${ }^{204} \mathbf{H g}(\mathbf{t}, \mathrm{p} \gamma) \quad$ 1984Ma43,1982Be38,1978Fl08

$\frac{\text { Type }}{\text { Full Evaluation }} \quad \frac{\text { Author }}{\text { F. G. Kondev }} \quad$| History |
| :---: |

1982Be38: $\mathrm{E}=16 \mathrm{MeV}$, pulsed beam (1 ns on with 12.8μ s separation); Target: thick ${ }^{204} \mathrm{Hg}$ liquid target; Detectors: Ge detectors; Measured: $\mathrm{E} \gamma, \mathrm{I} \gamma, \gamma \gamma$ coin, $\gamma(\theta, \mathrm{H}, \mathrm{t})$ and $\gamma(\theta)$; Deduced: $\mathrm{J}^{\pi}, \mathrm{T}_{1 / 2}$ and g -factor for the $2102-\mathrm{keV}$ state.
1984Ma43: $\mathrm{E}=16 \mathrm{MeV}$, pulsed beam; Target: polycrystalline Hg , enriched to $>98 \%$; Detectors: two $\mathrm{Ge}(\mathrm{Li})$ placed at 0 and 90 degrees with respect to the beam direction; Measured: $\mathrm{E} \gamma, \mathrm{I} \gamma, \gamma(\theta)$; Q of the $2102-\mathrm{keV}$ state.
1978Fl08: $\mathrm{E}=17 \mathrm{MeV}$; Target: enriched $\mathrm{HgO}\left(360 \mu \mathrm{~g} / \mathrm{cm}^{2}\right.$ thick) deposited between two $20 \mu \mathrm{~g} / \mathrm{cm}^{2}{ }^{12} \mathrm{C}$ foils; Detectors: helical detector (FWHM $=35 \mathrm{keV}$). Authors stated that 22 levels in ${ }^{206} \mathrm{Hg}$ were observed, but they reported only two levels populated by $\mathrm{L}=0$ transitions.

$$
{ }^{206} \mathrm{Hg} \text { Levels }
$$

\begin{tabular}{|c|c|c|c|c|}
\hline $\underline{\mathrm{E}(\mathrm{level})^{\dagger}}$ \& $\mathrm{J}^{\pi \ddagger}$ \& $\mathrm{T}_{1 / 2}$ \& $L^{\#}$ \& Comments

\hline 0.0 \& 0^{+} \& 8.32 min 7 \& 0 \& $\mathrm{T}_{1 / 2}$: From Adopted Levels.

\hline 1068.22 \& 2^{+} \& $<21 \mathrm{~ns}$ \& \& $\mathrm{T}_{1 / 2}$: Upper limit from $\gamma \gamma$ coincidence data in 1982Be38. Configuration $=\pi\left(\mathrm{s}_{1 / 2}^{-1}, \mathrm{~d}_{3 / 2}^{-1}\right)$.

\hline 2102.42 \& 5^{-}

0^{+} \& $2.15 \mu \mathrm{~s} 21$ \& \& | $\mathrm{T}_{1 / 2}$: From $1034 \gamma(\mathrm{t})$ and $1068 \gamma(\mathrm{t})$ using the pulsed-beam technique in 1982Be38. |
| :--- |
| μ : 5.455 from the measured g-factor=1.09 l in 1982Be38 using the perturbed angular distribution technique. The value was corrected for diamagnetic shielding and Knight shift. |
| Q: 0.6513 in 1984Ma43 using the perturbed angular distribution technique. This value is relative to $\mathrm{Q}\left({ }^{199} \mathrm{Hg}\right)=0.839$. |
| Configuration $=\pi\left(\mathrm{s}_{1 / 2}^{-1}, \mathrm{~h}_{11 / 2}^{-1}\right)$. |

\hline 3625 \& 0^{+} \& \& 0 \& E(level): From 1978Fl08.

\hline
\end{tabular}

${ }^{\dagger}$ From a least-squares fit to $\mathrm{E} \gamma$, unless otherwise specified.
*From deduced transition multipolarities using $\gamma(\theta)$ in 1982Be38 and 1984Ma43, and L values in 1978 Fl08.
\# From 1978Fl08.

$$
\underline{\gamma\left({ }^{206} \mathrm{Hg}\right)}
$$

$\mathrm{E}_{\gamma}{ }^{\dagger}$	E_{i} (level)	J_{i}^{π}	E_{f}	J_{f}^{π}	Mult.	Comments
1034.22	2102.4	5^{-}	1068.2	2^{+}	E3	Mult.: $\mathrm{A}_{2}=0.385$ in 1982Be38. The measured ratio of $\mathrm{A}_{2}(1068 \gamma) / \mathrm{A}_{2}(1034 \gamma)=0.589$ is consistent with a $\mathrm{J}=5$ to 2 transition for which $\mathrm{A}_{2}(2$ to 0$) / \mathrm{A}_{2}(5$ to 2$)=0.6$ is expected, whereas $\mathrm{A}_{2}(2$ to 0$) / \mathrm{A}_{2}(4$ to 2) $=1.0$ if 1034γ were E 2 (1982Be38).
1068.22	1068.2	2^{+}	0.0	0^{+}	E2	Mult.: From $\mathrm{A}_{2}=+0.222$ in 1982Be38. The positive sign argues against a $\Delta \mathrm{J}=1$ transition.

\dagger From 1982Be38.
${ }^{204} \mathbf{H g}(\mathbf{t}, \mathbf{p} \gamma) \quad$ 1984Ma43,1982Be38,1978F108

Level Scheme

