¹⁷⁰Er(⁴⁰Ar,5nγ) **1999No03,2002BeZV**

		History	
Туре	Author	Citation	Literature Cutoff Date
Full Evaluation	F. G. Kondev	NDS 166, 1 (2020)	20-Apr-2020

Reaction: ${}^{170}\text{Er}({}^{40}\text{Ar},5n\gamma)$ E=183 MeV and ${}^{197}\text{Au}({}^{14}\text{N},6n\gamma)$ E=90-110 MeV. Measured E γ , I γ , $\gamma\gamma$, $\gamma(\theta)$, $\gamma\gamma(\theta)$ (DCO) with an array of 15 EUROGAM and 10 TESSA Compton-suppressed Ge detectors in the ${}^{170}\text{Er}({}^{40}\text{Ar},5n\gamma)$ experiment and the YRAST ball array consisting of 20 Compton-suppressed Ge detectors and three unsuppressed clover detectors in the ${}^{197}\text{Au}({}^{14}\text{N},6n\gamma)$ experiment. Other: 2015Ma63.

²⁰⁵Rn Levels

E(level) [†]	$J^{\pi \ddagger}$	T _{1/2}	Comments
0.0	5/2-	170 s 4	$J^{\pi}, T_{1/2}$: From Adopted Levels.
657.1 [@] 6	(13/2 ⁺)	>10 s	Additional information 1. J^{π} : Assumed value based on the expected configuration and systematics of similar structures in neighboring nuclei. The assignment is tentative. $T_{1/2}$: From Adopted Levels.
1157.30 [@] 10	$(17/2^+)$		·/~ ·
1647.33 [@] 14	$(21/2^+)$		
2264.78 [@] 17	$(25/2^+)$		
2337.27 ^{&} 14	$(21/2^+)$		
2394.30 17	$(23/2^+)^{\#}$		
2453.84 <mark>&</mark> 19	$(23/2^+)$		
2623.97 ^{&} 17	$(25/2^+)$		
2640.60 19	$(25/2^+)^{\#}$		
2781.89 <mark>&</mark> 19	$(27/2^+)$		
2803.88 19	$(27/2^+)^{\#}$		
2903.09 ^{&} 21	$(29/2^+)$		
2933.78 [@] 20	$(29/2^+)$		
3151.09 ^{&} 24	$(31/2^+)$		
3244.08 21	$(31/2^+)^{\#}$		
3499.28 [@] 22	$(33/2^+)$		
3518.8 ^{&} 3	$(33/2^+)$		
3821.2 ^{&} 3	$(35/2^+)$		
4109.4 ^{&} 3	$(37/2^+)$		
4187? [@]	$(37/2^+)$		
4247.3 3	$(37/2^+)$		
4310.7 ^{&} 3	$(39/2^+)$		
4716.5 ^{&} 4	$(41/2^+)$		

[†] From a least-squares fit to $E\gamma$, relative to $E(13/2^+)=657.1$ keV 6 from Adopted Levels.

[‡] From the measured angular distributions and DCO ratios, and the apparent band structures, unless otherwise stated.

[#] The spin value is one unit lower compared to that given by 1999No03 and 2002BeZV. If the spin assignments of 1999No03 and 2002BeZV are adopted then this band would become yrast, and hence, it should be populated much stronger compared to the $v(i_{13/2}^{-1})$ band. This is, however, in contradiction with the measured band-population pattern.

^(a) configuration= $\nu(i_{13/2}^{-1})$.

[&] configuration= $\nu(i_{13/2}^{-1})\otimes\pi(i_{13/2}^{+2})$, weakly oblate band. The assignment is tentative. It is based on the observed J^{π} and predictions made using the Total Routhian Surface and Tilted Axis Cranked models. Note, that calculations predict (1999No03) that configuration= $\nu(i_{13/2}^{-1})\otimes\pi(h_{9/2}^{+1}i_{13/2}^{+1})$ is about 300 keV lower compared to configuration= $\nu(i_{13/2}^{-1})\otimes\pi(i_{13/2}^{+2})$.

 $^{205}_{86}$ Rn₁₁₉-2

				¹⁷⁰ Er(⁴⁰ A	Ar,5ny)	1999No03	,2002BeZV	(continued)	
						γ (²⁰⁵ Rr	1)		
E_{γ}^{\dagger}	$I_{\gamma}^{\#}$	E _i (level)	\mathbf{J}_i^{π}	E_f	\mathbf{J}_{f}^{π}	Mult.@	α &	$I_{(\gamma+ce)}^{\dagger}$	Comments
116.7 2	1.59 11	2453.84	(23/2+)	2337.27	(21/2+)	(M1)	8.46 13	15.0 10	$\overline{ce(K)/(\gamma+ce)=0.721 6};$ $ce(L)/(\gamma+ce)=0.1315 24;$ $ce(M)/(\gamma+ce)=0.0312 6$ $ce(N)/(\gamma+ce)=0.00815 16;$ $ce(O)/(\gamma+ce)=0.001783 35;$ $ce(P)/(\gamma+ce)=0.000260 5$ $\alpha(K)=6.83 10; \alpha(L)=1.245 18;$ $\alpha(M)=0.296 4$ $\alpha(N)=0.0771 11; \alpha(O)=0.01687$ $25; \alpha(P)=0.00246 4$ What is DCO=1 2.0; A = 0.37
121.2 <i>I</i>	2.44 12	2903.09	(29/2+)	2781.89	(27/2+)	(M1)	7.60 11	21.0 10	Mult.: $DCO=1.2$ 9, $A_2=-0.37$. $ce(K)/(\gamma+ce)=0.713$ 6; $ce(L)/(\gamma+ce)=0.1298$ 23; $ce(M)/(\gamma+ce)=0.0308$ 6 $ce(N)/(\gamma+ce)=0.001759$ 33; $ce(P)/(\gamma+ce)=0.001257$ 5 $\alpha(K)=6.13$ 9; $\alpha(L)=1.116$ 16; $\alpha(M)=0.265$ 4 $\alpha(N)=0.0691$ 10; $\alpha(O)=0.01513$ 21; $\alpha(P)=0.002209$ 31 Mult.: $DCO=1.4$ 4; $A_2=-0.42$.
129.0 5 157.9 <i>1</i>	5.5 4	2394.30 2781.89	(23/2 ⁺) (27/2 ⁺)	2264.78 2623.97	(25/2 ⁺) (25/2 ⁺)	(M1)	3.58 5	25.0 20	ce(K)/(γ +ce)=0.631 5; ce(L)/(γ +ce)=0.1143 19; ce(M)/(γ +ce)=0.0271 5 ce(N)/(γ +ce)=0.00708 13; ce(O)/(γ +ce)=0.001548 28; ce(P)/(γ +ce)=0.000226 4 α (K)=2.89 4; α (L)=0.524 7; α (M)=0.1244 18 α (N)=0.0324 5; α (O)=0.00710 10; α (P)=0.001036 15
163.6 2	0.94 24	2803.88	(27/2 ⁺)	2640.60	(25/2+)	[M1]	3.24 5	4.0 10	Mult.: DCO=0.72 16; A_2 =-0.27. ce(K)/(γ +ce)=0.617 5; ce(L)/(γ +ce)=0.1117 19; ce(M)/(γ +ce)=0.0265 5 ce(N)/(γ +ce)=0.00691 12; ce(O)/(γ +ce)=0.001513 27; ce(P)/(γ +ce)=0.000221 4 α (K)=2.62 4; α (L)=0.473 7; α (M)=0.1125 16 α (N)=0.0293 4; α (O)=0.00641 9; α (P)=0.000937 14
170.2 2	5.0 5	2623.97	(25/2+)	2453.84	(23/2+)	(M1)	2.90 4	20.0 20	$ce(K)/(\gamma+ce)=0.601 5;$ $ce(L)/(\gamma+ce)=0.1086 18;$ $ce(M)/(\gamma+ce)=0.00672 12;$ $ce(O)/(\gamma+ce)=0.00672 12;$ $ce(O)/(\gamma+ce)=0.001471 26;$ $ce(P)/(\gamma+ce)=0.000215 4$ $\alpha(K)=2.341 34; \alpha(L)=0.423 6;$ $\alpha(M)=0.1005 14$ $\alpha(N)=0.0262 4; \alpha(O)=0.00573 8;$ $\alpha(P)=0.000837 12$ Mult: DCO=1 3 5; A== 0.13
201.3 1	2.9	4310.7	(39/2+)	4109.4	$(37/2^+)$	(M1)	1.807 25	8	$ce(K)/(\gamma+ce)=0.520 4;$

				¹⁷⁰ Er(⁴⁰	⁾ Ar,5n γ)	1999No0	03,2002BeZV	(continued	l)
E_{γ}^{\dagger}	$I_{\gamma}^{\#}$	E _i (level)	\mathbf{J}_i^{π}	E_f	J_f^{π}	Mult.@	α &	$I_{(\gamma+ce)}^{\dagger}$	Comments
248.0 <i>I</i>	12.9 5	3151.09	(31/2+)	2903.09	(29/2+)	(M1)	1.010 14	26.0 10	$\begin{array}{c} ce(L)/(\gamma+ce)=0.0938 \ 15;\\ ce(M)/(\gamma+ce)=0.0223 \ 4\\ ce(N)/(\gamma+ce)=0.00581 \ 10;\\ ce(O)/(\gamma+ce)=0.0001855 \ 31\\ \alpha(K)=1.461 \ 21; \ \alpha(L)=0.263 \ 4;\\ \alpha(M)=0.0625 \ 9\\ \alpha(N)=0.01630 \ 23; \ \alpha(O)=0.00357 \ 5; \ \alpha(P)=0.000521 \ 7\\ Mult.: \ DCO=0.60 \ 21; \ A_2=-0.26.\\ ce(K)/(\gamma+ce)=0.406 \ 4; \end{array}$
									ce(L)/(γ +ce)=0.0730 11; ce(M)/(γ +ce)=0.01733 27 ce(N)/(γ +ce)=0.00452 7; ce(O)/(γ +ce)=0.000988 16; ce(P)/(γ +ce)=0.0001443 23 α (K)=0.817 11; α (L)=0.1468 21; α (M)=0.0348 5 α (N)=0.00908 13; α (O)=0.001987 28; α (P)=0.000290 4 Mult.: DCO=0.59 9; A ₂ =-0.36.
288.2 1	4.2 6	4109.4	(37/2+)	3821.2	(35/2+)	(M1)	0.667 9	7.0 10	ce(K)/(γ +ce)=0.3238 33; ce(L)/(γ +ce)=0.0580 8; ce(M)/(γ +ce)=0.01376 21 ce(N)/(γ +ce)=0.000785 12; ce(O)/(γ +ce)=0.0001146 17 α (K)=0.540 8; α (L)=0.0967 14; α (M)=0.02294 32 α (N)=0.00598 8; α (O)=0.001308 18; α (P)=0.0001911 27 Mult: A ₂ =-0 34.
302.4 1	7.6 6	3821.2	(35/2+)	3518.8	(33/2+)	(M1)	0.584 8	12.0 10	ce(K)/(γ +ce)=0.2986 <i>31</i> ; ce(L)/(γ +ce)=0.0534 <i>8</i> ; ce(M)/(γ +ce)=0.01268 <i>19</i> ce(N)/(γ +ce)=0.000723 <i>11</i> ; ce(O)/(γ +ce)=0.0001056 <i>16</i> α (K)=0.473 <i>7</i> ; α (L)=0.0847 <i>12</i> ; α (M)=0.02009 <i>28</i> α (N)=0.00523 <i>7</i> ; α (O)=0.001145 <i>16</i> ; α (P)=0.0001673 <i>23</i> Mult.: DCO=0.61 <i>16</i> ; A ₂ =-0.35.
328.2 3	2.7	2781.89	(27/2 ⁺)	2453.84	(23/2+)	[E2]	0.1059 15	3	ce(K)/(γ +ce)=0.0513 7; ce(L)/(γ +ce)=0.0331 5; ce(M)/(γ +ce)=0.00864 12 ce(N)/(γ +ce)=0.002251 33; ce(O)/(γ +ce)=0.000465 7; ce(P)/(γ +ce)=5.64×10 ⁻⁵ 8 α (K)=0.0567 8; α (L)=0.0366 5; α (M)=0.00956 14 α (N)=0.00249 4; α (O)=0.000514 7; α (P)=6.23×10 ⁻⁵ 9
367.7 1	12.7 7	3518.8	(33/2+)	3151.09	(31/2+)	(M1)	0.343 5	17.0 10	ce(K)/(γ+ce)=0.2069 23; ce(L)/(γ+ce)=0.0369 5; ce(M)/(γ+ce)=0.00874 13 ce(N)/(γ+ce)=0.002277 33;

				¹⁷⁰ Er(⁴	⁴⁰ Ar,5n γ)	1999No	03,2002BeZV	(continue	ed)
E_{γ}^{\dagger}	$I_{\gamma}^{\#}$	E _i (level)	\mathbf{J}_i^{π}	E_f	\mathbf{J}_f^{π}	Mult.@	α &	$I_{(\gamma+ce)}$	Comments
375.9 1	6.8 8	2640.60	(25/2+)	2264.78	(25/2+)	[M1]	0.323 5	9.0 10	$\frac{\text{ce(O)}/(\gamma+\text{ce})=0.000498\ 7;}{\text{ce(P)}/(\gamma+\text{ce})=7.28\times10^{-5}\ 11}$ $\alpha(\text{K})=0.278\ 4;\ \alpha(\text{L})=0.0495\ 7;$ $\alpha(\text{M})=0.01173\ 16$ $\alpha(\text{N})=0.00306\ 4;\ \alpha(\text{O})=0.000669\ 9;$ $\alpha(\text{P})=9.78\times10^{-5}\ 14$ Mult: DCO=0.81\ 17;\ A_2=-0.48. $\frac{\text{ce(K)}}{(\gamma+\text{ce})=0.1978\ 23;}$ $\frac{\text{ce(L)}}{(\gamma+\text{ce})=0.0352\ 5;}$ $\frac{\text{ce(M)}}{(\gamma+\text{ce})=0.002176\ 31;}$ $\frac{\text{ce(O)}}{(\gamma+\text{ce})=6.96\times10^{-5}\ 10}$
405.8 <i>1</i>	1.6	4716.5	(41/2 ⁺)	4310.7	(39/2+)	[M1]	0.263 4	2	$\begin{array}{l} \alpha(\text{K})=0.202 \ 4, \ \alpha(\text{L})=0.0400 \ 7, \\ \alpha(\text{M})=0.01105 \ 15 \\ \alpha(\text{N})=0.00288 \ 4; \ \alpha(\text{O})=0.000630 \ 9; \\ \alpha(\text{P})=9.20\times10^{-5} \ 13 \\ \text{ce}(\text{K})/(\gamma+\text{ce})=0.1686 \ 20; \\ \text{ce}(\text{L})/(\gamma+\text{ce})=0.0300 \ 4; \\ \end{array}$
409.5 <i>1</i>	3.8	2803.88	(27/2+)	2394.30	(23/2+)	(E2)	0.0578 8	4	ce(M)/(γ +ce)=0.00710 10 ce(N)/(γ +ce)=0.001851 26; ce(O)/(γ +ce)=0.000405 6; ce(P)/(γ +ce)=5.92×10 ⁻⁵ 8 α (K)=0.2128 30; α (L)=0.0378 5; α (M)=0.00897 13 α (N)=0.002336 33; α (O)=0.000511 7; α (P)=7.47×10 ⁻⁵ 10 ce(K)/(γ +ce)=0.0336 5; ce(L)/(γ +ce)=0.01570 22; ce(M)/(γ +ce)=0.001054 15; ce(O)/(γ +ce)=0.0002194 31; ce(P)/(γ +ce)=0.0002194 31; ce(P)/(γ +ce)=2.74×10 ⁻⁵ 4 α (K)=0.0355 5; α (L)=0.01661 23; α (M)=0.00428 6
426.1 <i>1</i>	2.4	4247.3	(37/2+)	3821.2	(35/2+)	[M1]	0.2302 <i>32</i>	3	$\alpha(N)=0.001115 \ 16;$ $\alpha(O)=0.0002320 \ 33;$ $\alpha(P)=2.90\times10^{-5} \ 4$ Mult.: DCO=0.8 2. ce(K)/(γ +ce)=0.1517 \ 18; ce(L)/(γ +ce)=0.0269 \ 4; ce(M)/(γ +ce)=0.00638 \ 9 ce(N)/(γ +ce)=0.001663 \ 24; ce(O)/(γ +ce)=0.000364 \ 5; ce(P)($(\gamma$ +ce)=5.32\times10^{-5} \ 8
440.2 <i>1</i>	2.9	3244.08	(31/2+)	2803.88	(27/2+)	[E2]	0.0480 7	3	$\begin{aligned} \alpha(K) &= 0.1866\ 26;\ \alpha(L) = 0.0331\ 5;\\ \alpha(M) &= 0.00785\ 11\\ \alpha(N) &= 0.002046\ 29;\ \alpha(O) = 0.000448\\ 6;\ \alpha(P) &= 6.54 \times 10^{-5}\ 9\\ ce(K)/(\gamma + ce) &= 0.0292\ 4;\\ ce(L)/(\gamma + ce) &= 0.01243\ 17;\\ ce(M)/(\gamma + ce) &= 0.00319\ 4\\ ce(N)/(\gamma + ce) &= 0.000310\ 12;\\ ce(O)/(\gamma + ce) &= 0.0001733\ 24;\\ ce(P)/(\gamma + ce) &= 2.186 \times 10^{-5}\ 31\\ \alpha(K) &= 0.0306\ 4;\ \alpha(L) &= 0.01303\ 18; \end{aligned}$

170 Er(40 Ar,5n γ) 1999No03,2002BeZV (continued) $\gamma(^{205}\text{Rn})$ (continued) α**&** $I_{\gamma}^{\#}$ Mult.@ E_{γ}^{\dagger} $I_{(\gamma+ce)}$ E_i(level) J_i^{π} \mathbf{E}_{f} J_f^{π} Comments $\alpha(M) = 0.003345$ $\alpha(N)=0.000870$ 12; $\alpha(O)=0.0001816\ 25;$ $\alpha(P)=2.291\times10^{-5}$ 32 Mult.: DCO=0.9 2. x465.8[‡] 1 6.0 10 490.0 1 1647.33 $(21/2^+)$ 1157.30 $(17/2^+)$ E2 0.0369 5 74 77 $ce(K)/(\gamma+ce)=0.02373 32;$ $ce(L)/(\gamma+ce)=0.00888$ 12; $ce(M)/(\gamma+ce)=0.002260 32$ $ce(N)/(\gamma+ce)=0.000589 8;$ $ce(O)/(\gamma+ce)=0.0001234$ 17; $ce(P)/(\gamma+ce)=1.580\times10^{-5}$ 22 $\alpha(K)=0.02460 34;$ α (L)=0.00921 13; $\alpha(M) = 0.002343 33$ $\alpha(N)=0.000610$ 9; *α*(O)=0.0001279 *18*; $\alpha(P)=1.639\times10^{-5}$ 23 Mult.: DCO=1.09 7. 500.2 1 97 $(17/2^+)$ 657.1 (13/2⁺) E2 0.0351 5 100 $ce(K)/(\gamma+ce)=0.02281 \ 31;$ 1157.30 $ce(L)/(\gamma+ce)=0.00834$ 12; $ce(M)/(\gamma+ce)=0.002119 \ 30$ $ce(N)/(\gamma+ce)=0.000552 8;$ $ce(O)/(\gamma+ce)=0.0001158 \ 16;$ $ce(P)/(\gamma+ce)=1.487\times10^{-5} 21$ $\alpha(K)=0.02361 33;$ $\alpha(L)=0.00863$ 12; a(M)=0.002193 31 $\alpha(N)=0.000571$ 8; $\alpha(O)=0.0001198$ 17; $\alpha(P)=1.539\times10^{-5}$ 22 Mult.: DCO=1.09 7. 565.5 1 7.8 3499.28 $(33/2^+)$ 2933.78 (29/2⁺) (E2) 0.0264 4 8 $ce(K)/(\gamma+ce)=0.01804\ 25;$ $ce(L)/(\gamma+ce)=0.00579 8;$ ce(M)/(y+ce)=0.001458 20 $ce(N)/(\gamma+ce)=0.000380$ 5; $ce(O)/(\gamma+ce)=8.00\times10^{-5}$ 11; $ce(P)/(\gamma+ce)=1.046\times10^{-5}$ 15 $\alpha(K)=0.01851\ 26;$ α (L)=0.00594 8; α(M)=0.001496 21 $\alpha(N)=0.000390$ 5; $\alpha(O)=8.22\times10^{-5}$ 12; $\alpha(P)=1.073\times10^{-5}$ 15 Mult.: DCO=1.9 6. 617.5 I 43 2264.78 $(25/2^+)$ 1647.33 $(21/2^+)$ E2 0.02174 30 44 $ce(K)/(\gamma+ce)=0.01527\ 21;$ $ce(L)/(\gamma+ce)=0.00451 6;$ ce(M)/(y+ce)=0.001128 16 $ce(N)/(\gamma+ce)=0.000294$ 4; $ce(O)/(\gamma+ce)=6.21\times10^{-5}$ 9; $ce(P)/(\gamma+ce)=8.21\times10^{-6}$ 12 *α*(K)=0.01561 22; $\alpha(L)=0.00461~6$: a(M)=0.001152 16

			17	⁷⁰ Er(⁴⁰ Ar, 5n γ)	1999No03,2	002BeZV (cont	tinued)	
				<u>γ</u>	v(²⁰⁵ Rn) (contin	nued)		
E_{γ}^{\dagger}	$I_{\gamma}^{\#}$	E_i (level)	\mathbf{J}_i^π	E_f J_f^{π}	Mult. [@]	α &	$I_{(\gamma+ce)}^{\dagger}$	Comments
×+								$\alpha(N)=0.000300 \ 4;$ $\alpha(O)=6.35\times10^{-5} \ 9;$ $\alpha(P)=8.39\times10^{-6} \ 12$ Mult.: DCO=1.10 \ 8.
x633.6+ 1 669.0 1	15.7 10	2933.78	(29/2+)	2264.78 (25/2	2 ⁺) E2	0.01828 26	13.0 <i>10</i> 16.0 <i>10</i>	$ce(K)/(\gamma+ce)=0.01315$ 18; $ce(L)/(\gamma+ce)=0.00362$ 5; $ce(M)/(\gamma+ce)=0.000900$
·								r_{3} ce(N)/(γ +ce)=0.0002343 33; ce(O)/(γ +ce)=4.97×10 ⁻⁵ 7; ce(P)/(γ +ce)= 6.64×10 ⁻⁶ 9 α (K)=0.01339 19; α (L)=0.00369 5; α (M)=0.000916 13 α (N)=0.0002385 33; α (O)=5.06×10 ⁻⁵ 7; α (P)=6.76×10 ⁻⁶ 9 Mult.: DCO=1.04 17.
⁴ 6/2.6+ 1 688.7 ^a 2	1	4187?	(37/2 ⁺)	3499.28 (33/2	2 ⁺) [E2]	0.01719 24	11.0 10	ce(K)/(γ +ce)=0.01245 <i>17</i> ; ce(L)/(γ +ce)=0.00335 <i>5</i> ; ce(M)/(γ +ce)=0.000831 <i>12</i> ce(N)/(γ +ce)=0.0002163 <i>30</i> ; ce(O)/(γ +ce)=4.60×10 ⁻⁵ <i>6</i> ; ce(P)/(γ +ce)= 6.16×10 ⁻⁶ <i>9</i> α (K)=0.01267 <i>18</i> ;
746.9 <i>1</i>	5.8 10	2394.30	(23/2 ⁺)	1647.33 (21/2	2 ⁺) [M1]	0.0519 7	6.0 10	$\begin{array}{l} \alpha(L) = 0.00341 \ 5; \\ \alpha(M) = 0.000845 \ 12 \\ \alpha(N) = 0.0002200 \ 31; \\ \alpha(O) = 4.68 \times 10^{-5} \ 7; \\ \alpha(P) = 6.26 \times 10^{-6} \ 9 \\ \mathrm{ce}(\mathrm{K})/(\gamma + \mathrm{ce}) = 0.0402 \ 5; \\ \mathrm{ce}(\mathrm{L})/(\gamma + \mathrm{ce}) = 0.00702 \ 10; \\ \mathrm{ce}(\mathrm{M})/(\gamma + \mathrm{ce}) = 0.001660 \\ 23 \end{array}$
976.6 <i>1</i>	11.0 <i>10</i>	2623.97	(25/2+)	1647.33 (21/2	2+) (E2)	0.00851 12	11.0 <i>10</i>	$ce(N)/(\gamma+ce)=0.000432 6;ce(O)/(\gamma+ce)=9.47\times10^{-5} 13; ce(P)/(\gamma+ce)=1.385\times10^{-5} 19 \alpha(K)=0.0422 6;\alpha(L)=0.00738 10;\alpha(M)=0.001746 24 \alpha(N)=0.000455 6;\alpha(O)=9.96\times10^{-5} 14;\alpha(P)=1.457\times10^{-5} 20 Mult.: DCO=1.0 2.ce(K)/(\gamma+ce)=0.00657 9;ce(L)/(\gamma+ce)=0.001409 20; ce(M)/(\gamma+ce)=0.001409 20; ce(M)/(\gamma+ce)=0.001409 20; ce(M)/(\gamma+ce)=0.000342 5 ce(N)/(\gamma+ce)=8.89\times10^{-5} 12;$

				¹⁷⁰ Er(⁴⁰ Ar,5n γ) 1999N o	003,2002BeZ	V (continu	ed)			
γ ⁽²⁰⁵ Rn) (continued)												
E_{γ}^{\dagger}	$I_{\gamma}^{\#}$	E_i (level)	\mathbf{J}_i^{π}	E_f	\mathbf{J}_{f}^{π}	Mult.@	α &	$I_{(\gamma+ce)}^{\dagger}$	Comments			
1180.0 <i>I</i>	7	2337.27	(21/2+)	1157.30	(17/2+)	(E2)	0.00593 8	7	$\begin{array}{c} \mbox{ce}({\rm O})/(\gamma+{\rm ce})=1.913\times10^{-5}\ 27;\\ \mbox{ce}({\rm P})/(\gamma+{\rm ce})=2.66\times10^{-6}\ 4\\ \mbox{a}({\rm K})=0.00636\ 9;\ \alpha({\rm L})=0.001421\\ 20;\ \alpha({\rm M})=0.000345\ 5\\ \mbox{a}({\rm N})=8.97\times10^{-5}\ 13;\\ \mbox{a}({\rm O})=1.929\times10^{-5}\ 27;\\ \mbox{a}({\rm O})=1.929\times10^{-5}\ 27;\\ \mbox{a}({\rm P})=2.68\times10^{-6}\ 4\\ \mbox{Mult.: DCO}=1.3\ 2.\\ \mbox{ce}({\rm K})/(\gamma+{\rm ce})=0.000922\ 13;\\ \mbox{ce}({\rm K})/(\gamma+{\rm ce})=0.000922\ 13;\\ \mbox{ce}({\rm M})/(\gamma+{\rm ce})=0.0002216\ 31\\ \mbox{ce}({\rm N})/(\gamma+{\rm ce})=1.245\times10^{-5}\ 8;\\ \mbox{ce}({\rm O})/(\gamma+{\rm ce})=1.245\times10^{-5}\ 17;\\ \mbox{ce}({\rm P})/(\gamma+{\rm ce})=1.755\times10^{-6}\ 31\\ \mbox{a}({\rm K})=0.00471\ 7;\ \alpha({\rm L})=0.000928\\ 13;\ \alpha({\rm M})=0.000229\ 31\\ \mbox{a}({\rm N})=5.80\times10^{-5}\ 8;\\ \mbox{a}({\rm O})=1.253\times10^{-5}\ 18;\\ \mbox{a}({\rm O})=1.275\times10^{-6}\ 31\\ \mbox{Mult.: DCO}=1.4\ 4.\\ \end{array}$			

[†] From 2002BeZV. [‡] Placed below the (21/2⁺) level at 1680.17 keV, in parallel to the $\nu(i_{13/2}^{-1})$ band, by 1999No03 and 2002BeZV. These transitions likely feed toward the $5/2^{-}$ g.s..

[#] From I(γ +ce) and the corresponding total electron conversion coefficient values.

[@] From the measured angular distributions and DCO ratios, and the apparent band structures.

& Total theoretical internal conversion coefficients, calculated using the BrIcc code (2008Ki07) with Frozen orbital approximation based on γ -ray energies, assigned multipolarities, and mixing ratios, unless otherwise specified.

^a Placement of transition in the level scheme is uncertain.

 $x \gamma$ ray not placed in level scheme.

 $^{205}_{86} Rn_{119}$