204 Hg(t,p γ) 1984Ma43,1982Be38,1978Fl08

History									
Type	Author	Citation	Literature Cutoff Date						
Full Evaluation	F. G. Kondev	NDS 201,346 (2025)	21-Jan-2025						

1982Be38: E=16 MeV, pulsed beam (1 ns on with 12.8 μ s separation); Target: thick ²⁰⁴Hg liquid target; Detectors: Ge detectors; Measured: E γ , I γ , $\gamma\gamma$ coin, $\gamma(\theta, H, t)$ and $\gamma(\theta)$; Deduced: J^{π} , $T_{1/2}$ and g-factor for the 2102-keV state.

1984Ma43: E=16 MeV, pulsed beam; Target: polycrystalline Hg, enriched to >98%; Detectors: two Ge(Li) placed at 0 and 90 degrees with respect to the beam direction; Measured: E γ , I γ , $\gamma(\theta)$; Q of the 2102-keV state.

1978Fl08: E=17 MeV; Target: enriched HgO (360 μ g/cm² thick) deposited between two 20 μ g/cm² ¹²C foils; Detectors: helical detector (FWHM=35 keV). Authors stated that 22 levels in ²⁰⁶Hg were observed, but they reported only two levels populated by L=0 transitions.

²⁰⁶Hg Levels

E(level) [†]	$J^{\pi \ddagger}$	T _{1/2}	<u>L</u> #	Comments
0.0	0+	8.32 min <i>13</i>	0	T _{1/2} : From Adopted Levels.
1068.2 2	2+	<21 ns		$T_{1/2}$: Upper limit from $\gamma\gamma$ coincidence data in 1982Be38.
				Configuration= $\pi(s_{1/2}^{-1}, d_{3/2}^{-1})$.
2102.4 2	5-	$2.15 \ \mu s \ 21$		$T_{1/2}$: From $1034\gamma(t)$ and $1068\gamma(t)$ using the pulsed-beam technique in 1982Be38.
				μ: 5.45 5 from the measured g-factor=1.09 <i>I</i> in 1982Be38 using the perturbed angular distribution technique. The value was corrected for diamagnetic shielding and Knight shift.
				Q: $0.65\ 13$ in 1984Ma43 using the perturbed angular distribution technique. This value is relative to Q(199 Hg)= $0.83\ 9$.
3625	0+		0	Configuration= $\pi(s_{1/2}^{-1},h_{11/2}^{-1})$. E(level): From 1978Fl08.

 $[\]dagger$ From a least-squares fit to E γ , unless otherwise stated.

γ (²⁰⁶Hg)

E_{γ}^{\dagger}	E_i (level)	\mathbf{J}_i^{π}	$E_f \underline{J_f^{\pi}}$	Mult.	Comments
1034.2 2	2102.4	5-	1068.2 2+	E3	Mult.: A_2 =0.38 5 in 1982Be38. The measured ratio of $A_2(1068\gamma)/A_2(1034\gamma)$ =0.58 9 is consistent with a ΔJ =3 transition for which $A_2(2^+$ to $0^+)/A_2(5$ to $2)$ =0.6 is expected, however $A_2(2^+$ to $0^+)/A_2(4$ to $2)$ =1.0 if 1034 γ was ΔJ =2 (1982Be38).
1068.2 2	1068.2	2+	$0.0 0^{+}$	E2	Mult.: From $A_2 = +0.22 \ 2$ in 1982Be38.

[†] From 1982Be38.

[‡] From deduced transition multipolarities using $\gamma(\theta)$ in 1982Be38 and 1984Ma43, and L values in 1978Fl08.

[#] From 1978F108.

$^{204} Hg(t,p\gamma) \qquad 1984 Ma 43, 1982 Be 38, 1978 Fl 08$

Level Scheme

