### <sup>210</sup>At α decay 1981Va29,1975Ja09,1969Go23

|                 |              | History            |                        |
|-----------------|--------------|--------------------|------------------------|
| Туре            | Author       | Citation           | Literature Cutoff Date |
| Full Evaluation | F. G. Kondev | NDS 201,346 (2025) | 21-Jan-2025            |

Parent: <sup>210</sup>At: E=0.0;  $J^{\pi}=(5)^+$ ;  $T_{1/2}=8.1$  h 4;  $Q(\alpha)=5631.2$  10; % $\alpha$  decay=0.175 20

<sup>210</sup>At-J<sup> $\pi$ </sup>,T<sub>1/2</sub>: From 2014Ba41.

<sup>210</sup>At-Q( $\alpha$ ): From 2021Wa16.

<sup>210</sup>At-Dominant configuration= $\pi(h_{9/2}^{+1}) \otimes \nu(p_{1/2}^{-1})$ .

### <sup>210</sup>At-% $\alpha$ decay: From 2014Ba41.

1981Va29,1969Go23: Sources produced by spallation of Th target by 660-MeV protons, followed by chemical separation; detectors:  $\alpha$ -particle spectrograph; measured: E $\alpha$ , I $\alpha$ .

1975Ja09: Source produced via the <sup>209</sup>Bi( $\alpha$ ,3n) reaction with E $\alpha$ =39 MeV followed by chemical separation; detectors: 6 mm diameter Au-Si surface barrier detector (FWHM=16 keV at 5.3 MeV); Ge(Li) detector; measured:  $\alpha$ - $\gamma$  coin.,  $\alpha$  singles, E $\alpha$ , I $\alpha$ , E $\gamma$ , I $\gamma$ .

## <sup>206</sup>Bi Levels

| E(level) <sup>†</sup>   | $J^{\pi \ddagger}$    | T <sub>1/2</sub> ‡ | Comments                                                                                                                                       |
|-------------------------|-----------------------|--------------------|------------------------------------------------------------------------------------------------------------------------------------------------|
| 0.0                     | $\frac{6^{+}}{4^{+}}$ | 6.243 d <i>3</i>   | configuration: $\pi(h_{9/2}^{+1}) \otimes \nu(f_{5/2}^{-1})$ .                                                                                 |
| 70.75 3                 | 3+                    | 1.1 µ3 2           |                                                                                                                                                |
| 82.802 22<br>141.2 5    | 5+<br>7+              |                    | Dominant configuration= $\pi(h_{9/2}^{+1})\otimes v(f_{5/2}^{-1})$ .                                                                           |
| 166.1 9<br>282 <i>4</i> | 5+                    |                    | Dominant configuration= $\pi(h_{9/2}^{+1})\otimes v(p_{1/2}^{-1})$ .<br>E(level): From E $\alpha$ =5242 keV 3 and O( $\alpha$ )=5631.2 keV 10. |
| 352.69 <i>3</i>         | $(3,4)^+$             |                    |                                                                                                                                                |

<sup>†</sup> From a least-squares fit to  $E\gamma$ .

<sup>‡</sup> From Adopted Levels.

#### $\alpha$ radiations

 $\%\alpha$  is from I $\alpha$ (<sup>210</sup>Po)/I $\alpha$ (<sup>210</sup>At) in 1969Go23.

| $E\alpha^{\dagger}$     | E(level) | $\mathrm{I}\alpha^{\ddagger@}$ | HF <sup>#</sup>         | Comments                                         |  |  |
|-------------------------|----------|--------------------------------|-------------------------|--------------------------------------------------|--|--|
| 5131 <sup>&amp;</sup> 2 |          |                                |                         | $E\alpha$ : unobserved in 1981Va29 and 1975Ja09. |  |  |
| 5175 4                  | 352.69   | 0.21 6                         | 67 21                   | $E\alpha$ : From 1981Va29.                       |  |  |
| 5242 <i>3</i>           | 282      | 0.9 1                          | 39 7                    | $E\alpha$ : From 1981Va29.                       |  |  |
| 5361 <i>I</i>           | 166.1    | 27.8 20                        | 5.2 8                   |                                                  |  |  |
| 5386 1                  | 141.2    | 4.6 3                          | 43 7                    |                                                  |  |  |
| 5442.0 15               | 82.802   | 28.4 15                        | 13.9 20                 |                                                  |  |  |
| 5456 2                  | 70.75    | 0.40 6                         | 1.14×10 <sup>3</sup> 23 | $E\alpha$ : From 1981Va29.                       |  |  |
| 5465.5 15               | 59.908   | 7.2 3                          | 72 10                   |                                                  |  |  |
| 5524.0 15               | 0.0      | 30.5 9                         | 34 5                    |                                                  |  |  |

<sup>†</sup> From 1969Go23, unless otherwise stated.

<sup>‡</sup> From 1981Va29.

<sup>#</sup>  $r_0=1.432$  *10*, unweighted averages of 1.4568 22 (<sup>206</sup>Po), 1.4343 25 (<sup>208</sup>Po), 1.42967 74 (<sup>204</sup>Pb) and 1.408790 38 (<sup>206</sup>Pb) from 2020Si16.

<sup>@</sup> For absolute intensity per 100 decays, multiply by 0.00175 20.

& Existence of this branch is questionable.

## $\gamma(^{206}\text{Bi})$

Iv normalization: from  $I(\gamma+ce)(141.2\gamma)=I\alpha(5386\alpha)$ , using  $\alpha(141.2\gamma,M1)=3.77$  7 and  $\%\alpha=0.175$  20.

| $E_{\gamma}^{\dagger}$          | $I_{\gamma}^{@a}$      | E <sub>i</sub> (level) | $\mathbf{J}_i^{\pi}$ | $E_f$  | $\mathbf{J}_f^{\pi}$ | Mult. <sup>‡</sup> | $\delta^{\ddagger}$ | α <sup>&amp;</sup> | Comments                                                                                                                                                                                                                                                                                                                                    |
|---------------------------------|------------------------|------------------------|----------------------|--------|----------------------|--------------------|---------------------|--------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 10.836 <sup>#‡</sup> 22         |                        | 70.75                  | 3+                   | 59.908 | 4+                   | M1(+E2)            | < 0.0031            | 319 5              | $\alpha(M) = 242 \ 4$ $\alpha(N) = 621 \ 10^{\circ} \ \alpha(O) = 12 \ 67 \ 10^{\circ} \ \alpha(P) = 1 \ 506 \ 23$                                                                                                                                                                                                                          |
| 59.908 <sup>#‡</sup> 18         |                        | 59.908                 | 4+                   | 0.0    | 6+                   | E2                 |                     | 72.4 10            | $\alpha(L)=53.8 \ \beta; \ \alpha(M)=14.25 \ 20 \\ \alpha(N)=3.62 \ 5; \ \alpha(O)=0.663 \ 9; \ \alpha(P)=0.0500 \ 7$                                                                                                                                                                                                                       |
| 82.802 <sup>‡</sup> 22          | 7.7×10 <sup>2</sup> 15 | 82.802                 | 5+                   | 0.0    | 6+                   | M1(+E2)            | < 0.05              | 3.32 5             | $\alpha$ (L)=2.53 4; $\alpha$ (M)=0.597 9<br>$\alpha$ (N)=0.1527 22; $\alpha$ (O)=0.0312 4; $\alpha$ (P)=0.00370 5                                                                                                                                                                                                                          |
| 106 1                           | 272 54                 | 166.1                  | 5+                   | 59.908 | 4+                   | (M1)               |                     | 8.63 27            | E <sub>γ</sub> : 82 keV <i>I</i> in 1975Ja09.<br>$\alpha(K)$ =7.01 22; $\alpha(L)$ =1.24 4; $\alpha(M)$ =0.291 9<br>$\alpha(N)$ =0.0744 23; $\alpha(O)$ =0.0152 5; $\alpha(P)$ =0.00181 6<br>Mult.: consistent with I $\alpha(5361\alpha)$ =I(γ+ce)(106γ+167γ) from<br>intensity balance measured in $\alpha\gamma$ coincidence (1975Ja09). |
| 141.2 <sup>‡</sup> 5            | 100                    | 141.2                  | 7+                   | 0.0    | 6+                   | M1+E2              | -0.13 3             | 3.77 7             | $\alpha(K)=3.05 6; \alpha(L)=0.549 10; \alpha(M)=0.1297 25$<br>$\alpha(N)=0.0332 6; \alpha(O)=0.00676 13; \alpha(P)=0.000796 14$<br>E + 140  keV I  in  19751209                                                                                                                                                                            |
| 167 2                           | 174 <i>35</i>          | 166.1                  | 5+                   | 0.0    | 6+                   | (M1)               |                     | 2.37 9             | $\alpha(K)=1.93\ 7;\ \alpha(L)=0.336\ 13;\ \alpha(M)=0.0791\ 30$<br>$\alpha(N)=0.0202\ 8;\ \alpha(O)=0.00413\ 16;\ \alpha(P)=0.000492\ 18$                                                                                                                                                                                                  |
| 281.923 <sup>#‡</sup> 23        |                        | 352.69                 | (3,4)+               | 70.75  | 3+                   | M1(+E2)            | < 0.10              | 0.545 9            | $\alpha$ (K)=0.444 8; $\alpha$ (L)=0.0773 11; $\alpha$ (M)=0.01817 26<br>$\alpha$ (N)=0.00465 7; $\alpha$ (O)=0.000949 14; $\alpha$ (P)=0.0001127 17                                                                                                                                                                                        |
| 292.799 <sup>#‡</sup> <i>30</i> |                        | 352.69                 | (3,4)+               | 59.908 | 4+                   | M1(+E2)            | <0.4                | 0.471 26           | $\alpha$ (K)=0.404 6; $\alpha$ (L)=0.0699 10; $\alpha$ (M)=0.01642 23<br>$\alpha$ (N)=0.00420 6; $\alpha$ (O)=0.000858 12; $\alpha$ (P)=0.0001022 14                                                                                                                                                                                        |

<sup>†</sup> From  $\alpha\gamma$  coincidence (1975Ja09), unless otherwise stated.

<sup>‡</sup> From adopted gammas.

 $\mathbf{b}$ 

<sup>#</sup> The transition was not observed in 1975Ja09. <sup>@</sup> Relative to  $I\gamma(140\gamma)=100$  in 1975Ja09.

<sup>&</sup> Additional information 1. <sup>*a*</sup> For absolute intensity per 100 decays, multiply by  $1.68 \times 10^{-5} + 31 - 29$ .

# <sup>210</sup>At α decay 1981Va29,1975Ja09,1969Go23

### Decay Scheme



 $^{206}_{\ 83}{\rm Bi}_{123}$ 

3