Adopted Levels, Gammas

				History Type Author Citation Literature Cutoff Date					
			Full	Evaluation	F. G. Kondev	NDS 201,346 (2025)	21-Jan-2025		
$Q(\beta^{-}) = -48$ S(2n)=1800	310 <i>30</i> 00 <i>40</i> ,	S(n) = 80 S(2p) = 32	008 <i>29</i> ; S(950 <i>40</i> , Q	$(p)=826\ 28;$ $(\varepsilon)=7886\ 29$	$Q(\alpha) = 6923 \ 3$, $Q(\varepsilon p) = 4450 \ 36$	2021Wa16 0 (2021Wa16).			
						²⁰⁶ Fr Levels			
					Cross R	eference (XREF) Flags			
					A 21 B 18	0 Ac α decay 1 Ta(30 Si,5n γ)			
E(level)	J^{π}	T _{1/2}	XREF			Comm	ents		
0	3+	≈16 s	A	%α=88.4 3 μ=+3.97 5; %α: From 3 (1974H J ^π : From h 2015Zh2i vf _{5/2} and μ: From 20 +3.91 3 (Q: From 20 and -0.2 δ <r<sup>2>(²⁰⁶F δ<r<sup>2>(²⁰⁶F δ<r<sup>2>(²² (syst) (20 T_{1/2}: Approx 15.8 s 4 (1981Ri0 Eα=6792 k (2015Ma MeV 2 (Configuration 20 Configuration 20 Configuratio</r<sup></r<sup></r<sup>	3; $\% \varepsilon + \% \beta^+ = 11$ Q=-0.359 8 2016Ly01. Othe Io27) and 93% 4 yperfine structur 0. π from μ and $\nu_{13/2}$. 16Ly01,2019StZ (2015Vo15), +3. 16Ly01,2021StZ 53 <i>18</i> (2015Vo1 r, ²⁰⁸ Fr)=-0.101 ¹ Fr, ²⁰⁶ Fr)=-1.4 016Ly01). oximate value as (1961Gr42,1964 V4). eV 5 (1992Hu04 63), 6790 keV 5 1964Gr04) and con=[$\pi(h_{21}^{+1}) \otimes \nu(p)$.6 33 rs (assigned to both the 3 4 (1981Ri04). e analysis in 2013Vo10, values expected for conf ZV using collinear laser s 99 5 (2014Ly01). ZZ using collinear laser s 5). 8 fm ² 4 (2013Vo10) and 65 fm ² 6 (stat) 16 (syst) ssigned to both the 3 ⁺ an Gr04), 15.7 s 3 (1967Vat 4), a doublet with E α dep 5 (1981Ri04), 6785 keV . 6.74 MeV (1961Gr42). $\frac{-1}{3/2} \frac{1}{13+}$.	3^{+} and 7 ⁺ states): 84% 2 (1992Hu04), 85% 2015Vo15, 2014Ly01, 2016Ly01 and figurations involving πh _{9/2} and νp _{3/2} , spectroscopy; Others: +3.97 6 (2013Vo10), spectroscopy; Others: -0.355 10 (2013Vo10) -0.0998 fm ² 1 (2015Vo15); (2014Ly01) and -1.4851 fm ² 1 (stat) 162 d 7 ⁺ states. Individually reported values are 20), 16.0 s 1 (1974Ho27) and 15.9 s 3 populating the 7 ⁺ state. Others: 6802 keV 7 5 (1974Ho27), 6792 keV 5 (1967Va20), 6.92		
0.0+x	7+	≈16 s	AB	⁹ α α=84./15; ⁹ ω ε+ ⁹ ω β ⁺ =15.315 µ=+4.705; Q=-0.14311 Additional information 1. E(level): x=200 keV 40 in 2021Ko07. ⁹ α : From 2016Ly01. Others (assigned to both the 3 ⁺ and 7 ⁺ states): 84% 2 (1992Hu04), 85% 3 (1974Ho27) and 93% 4 (1981Ri04). J ^π : From hyperfine structure analysis in 2015Vo15, 2014Ly01, 2016Ly01 and 2015Zh20. π from µ and values expected for configurations involving πh _{9/2} and vp _{3/2} , vf _{5/2} and vi _{13/2} . µ: From 2016Ly01,2019StZV using collinear laser spectroscopy; Others: +4.68 4 (2015Vo15) and +4.69 6 (2014Ly01). Q: From 2016Ly01,2021StZZ using collinear laser spectroscopy; Other: -0.13817 (2015Vo15). δ <r<sup>2>(^{206m1}Fr,²⁰⁸Fr)=-0.1022 fm² 1 (2015Vo15); δ<r<sup>2>(²²¹Fr,^{206m1}Fr)=-1.4870 fm² 1 (stat) 162 (syst) (2016Ly01) and -1.475 fm² 8 (stat) 16 (syst) (2014Ly01). T_{1/2}: Approximate value assigned to both the 3⁺ and 7⁺ states. Individually reported values are 15.8 s 4 (1961Gr42,1964Gr04), 15.7 s 3 (1967Va20), 16.0 s 1 (1974Ho27) and 15.9 s 3 (1981Ri04). Eα=6792 keV 5 (1992Hu04), a doublet with Eα depopulating the 3⁺ state. Others: 6802 keV 7 (2015Ma63), 6790 keV 5 (1981Ri04), 6785 keV 5 (1974Ho27), 6792 keV 5 (1967Va20), 6.92 MeV 2 (1964Gr04) and 6.74 MeV (1961Gr42). Configuration=[π(h⁺¹_{9/2})⊗ν(f⁻¹_{5/2})]₇₊.</r<sup></r<sup>					

Adopted Levels, Gammas (continued)

²⁰⁶Fr Levels (continued)

E(level)	J^{π}	T _{1/2}	XREF				Comments			
574.4+x 5531.0+x 555.6+x 1098.1+x 1208.7+x 1592.3+x 9 407.9+y 670.3+y 964.4+y 1212.7+y 1242.0+y 1242.0+y 1484.6+y 1683.1+y 1909.7+y 1202.7+x	$\Sigma(\text{Ievel})$ 3^{12} $11/2$ $XREF$ $31.0+x\ 10$ 10^{-} $0.7\ \text{s}\ 1$ AB $74.4+x\ 12$ B $55.6+x\ 12$ B $98.1+x\ 11$ (11) B $98.1+x\ 11$ (11) B $92.3+x\ 12$ B $9y$ J B $97.9+y\ 7$ $J+2$ B $70.3+y\ 9$ $J+3$ B $64.4+y\ 10$ $J+4$ B $12.7+y\ 10$ B $84.6+y\ 13$ $J+6$ B $83.1+y\ 14$ $J+7$ B $90.7+y\ 15$ $J+8$ B				$%\alpha = 13 2$; %IT=87 2 $\mu = +2.45 3$; Q=+1.255 28 $%\alpha$: From 2016Ly01. Other: $%\alpha = 0.3 1$ in 1981Ri04, but this value results in HF=60, an unprecedented value for a favored α -decay transition; 1992Hu04 indicated that the value of 1981Ri04 is based on an incorrect analysis. J^{π} : From hyperfine structure analysis in 2015Vo15, 2014Ly01, and 2016Ly01. π from μ and values expected for configurations involving $\pi h_{9/2}$ and $\nu p_{3/2}$, $\nu f_{5/2}$ and $\nu i_{13/2}$. μ : From 2016Ly01,2019StZV using collinear laser spectroscopy; Others: +3.55 5 (2014Ly01) and +2.44 2 (2015Vo15). Q: From 2016Ly01,2021StZZ using collinear laser spectroscopy; Others: +1.307 9 (2015Vo15). Q: From 2016Ly01,2021StZZ using collinear laser spectroscopy; Other: +1.307 9 (2015Vo15). $\delta < r^2 > (2^{06m2} Fr, 2^{08} Fr) = -0.0298$ fm ² 1 (2015Vo15); $\delta < r^2 > (2^{11} Fr, 2^{06m2} Fr) = -1.4154$ fm ² 1 (stat) 155 (syst) (2016Ly01) and -1.153 fm ² 14 (2014Ly01). $T_{1/2}$: From 1981Ri04. $E\alpha = 6930$ keV 5 (1981Ri04, 1992Hu04). Configuration= $[\pi(h_{9/2}^{+})\otimes v(i_{13/2}^{-1})]_{10-}$. J^{π} : From 2008Ha39. J^{π} : From 2008Ha39. J^{π} : From 2008Ha39. Additional information 2.					
γ ⁽²⁰⁶ Fr)										
E _i (level)	\mathbf{J}_i^{π}	E_{γ}^{\dagger}	I_{γ}^{\dagger}	$\mathbf{E}_f = \mathbf{J}_f^{\pi}$	Mult. [†]	α^{\ddagger}	Comments			
531.0+x	10-	531 1	100	0.0+x 7 ⁺	[E3]	0.1086 16	B(E3)(W.u.)= 4.5×10^{-5} 7 $\alpha(K)=0.0536$ 8; $\alpha(L)=0.0406$ 6; $\alpha(M)=0.01081$ 17 $\alpha(N)=0.00285$ 5; $\alpha(O)=0.000608$ 10; $\alpha(P)=8.59 \times 10^{-5}$ 14; $\alpha(Q)=1.779 \times 10^{-6}$ 27 E _y : From 1981Ri04. Uncertainty estimated by the evaluator from comparison of 391 γ in ²⁰² At: E $\gamma=391$ keV in 1981Ri04 and 391.7 2 keV in 19022Hu04 (adopted in 20027E05)			
1098.1+x	(11)	523.7 <i>5</i> 567.1 5	57 6 ≈100	574.4+x 531.0+x 10 ⁻			$A_2 = -0.08 \ I0$ $A_2 = -0.12 \ 8$			
1208.7+x	(11)	553.1 5 634.4 5 677.7 5	≈100 54 4 63 6	655.6+x 574.4+x 531.0+x 10 ⁻			$A_2 = -0.71 \ 20$ $A_2 = -0.24 \ 14$			
1592.3+x		383.5 <i>5</i> 494.2 <i>5</i>	100 40 <i>6</i>	1208.7+x (11) 1098.1+x (11)			$A_2 = -0.04 \ 9$			
140.4+y	J+1	140.4 5	100	y J	(M1)	5.45 9	$\alpha(K)=4.39$ 8; $\alpha(L)=0.806$ 14; $\alpha(M)=0.1922$ 33			

Continued on next page (footnotes at end of table)

Adopted Levels, Gammas (continued)

γ (²⁰⁶Fr) (continued)

E _i (level)	\mathbf{J}_i^π	E_{γ}^{\dagger}	I_{γ}^{\dagger}	E_f	\mathbf{J}_f^{π}	Mult. [†]	α^{\ddagger}	Comments
407.9+y	J+2	267.5 5	100	140.4+y	J+1	(M1)	0.893 13	$ \begin{array}{l} \alpha(\mathrm{N})=0.0504 \; 9; \; \alpha(\mathrm{O})=0.01126 \; 20; \; \alpha(\mathrm{P})=0.001807 \; 31; \\ \alpha(\mathrm{Q})=0.0001009 \; 18 \\ \mathrm{A}_2=-0.40 \; 5 \\ \alpha(\mathrm{K})=0.720 \; 11; \; \alpha(\mathrm{L})=0.1309 \; 20; \; \alpha(\mathrm{M})=0.0311 \; 5 \\ \alpha(\mathrm{N})=0.00817 \; 12; \; \alpha(\mathrm{O})=0.001825 \; 27; \; \alpha(\mathrm{P})=0.000293 \end{array} $
670.3+y	J+3	262.4 5	100	407.9+y	J+2	(M1)	0.942 14	4; $\alpha(Q)=1.634\times10^{-5}$ 24 $A_2=-0.41$ 6 $\alpha(K)=0.760$ 11; $\alpha(L)=0.1380$ 21; $\alpha(M)=0.0329$ 5 $\alpha(N)=0.00862$ 13; $\alpha(O)=0.001926$ 29; $\alpha(P)=0.000309$
964.4+y	J+4	294.1 5	100	670.3+y	J+3	(M1)	0.687 10	5; $\alpha(Q)=1.724\times10^{-3}$ 26 $A_2=-0.44$ 5 $\alpha(K)=0.555$ 8; $\alpha(L)=0.1006$ 15; $\alpha(M)=0.02394$ 35 $\alpha(N)=0.00628$ 9; $\alpha(O)=0.001403$ 21; $\alpha(P)=0.0002251$ 33: $\alpha(Q)=1.256\times10^{-5}$ 19
1212.7+v		542.4 5	100	670.3+v	J+3			
1242.0+y	J+5	277.6 5	100	964.4+y	J+4	(M1)	0.806 12	A ₂ =-0.29 <i>12</i> α (K)=0.650 <i>10</i> ; α (L)=0.1181 <i>18</i> ; α (M)=0.0281 <i>4</i> α (N)=0.00737 <i>11</i> ; α (O)=0.001647 <i>24</i> ; α (P)=0.000264 <i>4</i> : α (O)=1.474×10 ⁻⁵ 22
1484.6+y	J+6	242.6 5	100	1242.0+y	J+5	(M1)	1.170 <i>18</i>	$A_{2} = -0.30 I2$ $\alpha(K) = 0.944 I4; \ \alpha(L) = 0.1718 26; \ \alpha(M) = 0.0409 6$ $\alpha(N) = 0.01072 I6; \ \alpha(O) = 0.00240 4; \ \alpha(P) = 0.000384 6;$ $\alpha(O) = 2.145 \times 10^{-5} 32$
1683.1+y	J+7	198.5 5	100	1484.6+y	J+6	(M1)	2.049 32	$\begin{array}{l} A_{2} = -0.76 \ 2l \\ \alpha(\text{K}) = 1.652 \ 26; \ \alpha(\text{L}) = 0.302 \ 5; \ \alpha(\text{M}) = 0.0718 \ l1 \\ \alpha(\text{N}) = 0.01884 \ 30; \ \alpha(\text{O}) = 0.00421 \ 7; \ \alpha(\text{P}) = 0.000675 \\ l1: \ \alpha(\text{O}) = 3.77 \times 10^{-5} \ 6 \end{array}$
1909.7+y 2214.1+y	J+8 J+9	226.6 <i>5</i> 304.4 <i>5</i>	100 100	1683.1+y 1909.7+y	J+7 J+8			

[†] From 2008Ha39, unless otherwise stated. [‡] Additional information 3.

Adopted Levels, Gammas

Level Scheme

Intensities: Relative photon branching from each level

87 1 119

4