Adopted Levels

History					
Туре	Author	Citation	Literature Cutoff Date		
Full Evaluation	F. G. Kondev	NDS 201,346 (2025)	21-Jan-2025		

$S(n)=8690 \ 90; \ S(p)=-390 \ 70; \ Q(\alpha)=7960 \ 60 \ 2021Wa16$

S(2p)=1700 70, Q(ε)=9920 70, Q(εp)=7510 70 (2021Wa16).

- 2014Zh03: ²⁰⁶Ac produced by bombarding a 400 μ g/cm² thick ¹⁶⁹Tm target covered with a 10 μ g/cm² carbon layer with 196 MeV ⁴⁰Ca beam at HIRFL in Lanzhou. Evaporation residues were separated in flight using the SHANS recoil separator, and implanted into position sensitive silicon detectors. The α particles were detected by eight non-position sensitive Si detectors with FWHM=70 keV for 6-7 MeV α 's. Three α -decay chains were observed with $E\alpha(1)[^{206}Ac]=7817$ keV 30, $E\alpha(2)[^{202}Fr]=7245$ keV 30 and $E\alpha(3)[^{198}At]=6775$ keV 30 with half-lives of 41 ms +56–15, 0.29 s +40–11 and 3.1 s +56–12, respectively.
- 1998Es02: Activity produced by bombarding a 320 μ g/cm² thick ¹⁷⁵Lu target with 199 MeV ³⁶Ar ions. The reaction products were separated by the gas-filled separator (RITU) and implanted into a position sensitive PIPS detector (800 mm wide and 35 mm high). Separate amplified branches for energy ranges 0.5-15 MeV (α -decay) and 2-200 MeV (reaction residues) were used. Two α -decaying states were identified, one using 9 quadruple (recoil- α_1 - α_2 - α_3) and 2 triple (recoil- α_1 - α_3) (E α_2 missing) events: 7790 keV 30 (α_1), 7236 keV 7 (α_2), 6752 keV 6 (α_3) associated with the 3⁺ ground state and the other using 5 quadruple and 1 triple (E α_2 missing) events: 7750 keV 20 (α_1), 7248 keV 13 (α_2) and 6858 keV 7 (α_3) associated with the 10⁻ isomer. The assignment to a specific state is based on the time and position correlations with known α -decays of ²⁰²Fr, ¹⁹⁸At and ¹⁹⁴Bi.
- 1998LuZV: Activity produced by bombarding a 307 μ g/cm² hafnium target (64.6% ¹⁷⁶Hf,21.7% ¹⁷⁷Hf, 6.8% ¹⁷⁸Hf, 2.2% ¹⁷⁹Hf and 4.7% ¹⁸⁰Hf) with 186-MeV (effective energy at half-target thickness) ³⁵Cl ions (beam intensity was about 600 enA). The reaction products were separated by a recoil mass separator at JAERI and implanted on a position-sensitive silicon detector. Two α decaying states were identified, one using 4 quadruple (recoil- α_1 - α_2 - α_3) and one triple (recoil- α_1 - α_2) events: 7894 keV 50 (α_1), 7183 keV 50 (α_2) and 6742 keV 50 (α_3) and the other using 3 triple events (recoil- α_1 - α_3) (E α_2 missing): 7772 keV 50 (α_1) and 6760 keV (α_3).

²⁰⁶Ac Levels

E(level)	J^{π}	T _{1/2}	Comments
0.0	3+	22 ms +9–5	%α≈100 T _{1/2} : From α(t) in 1998Es02. Others: 11 ms +9-3 (1998LuZV) and 41 ms +56-15 (2014Zh03). J ^π : Favored α decay (E _α =7790 keV 30) to ²⁰² Fr(J ^π =3 ⁺) and subsequent favored decays to ¹⁹⁸ At(J ^π =3 ⁺), and ¹⁹⁴ Bi(J ^π =3 ⁺). Eα=7790 keV 30 (1998Es02) and 7817 keV 30 (2014Zh03). Other: 7894 keV 50 (1998LuZV). Configuration=π(h ⁺¹)∞y(f ⁻¹).
200 70	(10 ⁻)	33 ms +22-9	Configuration= $\pi(h_{9/2}^{-}) \otimes (h_{5/2}^{-1/3+1})$ $\% \alpha \approx 100$ E(level): From 2021Ko07. $T_{1/2}$: From $\alpha(t)$ in 1998Es02. Other: 46 ms +62–17 (1998LuZV). J^{π} : Favored α decay (E_{α} =7750 keV 20) to 202 Fr(J^{π} =10 ⁻) and subsequent favored decays to 198 At(J^{π} =10 ⁻), and 194 Bi(J^{π} =10 ⁻). $E\alpha$ =7750 keV 20 in 1998Es02 (recommended). Other: 7772 keV 50 (1998LuZV). Configuration= $\pi(h_{9/2}^{+1}) \otimes \nu(i_{13/2}^{-1})_{10-}$.