka30}); \ \alpha_{\text{K}}(\exp) = 0.019 \ 3 \ (1972 \text{Ma63}). \\ \alpha(\text{K}) = 0.00673 \ 9; \ \alpha(\text{L}) = 0.001389 \ 19; \ \alpha(\text{M}) = 0.000333 \ 5 \\ \alpha(\text{N}) = 8.43 \times 10^{-5} \ 12; \ \alpha(\text{O}) = 1.640 \times 10^{-5} \ 23; \ \alpha(\text{P}) = 1.540 \times 10^{-6} \\ 22 \\ \% \text{ In } = 662.7 \end{aligned}$ |
| 895.12 5                                                                                                                     | 15.83 <i>16</i>          | 3279.28                | 5-                   | 2384.23 | 6-                     | M1+E2                             | -0.030 6                         | 0.02363 33     | $\begin{array}{l} & \text{Mult: K:L1+L2:L3:M:N=55.4 } 24:11.5 \ 6:0.73 \ 5:2.90 \ 16:0.94 \\ & 11; \ \alpha_{\text{K}}(\exp)=0.0067 \ 4 \ (1972\text{Ma63}). \\ & \alpha(\text{K})=0.01943 \ 27; \ \alpha(\text{L})=0.00322 \ 5; \ \alpha(\text{M})=0.000750 \ 11 \\ & \alpha(\text{N})=0.0001905 \ 27; \ \alpha(\text{O})=3.80\times10^{-5} \ 5; \ \alpha(\text{P})=4.09\times10^{-6} \ 6 \\ & \text{\%Iy}=15.67 \ 16 \\ & \text{Mult: K:L1+L2:M:N=34.0 } 15: \ 5: 33. 28: \ 151.9: \ 0.485.34 \end{array}$                                                                                                         |
| 915.00 <i>10</i>                                                                                                             | 0.031 <i>3</i>           | 3562.93                | 5-                   | 2647.86 | 3-                     | E2                                |                                  | 0.00793 11     | (1972Ka30); $\alpha_{\rm K}(\exp)=0.0174\ 18\ (1972Ma63)$ .<br>$\delta$ : Others: $-0.030\ 3\ (1973Ka35)$ and $0.047\ 25\ (1977Mc01)$ .<br>$\alpha({\rm K})=0.00626\ 9;\ \alpha({\rm L})=0.001269\ 18;\ \alpha({\rm M})=0.000303\ 4$<br>$\alpha({\rm N})=7.69\times10^{-5}\ 11;\ \alpha({\rm O})=1.498\times10^{-5}\ 21;\ \alpha({\rm P})=1.418\times10^{-6}$<br>20                                                                                                                                                                                                                                                  |
| 963.82 9                                                                                                                     | 0.037 4                  | 2647.86                | 3-                   | 1684.04 | 4+                     | [E1]                              |                                  | 0.00267 4      | %I $\gamma$ =0.0307 30<br>Mult.: $\alpha_{\rm K}(\exp)$ =0.0061 16 (1972Ma63).<br>%I $\gamma$ =0.037 4<br>$\alpha({\rm K})$ =0.002229 31; $\alpha({\rm L})$ =0.000341 5; $\alpha({\rm M})$ =7.86×10 <sup>-5</sup> 11<br>$\alpha({\rm N})$ =1.987×10 <sup>-5</sup> 28; $\alpha({\rm O})$ =3.94×10 <sup>-6</sup> 6; $\alpha({\rm P})$ =4.06×10 <sup>-7</sup> 6<br>E <sub><math>\gamma</math></sub> : From the level energy difference. E $\gamma$ =964.22 keV 10 in                                                                                                                                                    |
| 1018.63 8                                                                                                                    | 7.68 8                   | 3402.71                | 5-                   | 2384.23 | 6-                     | M1+E2                             | -0.019 7                         | 0.01696 24     | 1972Ma63.<br>$\alpha(K)=0.01395\ 20;\ \alpha(L)=0.002300\ 32;\ \alpha(M)=0.000536\ 8$<br>$\alpha(N)=0.0001362\ 19;\ \alpha(O)=2.72\times10^{-5}\ 4;\ \alpha(P)=2.92\times10^{-6}\ 4$<br>$\%_{I}\gamma=7.60\ 8$<br>Mult.: K:L1+L2:M:N=13.5 7: 2.78 14: 0.671 36: 0.206 15<br>(1972Ka30);\ \alpha_{K}(exp)=0.0142\ 10\ (1972Ma63).                                                                                                                                                                                                                                                                                     |
| 1025.30 <i>10</i>                                                                                                            | 0.043 4                  | 3225.47                | (6,7)-               | 2200.22 | 7-                     | M1(+E2)                           | <0.9                             | 0.0144 23      | δ: Others: -0.018 3 (1973Ka35) and 0.055 20 (1977Mc01).<br>$\alpha$ (K)=0.0118 19; $\alpha$ (L)=0.00197 29; $\alpha$ (M)=0.00046 7<br>$\alpha$ (N)=0.000117 17; $\alpha$ (O)=2.33×10 <sup>-5</sup> 34; $\alpha$ (P)=2.5×10 <sup>-6</sup> 4<br>%Iγ=0.043 4                                                                                                                                                                                                                                                                                                                                                            |
| <sup>x</sup> 1047.55 <i>10</i><br><sup>x</sup> 1059.64 <sup>‡</sup> <i>16</i><br><sup>x</sup> 1071.88 <sup>‡</sup> <i>16</i> | 0.057 6                  |                        |                      |         |                        |                                   |                                  |                | Mult.: $\alpha_{\rm K}(\exp)=0.0143$ 46 (1972Ma63).<br>%I $\gamma=0.056$ 6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |

 $^{206}_{82} Pb_{124}\text{-}9$ 

|                                                     |                                  |                        |                      | 206]                               | Bi $\varepsilon$ + $\beta^+$ de | ecay 1972Ma                       | 63,1972Ka30 (continued)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|-----------------------------------------------------|----------------------------------|------------------------|----------------------|------------------------------------|---------------------------------|-----------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                                     |                                  |                        |                      |                                    |                                 | $\gamma$ ( <sup>206</sup> Pb) (co | ntinued)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| $E_{\gamma}^{\dagger}$                              | $I_{\gamma}$ †&                  | E <sub>i</sub> (level) | $\mathbf{J}_i^{\pi}$ | $\mathbf{E}_f  \mathbf{J}_f^{\pi}$ | Mult. <sup>#</sup>              | α@                                | Comments                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| <sup>x</sup> 1093.31 <i>10</i><br>1098.26 7         | 0.071 7<br>13.65 <i>15</i>       | 2782.25                | 5-                   | 1684.04 4+                         | E1                              | 2.12×10 <sup>-3</sup> 3           | %I $\gamma$ =0.070 7<br>$\alpha$ (K)=0.001768 25; $\alpha$ (L)=0.000268 4; $\alpha$ (M)=6.18×10 <sup>-5</sup> 9<br>$\alpha$ (N)=1.562×10 <sup>-5</sup> 22; $\alpha$ (O)=3.10×10 <sup>-6</sup> 4; $\alpha$ (P)=3.22×10 <sup>-7</sup> 5<br>%I $\gamma$ =13.51 15<br>Mult: K:I 1+1 2:I 3:M:N=3 60 19:0 472 26: 0.0207 32:0 120 9: 0.0310                                                                                                                                                                                           |
| 1142.37 10                                          | 0.112 5                          | 2826.38                | (4)-                 | 1684.04 4+                         | E1                              | 1.98×10 <sup>-3</sup> 3           | Mult. R.E1+E2.E3Mir(4=5.06 19.0.472 20, 0.0207 32.0.126 9, 0.0316<br>45 (1972Ka30); $\alpha_{\rm K}(\exp)=0.0021\ 2\ (1972Ma63)$ .<br>$\alpha({\rm K})=0.001650\ 23;\ \alpha({\rm L})=0.0002495\ 35;\ \alpha({\rm M})=5.75\times10^{-5}\ 8$<br>$\alpha({\rm N})=1.454\times10^{-5}\ 20;\ \alpha({\rm O})=2.89\times10^{-6}\ 4;\ \alpha({\rm P})=3.00\times10^{-7}\ 4;$<br>$\alpha({\rm IPF})=3.57\times10^{-6}\ 5$<br>$\%$ I $\gamma$ =0.111 5<br>Mult.: $\alpha_{\rm K}(\exp)=0.0016\ 4\ (1972Ma63)$ .                         |
| <sup>x</sup> 1166.70 <sup>∓</sup> 16<br>1180.70 10  | 0.067 7                          | 2864.61                | 7-                   | 1684.04 4+                         | [E3]                            | 0.01066 15                        | $ \begin{aligned} &\alpha(\mathrm{K}) = 0.00813 \ 11; \ \alpha(\mathrm{L}) = 0.001918 \ 27; \ \alpha(\mathrm{M}) = 0.000467 \ 7 \\ &\alpha(\mathrm{N}) = 0.0001186 \ 17; \ \alpha(\mathrm{O}) = 2.303 \times 10^{-5} \ 32; \ \alpha(\mathrm{P}) = 2.168 \times 10^{-6} \ 30; \\ &\alpha(\mathrm{IPF}) = 7.28 \times 10^{-7} \ 10 \end{aligned} $                                                                                                                                                                                |
| 1194.69 8                                           | 0.280 15                         | 1997.70                | 4+                   | 803.10 2+                          | E2                              | 0.00474 7                         | %Iγ=0.066 7<br>$\alpha$ (K)=0.00382 5; $\alpha$ (L)=0.000696 10; $\alpha$ (M)=0.0001643 23<br>$\alpha$ (N)=4.16×10 <sup>-5</sup> 6; $\alpha$ (O)=8.18×10 <sup>-6</sup> 11; $\alpha$ (P)=8.13×10 <sup>-7</sup> 11;<br>$\alpha$ (IPF)=3.43×10 <sup>-6</sup> 5<br>%Iγ=0.277 15<br>Mult.: K:L1+L2=0.132 16:0.0387 99(1972Ka30); $\alpha$ <sub>K</sub> (exp)=0.0038 7                                                                                                                                                                |
| 1202.58 10                                          | 0.106 6                          | 3402.71                | 5-                   | 2200.22 7-                         | E2                              | 0.00468 7                         | $\alpha(K)=0.00378 5; \alpha(L)=0.000686 10; \alpha(M)=0.0001619 23$<br>$\alpha(N)=4.10\times10^{-5} 6; \alpha(O)=8.07\times10^{-6} 11; \alpha(P)=8.03\times10^{-7} 11;$<br>$\alpha(IPF)=4.06\times10^{-6} 6$<br>$\%I\gamma=0.105 6$<br>Mult.: K:L1+L2=0.0397 73: 0.0299 79 (1972Ka30).                                                                                                                                                                                                                                         |
| <sup>x</sup> 1208.76 <i>10</i><br>1246.46 <i>10</i> | 0.050 <i>5</i><br>0.085 <i>8</i> | 3244.31                | 4-                   | 1997.70 4+                         | (E1)                            | 1.73×10 <sup>-3</sup> 2           | %I $\gamma$ =0.050 5<br>$\alpha$ (K)=0.001417 20; $\alpha$ (L)=0.0002134 30; $\alpha$ (M)=4.91×10 <sup>-5</sup> 7<br>$\alpha$ (N)=1.243×10 <sup>-5</sup> 17; $\alpha$ (O)=2.470×10 <sup>-6</sup> 35; $\alpha$ (P)=2.58×10 <sup>-7</sup> 4;<br>$\alpha$ (IPF)=3.13×10 <sup>-5</sup> 4<br>%I $\gamma$ =0.084 8<br>Mult.: $\alpha$ <sub>K</sub> (exp)=0.0025 9 by the evaluator from Ice(K)[803 $\gamma$ ] and                                                                                                                     |
| 1281.81 <i>10</i>                                   | 0.066 7                          | 3279.28                | 5-                   | 1997.70 4+                         | [E1]                            | 1.66×10 <sup>-3</sup> 2           | Ice(K)[1246 $\gamma$ ] in 1972Ka30, I $\gamma$ (803 $\gamma$ ) and I $\gamma$ (1246 $\gamma$ ) from<br>1972Ma63, and $\alpha$ (K,exp)[803 $\gamma$ ]=0.00803 <i>11</i> .<br>$\alpha$ (K)=0.001350 <i>19</i> ; $\alpha$ (L)=0.0002030 <i>28</i> ; $\alpha$ (M)=4.67×10 <sup>-5</sup> <i>7</i><br>$\alpha$ (N)=1.183×10 <sup>-5</sup> <i>17</i> ; $\alpha$ (O)=2.351×10 <sup>-6</sup> <i>33</i> ; $\alpha$ (P)=2.457×10 <sup>-7</sup> <i>34</i> ;<br>$\alpha$ (IPF)=4.49×10 <sup>-5</sup> <i>6</i><br>%I $\gamma$ =0.065 <i>7</i> |
| 1332.33 10                                          | 0.285 15                         | 3016.49                | 5-                   | 1684.04 4+                         | E1                              | $1.58 \times 10^{-3} 2$           | $\alpha(K)=0.001264 \ 18; \ \alpha(L)=0.0001896 \ 27; \ \alpha(M)=4.37\times10^{-5} \ 6$                                                                                                                                                                                                                                                                                                                                                                                                                                        |

From ENSDF

 $^{206}_{82}\text{Pb}_{124}\text{-}10$ 

 ${}^{206}_{82}\text{Pb}_{124}$ -10

|                                      |                          |                        |                      |                  | <sup>206</sup> Bi $\varepsilon$ + $\beta$ <sup>+</sup> | decay 1972M                     | (a63,1972Ka30 (continued)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|--------------------------------------|--------------------------|------------------------|----------------------|------------------|--------------------------------------------------------|---------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                      |                          |                        |                      |                  |                                                        | $\gamma$ <sup>(206</sup> Pb) (c | continued)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| $E_{\gamma}^{\dagger}$               | $I_{\gamma}^{\dagger}$ & | E <sub>i</sub> (level) | $\mathbf{J}_i^{\pi}$ | $\mathrm{E}_f$ J | $\int_{f}^{\pi}$ Mult. <sup>#</sup>                    | α <sup>@</sup>                  | Comments                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|                                      |                          |                        | _                    |                  | <u> </u>                                               |                                 | $\begin{aligned} &\alpha(\text{N})=1.105\times10^{-5} \ 15; \ \alpha(\text{O})=2.196\times10^{-6} \ 31; \ \alpha(\text{P})=2.299\times10^{-7} \ 32; \\ &\alpha(\text{IPF})=6.78\times10^{-5} \ 10 \\ &\%\text{I}\gamma=0.282 \ 15 \\ &\text{Mult.:} \ \alpha_{\text{K}}(\text{exp})=0.0015 \ 3 \ (1972\text{Ma63}). \end{aligned}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| <sup>x</sup> 1393.65 <sup>‡</sup> 16 |                          |                        | _                    |                  |                                                        |                                 | 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 1405.01 8                            | 1.450 25                 | 3402.71                | 5-                   | 1997.70 4        | ι+ E1                                                  | 1.49×10 <sup>-3</sup> 2         | $\alpha(K)=0.001154 \ 16; \ \alpha(L)=0.0001728 \ 24; \ \alpha(M)=3.98\times10^{-5} \ 6 \\ \alpha(N)=1.006\times10^{-5} \ 14; \ \alpha(O)=2.001\times10^{-6} \ 28; \ \alpha(P)=2.099\times10^{-7} \ 29; \\ \alpha(IPF)=0.0001091 \ 15 \\ \%_{I\gamma}=1.435 \ 25 \\ Mult.: \ K:L1+L2:M=0.249 \ 14: \ 0.0227 \ 48: \ 0.0065 \ 25 \ (1972Ka30); \\ (1972Ka30); \ (1972Ka30)$ |
| <sup>x</sup> 1420 22 10              | 0.043.4                  |                        |                      |                  |                                                        |                                 | $\alpha_{\rm K}(\exp)=0.0014\ 2\ (1972{\rm Ma63}).$<br>%Iv=0.043 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| <sup>x</sup> 1466.63 <sup>‡</sup> 17 | 0.015 /                  |                        |                      |                  |                                                        |                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| <sup>x</sup> 1496.18 8               | 0.178 10                 |                        |                      |                  |                                                        | 2                               | %Iy=0.176 <i>10</i>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| 1560.30 8                            | 0.382 20                 | 3244.31                | 4-                   | 1684.04 4        | ŀ+ E1                                                  | 1.37×10 <sup>-3</sup> 2         | $\alpha(K)=0.000968 \ 14; \ \alpha(L)=0.0001442 \ 20; \ \alpha(M)=3.32\times10^{-5} \ 5 \\ \alpha(N)=8.39\times10^{-6} \ 12; \ \alpha(O)=1.671\times10^{-6} \ 23; \ \alpha(P)=1.759\times10^{-7} \ 25; \\ \alpha(IPF)=0.0002117 \ 30 \\ \%Iv=0 \ 378 \ 20 $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| 1565 24 8                            | 0 207 15                 | 2562.02                | 5-                   | 1007 70          | I+ E1                                                  | $1.26\times10^{-3}$ 2           | Mult.: K:L1+L2=0.0485 85:0.0056 28 (1972Ka30); $\alpha_{\rm K}(\exp)=0.00102$ 23 by<br>the evaluator from Ice(K)[803 $\gamma$ ] and Ice(K)[1560 $\gamma$ ] in 1972Ka30, I $\gamma$ (803 $\gamma$ )<br>and I $\gamma$ (1560 $\gamma$ ) from 1972Ma63, and $\alpha$ (K,exp)[803 $\gamma$ ]=0.00803 11.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| 1505.54 8                            | 0.307 13                 | 5502.95                | 5                    | 1997.70 4        | + E1                                                   | 1.50×10 2                       | $\begin{aligned} \alpha(\text{N}) = 0.000902 \ 13, \ \alpha(\text{L}) = 0.0001434 \ 20, \ \alpha(\text{M}) = 3.50\times10^{-5} \ 3 \\ \alpha(\text{N}) = 8.35\times10^{-6} \ 12; \ \alpha(\text{O}) = 1.662\times10^{-6} \ 23; \ \alpha(\text{P}) = 1.750\times10^{-7} \ 25; \\ \alpha(\text{IPF}) = 0.0002152 \ 30 \\ \% \text{I}\gamma = 0.304 \ 15 \end{aligned}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| 1500 0 1                             | 0.041.4                  | 0201 409               |                      | 902 10 2         | <b>+</b>                                               |                                 | Mult.: K:L1+L2=0.0358 56: 0.0037 20 (1972Ka30).                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| 1388.2 1                             | 0.041 4                  | 2391.40?               |                      | 805.10 2         | 2                                                      |                                 | $\alpha_{\rm I}\gamma = 0.0414$<br>Mult.: $\alpha_{\rm K}(\exp) = 0.007121$ (1972Ma63) consistent with Mult=M2+E3 or E4.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| 1595.27 8                            | 5.07 6                   | 3279.28                | 5-                   | 1684.04 4        | ι+ Ε1                                                  | 1.35×10 <sup>-3</sup> 2         | $\alpha(K)=0.000933 \ 13; \ \alpha(L)=0.0001389 \ 19; \ \alpha(M)=3.19\times10^{-5} \ 4$<br>$\alpha(N)=8.08\times10^{-6} \ 11; \ \alpha(O)=1.609\times10^{-6} \ 23; \ \alpha(P)=1.695\times10^{-7} \ 24;$<br>$\alpha(IPF)=0.0002363 \ 33$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| 1710 70 7                            | 22.2.4                   | 2402 51                | <b>-</b>             | 1604.04          |                                                        | 1 21 10-3 2                     | %I $\gamma$ =5.02 6<br>Mult.: K:L1+L2:M:N=0.654 33: 0.0426 55: 0.0094 29: 0.0033 17 (1972Ka30);<br>$\alpha_{\rm K}(\exp)$ =0.0010 1 (1972Ma63).                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| 1/18./0 /                            | 52.2 4                   | 3402.71                | 5-                   | 1684.04 4        | F EI                                                   | 1.31×10 <sup>-3</sup> 2         | $\begin{aligned} \alpha(\mathbf{K}) &= 0.000824 \ I2; \ \alpha(\mathbf{L}) &= 0.0001223 \ I/; \ \alpha(\mathbf{M}) &= 2.81 \times 10^{-5} \ 4 \\ \alpha(\mathbf{N}) &= 7.12 \times 10^{-6} \ I0; \ \alpha(\mathbf{O}) &= 1.417 \times 10^{-6} \ 20; \ \alpha(\mathbf{P}) &= 1.497 \times 10^{-7} \ 21; \\ \alpha(\mathbf{IPF}) &= 0.000326 \ 5 \\ \% & \mathbf{I}\gamma &= 31.9 \ 4 \end{aligned}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|                                      |                          |                        |                      |                  |                                                        |                                 | Mult.: K:L1+L2:M:N=3.12 <i>16</i> : 0.142 8: 0.0371 24: 0.0092 <i>13</i> (1972Ka30); $\alpha_{\rm K}(\exp)=0.00078$ 5 (1972Ma63).                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |

н

|                                       |                          |                        |                      |           | <sup>206</sup> Bi $\varepsilon$ + $\beta$ <sup>+</sup> | decay 1972N             | Aa63,1972Ka30 (continued)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |  |  |
|---------------------------------------|--------------------------|------------------------|----------------------|-----------|--------------------------------------------------------|-------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|
| $\gamma(^{206}\text{Pb})$ (continued) |                          |                        |                      |           |                                                        |                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |  |  |
| ${\rm E}_{\gamma}^{\dagger}$          | $I_{\gamma}^{\dagger}$ & | E <sub>i</sub> (level) | $\mathbf{J}_i^{\pi}$ | $E_f J'$  | f Mult. <sup>#</sup>                                   | α <sup>@</sup>          | Comments                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |  |  |
|                                       |                          |                        |                      |           |                                                        |                         | α: Measured internal pair conversion coefficient $β_{\pi}$ =3.06 x 10 <sup>-4</sup> 15 (1998Wu02).                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |  |  |
| 1844.49 <i>10</i>                     | 0.575 25                 | 2647.86                | 3-                   | 803.10 2  | + E1                                                   | 1.29×10 <sup>-3</sup> 2 | $\alpha(K)=0.000733 \ 10; \ \alpha(L)=0.0001086 \ 15; \ \alpha(M)=2.494\times10^{-5} \ 35$<br>$\alpha(N)=6.31\times10^{-6} \ 9; \ \alpha(O)=1.258\times10^{-6} \ 18; \ \alpha(P)=1.332\times10^{-7} \ 19;$<br>$\alpha(IPF)=0.000417 \ 6$<br>%Iy=0.569 25<br>Mult: $\alpha_{K}(\exp)=0.00071 \ 11 \ (1972Ma63).$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |  |  |
|                                       |                          |                        |                      |           |                                                        |                         | $\alpha$ : Measured internal pair conversion coefficient $\beta_{\pi}$ =4.65×10 <sup>-4</sup> 15 for the combined 1844-, 1879-, and 1904-keV transitions (1998Wu02).                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |  |  |
| 1878.65 8                             | 2.03 4                   | 3562.93                | 5-                   | 1684.04 4 | + E1                                                   | 1.29×10 <sup>-3</sup> 2 | $ \begin{array}{l} \alpha(\mathrm{K}) = 0.000711 \ 10; \ \alpha(\mathrm{L}) = 0.0001053 \ 15; \ \alpha(\mathrm{M}) = 2.419 \times 10^{-5} \ 34 \\ \alpha(\mathrm{N}) = 6.12 \times 10^{-6} \ 9; \ \alpha(\mathrm{O}) = 1.220 \times 10^{-6} \ 17; \ \alpha(\mathrm{P}) = 1.292 \times 10^{-7} \ 18; \\ \alpha(\mathrm{IPF}) = 0.000442 \ 6 \\ \% \mathrm{I}\gamma = 2.01 \ 4 \end{array} $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |  |  |
|                                       |                          |                        |                      |           |                                                        |                         | Mult.: K:L1+L2=0.150 11: 0.0381 91 (1972Ka30); $\alpha_{\rm K}(\exp)$ =0.00060 6 (1972Ma63).                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |  |  |
| 1903.56 <i>10</i>                     | 0.353 15                 | 3244.31                | 4-                   | 1340.55 3 | + E1                                                   | 1.29×10 <sup>-3</sup> 2 | $\alpha(K)=0.000696 \ 10; \ \alpha(L)=0.0001030 \ 14; \ \alpha(M)=2.366\times10^{-5} \ 33$<br>$\alpha(N)=5.99\times10^{-6} \ 8; \ \alpha(O)=1.193\times10^{-6} \ 17; \ \alpha(P)=1.264\times10^{-7} \ 18;$<br>$\alpha(IPF)=0.000460 \ 6$<br>%Iy=0.349 $\ 15$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |  |  |
| <sup>x</sup> 1963.2 <i>3</i>          | 0.011 2                  |                        |                      |           |                                                        |                         | Mult.: $\alpha_{\rm K}(\exp)=0.00071$ 17 (1972Ma63).<br>%I $\gamma=0.0109$ 20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |  |  |
| 2022.8 2                              | 0.013 2                  | 2826.38                | (4)-                 | 803.10 2  | + M2,E3                                                | 0.0054 18               | $\alpha(K)=0.0043 \ 15; \ \alpha(L)=7.4\times10^{-4} \ 23; \ \alpha(M)=1.7\times10^{-4} \ 5 \\ \alpha(N)=4.4\times10^{-5} \ 14; \ \alpha(O)=8.8\times10^{-6} \ 28; \ \alpha(P)=9.3\times10^{-7} \ 31; \\ \alpha(IPF)=0.000187 \ 25 \\ \%I\gamma=0.0129 \ 20$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |  |  |
| 2441.21 9                             | 0.005 2                  | 3244.31                | 4-                   | 803.10 2  | + [M2]                                                 | 0.00484 7               | Mult.: $\alpha_{\rm K}(\exp)=0.0047\ 27\ (1972Ma63)$ .<br>Mult.: $ce\ data\ allow\ M2,M3,E3\ but\ placement\ in\ level\ scheme\ precludes\ M3.$<br>$\%I\gamma=0.0050\ 20$<br>$\alpha({\rm K})=0.00365\ 5;\ \alpha({\rm L})=0.000608\ 9;\ \alpha({\rm M})=0.0001421\ 20$<br>$\alpha({\rm K})=0.00365\ 5;\ \alpha({\rm L})=0.000608\ 9;\ \alpha({\rm M})=0.0001421\ 20$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |  |  |
|                                       |                          |                        |                      |           |                                                        |                         | $\alpha(N)=5.01\times10^{-5}$ ; $\alpha(O)=7.21\times10^{-5}$ 10; $\alpha(P)=7.76\times10^{-5}$ 11;<br>$\alpha(IPF)=0.000396$ 6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |  |  |
| 2476.18 9                             | 0.015 2                  | 3279.28                | 5-                   | 803.10 2  | + [E3]                                                 | 0.00264 4               | $E_{\gamma}$ : From the level energy difference. $E_{\gamma}=2439.0$ keV 4 in 1972Mao3.<br>% $I_{\gamma}=0.0149$ 20<br>$\alpha(K)=0.001895$ 27: $\alpha(I)=0.000328$ 5: $\alpha(M)=7.70\times10^{-5}$ 11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |  |  |
| 2599.6 2                              | 0.131 10                 | 3402.71                | 5-                   | 803.10 2  | + (E3)                                                 | 2.48×10 <sup>-3</sup> 4 | $\alpha(N)=0.001325 27, \alpha(D)=0.000326 5, \alpha(N)=7.10\times10^{-11} 10^{-11} \alpha(N)=1.955\times10^{-5} 27; \alpha(O)=3.88\times10^{-6} 5; \alpha(P)=4.04\times10^{-7} 6; \alpha(IPF)=0.000320 4$<br>E <sub>y</sub> : From the level energy difference. E <sub>y</sub> =2476.7 keV 2 in 1972Ma63.<br>$\alpha(K)=0.001727 24; \alpha(L)=0.000296 4; \alpha(M)=6.93\times10^{-5} 10 \alpha(N)=1.760\times10^{-5} 25; \alpha(O)=3.49\times10^{-6} 5; \alpha(P)=3.65\times10^{-7} 5; \alpha$ |  |  |
|                                       |                          |                        |                      |           |                                                        |                         | $\alpha(\text{IPF})=0.000365\ 5$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |  |  |

From ENSDF

 $^{206}_{82} \text{Pb}_{124}\text{-}12$ 

|                                                                                                                                                                                                                                     |                          |                        |                      |                  | <sup>206</sup> Bi  | $\varepsilon$ + $\beta^+$ decay | 1972Ma63,1972Ka30 (continued)                                                                                                                                                                                                                                      |  |  |  |  |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------|------------------------|----------------------|------------------|--------------------|---------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|
| $\gamma$ <sup>(206</sup> Pb) (continued)                                                                                                                                                                                            |                          |                        |                      |                  |                    |                                 |                                                                                                                                                                                                                                                                    |  |  |  |  |
| $E_{\gamma}^{\dagger}$                                                                                                                                                                                                              | $I_{\gamma}^{\dagger}\&$ | E <sub>i</sub> (level) | $\mathbf{J}_i^{\pi}$ | $E_f  J_f^{\pi}$ | Mult. <sup>#</sup> | α@                              | Comments                                                                                                                                                                                                                                                           |  |  |  |  |
|                                                                                                                                                                                                                                     |                          |                        |                      |                  |                    |                                 | %I $\gamma$ =0.130 <i>10</i><br>Mult.: $\alpha_{\rm K}(\exp)$ =0.0014 <i>5</i> (1972Ma63) allow M1 or E3, but the decay scheme requires E3.                                                                                                                        |  |  |  |  |
| 2759.6 10                                                                                                                                                                                                                           | 0.014 2                  | 3562.93                | 5-                   | 803.10 2+        | [E3]               | 2.30×10 <sup>-3</sup> 3         | $\alpha$ (K)=0.001539 22; $\alpha$ (L)=0.000260 4; $\alpha$ (M)=6.10×10 <sup>-5</sup> 9<br>$\alpha$ (N)=1.547×10 <sup>-5</sup> 22; $\alpha$ (O)=3.07×10 <sup>-6</sup> 4; $\alpha$ (P)=3.23×10 <sup>-7</sup> 5; $\alpha$ (IPF)=0.000424 6<br>%I $\gamma$ =0.0139 20 |  |  |  |  |
| <sup>†</sup> From 1972Ma63, unless otherwise stated.<br><sup>‡</sup> From 1972Ka30. Not seen by 1972Ma63.                                                                                                                           |                          |                        |                      |                  |                    |                                 |                                                                                                                                                                                                                                                                    |  |  |  |  |
| <sup>#</sup> From adopted gammas. The <sup>206</sup> Bi $\varepsilon$ decay data are from subshell ratios (1972Ka30) and/or $\alpha$ (K)exp (1972Ma63, based on ce data of 1972Ka30), normalized to $\alpha$ (K)exp(803 $\gamma$ ). |                          |                        |                      |                  |                    |                                 |                                                                                                                                                                                                                                                                    |  |  |  |  |
| <sup>(a)</sup> Additional information 3.<br><sup>(b)</sup> For absolute intensity per 100 decays, multiply by 0.98980 14                                                                                                            |                          |                        |                      |                  |                    |                                 |                                                                                                                                                                                                                                                                    |  |  |  |  |
| <sup>a</sup> Placement of transition in the level scheme is uncertain.                                                                                                                                                              |                          |                        |                      |                  |                    |                                 |                                                                                                                                                                                                                                                                    |  |  |  |  |

<sup>*x*</sup> Placement of transition in the level  $x \gamma$  ray not placed in level scheme.

From ENSDF







9.51

 $^{\mid \lor} 8.8$ 

 $\geq 9.6$ 9.781

Log ft

8.730

## <sup>206</sup>Bi $\varepsilon$ + $\beta$ <sup>+</sup> decay 1972Ma63,1972Ka30

 $^{206}_{82}\text{Pb}_{124}\text{--}15$