²⁰⁶Pb IT decay (202 ns) 1977Dr08

		History	
Туре	Author	Citation	Literature Cutoff Date
Full Evaluation	F. G. Kondev	NDS 201,346 (2025)	21-Jan-2025

Parent: ²⁰⁶Pb: E=4027.3 4; $J^{\pi}=12^+$; $T_{1/2}=202$ ns 3; %IT decay=100

1977Dr08: 93% enriched ²⁰⁴Hg target. Reaction: ²⁰⁴Hg(α ,2n γ), E=30 MeV. Measured E γ , I γ , ce, $\gamma\gamma(t)$ coin. Detectors: two Ge(Li), solenoid magnet and a cooled Si(Li) detector. Conversion coefficients were determined by assuming $\alpha(K)$ (theory, E2)=0.0081 for 803 γ .

Others: 1970Qu03, 1971Be37, 1972Ma24, 1972Na08, 1973DiZE, 1979Ma37, 1983St15, 1994Po20, 2018La03.

²⁰⁶Pb Levels

E(level) [†]	$J^{\pi \ddagger}$	T _{1/2} ‡	Comments
0.0	0^+	0.15 0	
803.04 3	2+	8.17 ps 8	
1340.52 5	3+		
1684.00 6	4+		
1997.72 6	4+		
2200.18 7	7-	125.1 µs 12	$\mu = -0.1519\ 28;\ Q = 0.5\ 2$
			μ : From g=-0.0217 4 by 1972Ma24. Other: -0.24 14 (1970Qu03).
			Q: From 1973DiZE. Other: ≤0.2 (1970Qu03).
			Dominant configuration= $\nu(p_{1/2}^{-1}, i_{13/2}^{-1})$.
2658.28 21	9-		Dominant configuration= $\nu(f_{5/2}^{-1},i_{13/2}^{-1})$.
3957.4 <i>4</i>	10^{+}		Dominant configuration= $\nu(i_{13/2}^{-2})$.
4027.2 4	12^{+}	202 ns 3	$\mu = -1.795 \ 22; \ Q = 0.51 \ 2$
			$T_{1/2}$: Weighted average of 200 ns 14 (1971Be37), 198 ns 6 (1979Ma37), 185 ns 15
			(1983St15), 205 ns 4 (1993Bl02). Other: 203 ns 28 (2018La03).
			μ : Based on g-factor=-0.1496 18 (1983St15). Other: μ =-1.86 5 from g-factor=-0.155 4
			(1972Na08).
			Q: Based on $Q(^{200}Pb, 12^+)/Q(^{206}Pb, 12^+)=1.553 \ 10 \ (1979Ma37).$
			Dominant configuration= $v(i_{13/2}^{-2})$.

[†] From a least-squares fit to $E\gamma$.

[‡] From Adopted Levels.

I γ normalization: From I(γ +ce)[803.04 γ]=100.

$\mathrm{E}_{\gamma}^{\dagger}$	I_{γ} ‡ c	E _i (level)	\mathbf{J}_i^{π}	\mathbf{E}_{f}	\mathbf{J}_f^{π}	Mult. ^a	δ^{a}	$\alpha^{\boldsymbol{b}}$	Comments
69.7 5	0.35 5	4027.2	12+	3957.4	10+	E2		32.1 12	%Iγ=1.16 7 α (L)=23.9 9; α (M)=6.32 24 α (N)=1.59 6; α (O)=0.282 11; α (P)=0.0102 4 E _γ : From 1977Dr08. I _γ : From intensity balance [I(γ+ce)(69.7γ)=I(γ+ce)(1299.1γ)] at the 3957-keV level. Mult.: L:M(exp)=3.5 7 (1977Dr08).
202.44 [#] 10	0.0304 ^{&} 28	2200.18	7-	1997.72	4+	[E3]		3.78 5	%I γ =0.101 6 α (N)=0.1726 25; α (O)=0.0311 4; α (P)=0.001533 22 α (K)=0.426 6; α (L)=2.470 35; α (M)=0.678 10
313.67 [#] 10	0.0187 [@] 5	1997.72	4+	1684.00	4+	M1+E2	-0.22 7	0.364 8	%I γ =0.062 4 α (K)=0.296 7; α (L)=0.0516 9; α (M)=0.01212 19 α (N)=0.00308 5; α (O)=0.000613 10; α (P)=6.47×10 ⁻⁵ 13
343.55 <i>13</i>	7.26 ^{&} 10	1684.00	4+	1340.52	3+	M1(+E2)	+0.001 3	0.295 4	%Iγ=24.0 <i>14</i> α (N)=0.002442 <i>34</i> ; α (O)=0.000487 <i>7</i> ; α (P)=5.21×10 ⁻⁵ <i>7</i> α (K)=0.2413 <i>34</i> ; α (L)=0.0411 <i>6</i> ; α (M)=0.00961 <i>13</i> I _γ : 29 <i>3</i> in 1977Dr08 contains direct feeding to the 7 ⁻ isomer. Mult.: K:L:M(exp)=6.5 <i>4</i> :0.96 <i>7</i> :0.26 <i>3</i> , α (K)exp=0.227 <i>30</i> (1977Dr08).
458.1 2	29.1 20	2658.28	9-	2200.18	7-	E2		0.0364 5	%Iγ=96 6 α (K)=0.02504 35; α (L)=0.00856 12; α (M)=0.002140 30 α (N)=0.000542 8; α (O)=0.0001019 14; α (P)=7.65×10 ⁻⁶ 11 Mult.: K:L(exp)=2.6 4, α (K)exp=0.025 3 (1977Dr08).
516.18 4	27.60 ^{&} 28	2200.18	7-	1684.00	4+	E3		0.0886 12	%Iγ=91 6 $\alpha(K)=0.0483$ 7; $\alpha(L)=0.0301$ 4; $\alpha(M)=0.00782$ 11 $\alpha(N)=0.001988$ 28; $\alpha(O)=0.000370$ 5; $\alpha(P)=2.64\times10^{-5}$ 4 I _γ : 93 5 in 1977Dr08 contains direct feeding to the 7 ⁻ isomer. Mult.: K:L:M(exp)=4.80 32:2.92 24:0.78 12, $\alpha(K)$ exp=0.052 5 (1977Dr08).
537.48 4	8.7 ^{&} 9	1340.52	3+	803.04	2+	M1(+E2)	+0.001 5	0.0892 12	%Iγ=28.8 <i>17</i> α (K)=0.0731 <i>10</i> ; α (L)=0.01229 <i>17</i> ; α (M)=0.00287 <i>4</i> α (N)=0.000730 <i>10</i> ; α (O)=0.0001456 <i>20</i> ; α (P)=1.561×10 ⁻⁵ <i>22</i> I _γ : 30 <i>3</i> in 1977Dr08 contains direct feeding to the 7 ⁻ isomer. Mult.: K:L(exp)=5.3 <i>8</i> , α (K)exp=0.070 <i>8</i> (1977Dr08).
657.20 [#] 4	0.0997 [@] 16	1997.72	4+	1340.52	3+	M1+E2	0.15 3	0.0518 8	%I γ =0.330 20 α (K)=0.0425 6; α (L)=0.00712 10; α (M)=0.001664 24 α (N)=0.000423 6; α (O)=8.43×10 ⁻⁵ 12; α (P)=9.03×10 ⁻⁶ 13

2

E_{γ}^{\dagger}	$I_{\gamma}^{\ddagger c}$	E_i (level)	\mathbf{J}_i^{π}	\mathbf{E}_{f}	\mathbf{J}_f^{π}	Mult. ^a	α b	Comments
3.04 <i>3</i>	29.9 ^{&} 18	803.04	2+	0.0	0+	E2	0.01032 14	%Iγ=99 6 α (K)=0.00803 11; α (L)=0.001742 24; α (M)=0.000420 6 α (N)=0.0001063 15; α (O)=2.059×10 ⁻⁵ 29; α (P)=1.890×10 ⁻⁶ 26 I _γ : 100 6 in 1977Dr08 contains direct feeding to the 7 ⁻ isomer. Mult.: K:L:M(exp)=0.808 50:0.161 16:0.062 15 (1977Dr08).
0.92 7	20.52 ^{&} 21	1684.00	4+	803.04	2+	E2	0.00855 12	%Iγ=68 4 α (K)=0.00673 9; α (L)=0.001389 19; α (M)=0.000333 5 α (N)=8.43×10 ⁻⁵ 12; α (O)=1.640×10 ⁻⁵ 23; α (P)=1.540×10 ⁻⁶ 22 I _γ : 68 4 in 1977Dr08 contains direct feeding to the 7 ⁻ isomer. Mult.: K:L(exp)=5.6 1, α (K)exp=0.0071 7 (1977Dr08).
94.69 [#] 8	0.0145 [@] 8	1997.72	4+	803.04	2+	E2	0.00474 7	%I γ =0.0480 29 α (K)=0.00382 5; α (L)=0.000696 10; α (M)=0.0001643 23 α (N)=4.16×10 ⁻⁵ 6; α (O)=8.18×10 ⁻⁶ 11; α (P)=8.13×10 ⁻⁷ 11; α (IPF)=3.43×10 ⁻⁶ 5
99.1 <i>3</i>	11.4 15	3957.4	10+	2658.28	9-	E1	1.63×10 ⁻³ 2	%I γ =37.7 23 α (K)=0.001320 18; α (L)=0.0001983 28; α (M)=4.56×10 ⁻⁵ 6 α (N)=1.155×10 ⁻⁵ 16; α (O)=2.296×10 ⁻⁶ 32; α (P)=2.401×10 ⁻⁷ 34; α (IPF)=5.21×10 ⁻⁵ 7 Mult: α (K)exp=0.0015 4 (1977Dr08)
69.0 <i>3</i>	17 3	4027.2	12+	2658.28	9-	E3	0.00776 11	%Iγ=56.3 34 α(K)=0.00604 8; $α$ (L)=0.001300 18; $α$ (M)=0.000313 4 α(N)=7.96×10 ⁻⁵ 11; $α$ (O)=1.555×10 ⁻⁵ 22; $α$ (P)=1.507×10 ⁻⁶ 21; α(IPF)=1.142×10 ⁻⁵ 16 Mult.: K:L:M(exp)=0.093 1:0.022 3:0.0085 3; $α$ (K)exp=0.0055 11 (1977Dr08). I _γ : Note that 1977Dr08 stated that part of Iγ(1639γ) is from ²⁴ Na impurities, but the intensity balance is good with the intensities adopted here.

^b Additional information 1.
^c For absolute intensity per 100 decays, multiply by 3.31 20.

From ENSDF

 $^{206}_{82}\text{Pb}_{124}\text{-}4$

 $^{206}_{\ 82} \mathrm{Pb}_{124}$