Adopted Levels

		History	
Туре	Author	Citation	Literature Cutoff Date
Full Evaluation	F. G. Kondev	NDS 201,346 (2025)	21-Jan-2025

 $Q(\beta^{-})=6760 \ syst; \ S(n)=3690 \ syst; \ S(p)=8660 \ syst; \ Q(\alpha)=30 \ syst$ 2021Wa16

 $\Delta Q(\beta^{-})=300, \Delta S(n)=360, \Delta S(p)=420, \Delta Q(\alpha)=420$ (syst,2021Wa16).

 $S(2n)=9940 \ 360, \ S(2p)=19200 \ 500, \ Q(\beta^{-}n)=30 \ 300 \ (syst, 2021Wa16).$

2015Mo20: ⁹Be target, 2.5 g/cm² thick, was bombarded with a 1 GeV/nucleon ²³⁸U pulsed beam at GSI in 3 and 4 s repetition cycles, and extraction times of 1 and 2 s, respectively. The ²⁰⁶Au recoiling nuclei were selected using the Fragment Separator (FRS) using three magnetic settings centered around ²⁰⁵Pt, ²¹⁵Pb and ²¹⁷Pb. The ²⁰⁶Au recoils were decelerated in an Al degrader before their implantation in an active stopper consisting of six DSSD detectors (256 pixels with 9 mm² active area), surrounded by an array of 15 HPGe detectors (RISING). Measured: E_γ, I_γ and $\beta_{\gamma}(t)$ with a coincidence window of 100 μ s. Other: 2017Ca12.

²⁰⁶Au Levels

E(level)	J^{π}	T _{1/2}	Comments	
0.0	(5 ⁺ ,6 ⁺)	40 s 15	$\[mu]{\} \beta \beta^- = 100\]$ E(level): Early identification in 2009St16, 2008StZY, but no level properties were measured. $\[mu]{\} \beta \beta^-$: Neutron-rich nuclide with β^- decay being the only expected decay mode. J ^π : Possible direct β^- -decay feeding to the $J^{\pi} = 5^-$ level in ²⁰⁶ Hg (2015Mo20). Particle-hole character of the proposed configuration (repulsive for mutual alignment) would be consistent with $J^{\pi} = 5^+, 6^+$. The authors of 2015Mo20 proposed a tentative $J^{\pi} = (4^+, 5^+)$ assignment. T _{1/2} : From sum of β^- -gated 1068 γ (t) and 1034 γ (t) spectra in 2015Mo20 and the maximum likelihood method. The uncertainty includes both statistical and systematics components, but the individual contributions were not given by the authors. Other: 56 s 17 from β^- (t) in 2017Ca12. configuration: $\pi(d_{3/2})^{-1} \otimes \nu(g_{9/2})^{+1}$. The $\pi(d_{3/2})^{-1}$ orbital is associated with the ground state of the even-N Au nuclei, while the $\nu(g_{9/2})^{+1}$ orbital is associated with the ground state of the ²⁰⁹ Pb and ²¹¹ Po (N=127) isotopes. If $J^{\pi}=5^+$, admixtures with the $\pi(s_{1/2})^{-1} \otimes \nu(g_{9/2})^{+1}$ configuration are possible. The authors of 2015Mo20 proposed a tentative configuration= $\pi(s_{1/2})^{-1} \otimes \nu(g_{9/2})^{+1}$.	