²⁰⁵Fr ε decay **2010De04**

		History	
Туре	Author	Citation	Literature Cutoff Date
Full Evaluation	F. G. Kondev	NDS 166, 1 (2020)	20-Apr-2020

Parent: ²⁰⁵Fr: E=0; $J^{\pi}=9/2^-$; $T_{1/2}=3.90$ s 7; $Q(\varepsilon)=6400$ 9; $\mathscr{H}\varepsilon+\mathscr{H}\beta^+$ decay=1.5 4 ²⁰⁵Fr- $Q(\varepsilon)$: From 2017Wa10.

2010De04: 1.4 GeV proton beam induced spallation on a 49 mg/cm² UC₂-C target at ISOLDE-CERN facility. Francium was surface ionized, accelerated to 30 keV and mass separated. Moving-tape system. Measured E γ , I γ , $\gamma\gamma$ -t coin, ce, γ (ce)-t coin using two HPGe detectors, located at 90° and 180°, surrounding a 4 mm thick Si(Li) detector placed inside a MINI-ORANGE spectrometer.

²⁰⁵Rn Levels

E(level) [†]	J ^{π‡}	T _{1/2} ‡	Comments
0.0#	5/2-	170 s 4	
31.40 [@] 20	$(3/2^{-})$		
387.60 18	$(7/2^{-})$		
545.30? 20	(7/2 ⁻ ,9/2 ⁻)		E(level), J^{π} : The assignment is uncertain, since the depopulating 545.3-keV γ ray could feed the 31.4-keV level ($J^{\pi}=3/2^{-}$).
596.20 18	$(7/2^{-})$		
633.10 20	$(7/2^{-})$		
657.1? ^{&} 5	(13/2 ⁺)	>10 s	$T_{1/2}$: Estimated in 2010De04, based on observed ce events within a 18.6 s time window.
1049.1? <i>3</i>	(7/2 ⁻ ,9/2 ⁻ ,11/2 ⁻)		E(level), J^{π} : Tentative assignment, given the uncertainty with the energy of the 545.30-keV level (1080.5 if 545.3 γ feeds the 31.4 keV level).

[†] From a least-squares fit to $E\gamma$.

[‡] From Adopted Levels, based on deduced γ -ray transition multipolarities in 2010De04.

configuration= $\nu(f_{5/2}^{-1})$.

[@] configuration= $\nu(p_{3/2}^{-1})$.

& configuration= $v(i_{13/2}^{-1})$.

ε, β^+ radiations

E(decay)	E(level)	$I\beta^+$ [†]	$\mathrm{I}\varepsilon^{\dagger}$	Log ft	$\mathrm{I}(\varepsilon + \beta^+)^{\dagger}$	Comments
(5351 9)	1049.1?	0.040 16	0.060 24	6.96 21	0.10 4	av Eβ=1946.3 41; εK=0.4770 12; εL=0.08961 22; εM+=0.02999 8
(5743 9)	657.1?	≈0.062	≈0.18	$\approx 8.6^{1u}$	≈0.24	av Eβ=2051.0 40; εK=0.5910 9; εL=0.11405 18; εM+=0.03834 6
						I($\varepsilon + \beta^+$): From log ft=8.6 for the same $\pi h_{9/2}$ to $\nu i_{13/2}$
(5767 9)	633.10	0.09 3	0.11 3	6.77 18	0.20 6	av E β =2135.4 41; ε K=0.4266 11; ε L=0.07998 20; ε M+=0.02676 7
(5804 9)	596.20	0.21 6	0.23 7	6.44 18	0.44 13	av E β =2152.3 41; ε K=0.4224 11; ε L=0.07916 20; ε M+=0.02648 7
(5855 9)	545.30?	0.10 3	0.10 3	6.79 18	0.20 6	av $E\beta$ =2175.5 41; ε K=0.4165 11; ε L=0.07804 20; ε M+=0.02611 7
(6012 9)	387.60	0.16 5	0.15 4	6.65 18	0.31 9	av Eβ=2247.5 42; εK=0.3986 10; εL=0.07464 19; εM+=0.02497 7

[†] Absolute intensity per 100 decays.

²⁰⁵Fr ε decay **2010De04** (continued)

$\gamma(^{205}\text{Rn})$

I γ normalization: From the decay scheme and $\Sigma I_i(\gamma+ce)(g.s.)=100\%$ and by assuming no $\%\varepsilon+\%\beta^+$ direct feeding to the ground $(J^{\pi}=5/2^-)$ and the first excited $(J^{\pi}=3/2^-)$ states.

Eγ	Ι _γ #	E_i (level)	\mathbf{J}^{π}_{i}	E_f	${ m J}_f^\pi$	Mult. [†]	δ^{\dagger}	α^{\ddagger}	Comments
31.4 2	2.06 7	31.40	(3/2-)	0.0	5/2-	[M1]		76.1 18	%Iγ=0.00604 <i>17</i> α(L)=57.8 <i>14</i> ; $α$ (M)=13.8 <i>4</i> α(N)=3.59 <i>9</i> ; $α$ (O)=0.786 <i>19</i> ; α(P)=0.115 <i>3</i> I _γ : From intensity balance at the 31.40-keV level and by assuming no direct $%ε+%β^+$ feeding to this level ($Δ$ I=3)
356.3 2	52 4	387.60	(7/2-)	31.40	(3/2 ⁻)	E2		0.0840	%1γ=0.16 5 $\alpha(K)$ =0.0476 7; $\alpha(L)$ =0.0271 4; $\alpha(M)$ =0.00704 10 $\alpha(N)$ =0.00183 3; $\alpha(O)$ =0.000380 6; $\alpha(P)$ =4.65×10 ⁻⁵ 7 Mult : $\alpha(K)$ exp=0.048 11
387.5 2	36 3	387.60	(7/2 ⁻)	0.0	5/2-	M1		0.297	$ \begin{array}{l} & \alpha(\mathbf{K}) e_{\mathbf{A}} e_{$
503.8 2	33 3	1049.1?	(7/2 ⁻ ,9/2 ⁻ ,11/2 ⁻)	545.30?	(7/2 ⁻ ,9/2 ⁻)	E2		0.0345	$\% I\gamma = 0.102 29$ $\alpha(K) = 0.0233 4;$ $\alpha(L) = 0.00844 12;$ $\alpha(M) = 0.00214 3$ $\alpha(N) = 0.000558 8;$ $\alpha(O) = 0.0001171 17;$ $\alpha(P) = 1.506 \times 10^{-5} 22$
545.3 2	98 8	545.30?	(7/2 ⁻ ,9/2 ⁻)	0.0	5/2-	E2		0.0287	Mult.: $\alpha(K)\exp=0.022$ 5. %Iy=0.30 9 $\alpha(K)=0.0199$ 3; $\alpha(L)=0.00662$ 10; $\alpha(M)=0.001672$ 24 $\alpha(N)=0.000435$ 7; $\alpha(O)=9.17\times10^{-5}$ 13; $\alpha(P)=1.192\times10^{-5}$ 17
564.7 2	100	596.20	(7/2 ⁻)	31.40	(3/2 ⁻)	E2		0.0265	Mult.: $\alpha(K)\exp=0.016$ 7. %I $\gamma=0.30$ 8 $\alpha(K)=0.0186$ 3; $\alpha(L)=0.00597$ 9; $\alpha(M)=0.001503$ 21 $\alpha(N)=0.000391$ 6; $\alpha(O)=8.25\times10^{-5}$ 12; $\alpha(P)=1.078\times10^{-5}$ 16 Mult : $\alpha(K)\exp=0.022$ 3
596.3 2	41 4	596.20	(7/2 ⁻)	0.0	5/2-	M1		0.0939	$%I\gamma = 0.13 4$ $\alpha(K) = 0.0763 11;$

Continued on next page (footnotes at end of table)

				205	Fr ε decay	2010	De04 (cont	tinued)
					$\gamma(^{20}$	⁵ Rn) (cor	ntinued)	
Eγ	$I_{\gamma}^{\#}$	E _i (level)	\mathbf{J}_i^{π}	$E_f J_f^{\pi}$	Mult. [†]	δ^{\dagger}	α^{\ddagger}	Comments
								$\alpha(L)=0.01343 \ I9; \ \alpha(M)=0.00318 \ 5 \\ \alpha(N)=0.000828 \ I2; \ \alpha(O)=0.000181 \ 3; \\ \alpha(P)=2.65\times10^{-5} \ 4 \\ Mult: \ \alpha(K)=0.069 \ 9 \\ \alpha(K)=0.0$
633.1 2	63 5	633.10	(7/2 ⁻)	0.0 5/2-	M1+E2	1.8 4	0.035 6	% $I\gamma$ =0.20 6 α (K)=0.027 6; α (L)=0.0060 8; α (M)=0.00146 17 α (N)=0.00038 5; α (O)=8.2×10 ⁻⁵ 10; α (P)=1.13×10 ⁻⁵ 16
657.1 <i>5</i>	≈36	657.1?	(13/2+)	0.0 5/2-	[M4]		0.889	Mult.: $\alpha(\mathbf{K})\exp=0.027/3$. δ : From $\alpha(\mathbf{K})\exp$ and the briccmixing program. $\%$ Iy \approx 0.11 $\alpha(\mathbf{K})=0.592/6$ and $\alpha(\mathbf{K})=0.0204/6$ and $\alpha(\mathbf{K})=0.0502/6$.
								$\alpha(\mathbf{K})=0.386 \ \ \gamma; \ \alpha(\mathbf{L})=0.224 \ \ 4; \ \alpha(\mathbf{M})=0.0593 \ \ 9$ $\alpha(\mathbf{N})=0.01571 \ 23; \ \alpha(\mathbf{O})=0.00337 \ 5; \ \alpha(\mathbf{P})=0.000458 \ 7$ $\mathbf{E}_{\gamma}: \text{ From } 2010\text{De04, based on the observed} \ 558.7\text{-keV ce line in coincidence with the Rn} \ \text{X rays. The } \gamma \text{ rays is highly contaminated.} \ \mathbf{I}_{\gamma}: \text{ From } \%\epsilon + \%\beta^+ \text{ feeding to this level.}$

[†] From the measured α(K)exp in 2010De04.
[‡] Additional information 1.
[#] For absolute intensity per 100 decays, multiply by 0.0031 8.

²⁰⁵Fr ε decay 2010De04

Decay Scheme

 $^{205}_{86}$ Rn₁₁₉

4