Adopted Levels

		History	
Type	Author	Citation	Literature Cutoff Date
Full Evaluation	F. G. Kondev	NDS 166, 1 (2020)	20-Apr-2020

 $Q(\beta^{-})=5803 \text{ SY}; S(n)=3120 \text{ SY}; S(p)=10570 \text{ SY}; Q(\alpha)=-150 \text{ SY}$ 2017Wa10

- 2010Al24: ²⁰⁵Pt nuclide identified in ⁹Be(²³⁸U,X) reaction with a beam energy of 1 GeV/nucleon produced by the SIS synchrotron at GSI facility. Target=2500 mg/cm². The fragment residues were analyzed with the high resolving power magnetic spectrometer Fragment separator (FRS). The identification of nuclei was made on the basis of magnetic rigidity, velocity, time-of-flight, energy loss and atomic number of the fragments using two plastic scintillators and two multisampling ionization chambers. The FRS magnet was tuned to center on ²¹⁰Au, ²¹⁶Pb, ²¹⁹Pb, ²²⁷At and ²²⁹At nuclei along the central trajectory of FRS
- 2011Mo18: ²⁰⁸Pb beam, E=1 GeV/nucleon, delivered by the SIS-18 synchrotron at GSI to a 1.6 g/cm² Be target. Reaction products identified by the magnetic spectrometer fragment separator (FRS) by A/Q, energy loss and magnetic rigidity measurements.
- 2017Ca12: 238 U beam, E=1 GeV/nucleon, from SIS-18 synchrotron at GSI on a 9 Be target of thickness 1.6 g/cm². Reaction products were separated and identified by GSI Fragment Separator (FRS) using B ρ - Δ E-B ρ technique. The FRS tracking detectors were four time-projection chambers (TPCs), two ionization chambers, and thin plastic scintillators for tof measurement. Mass-over-charge (A/Q) ratios were measured for ions analyzed on an event-by-event basis. Finally selected ions of interest were implanted into a stack of double-sided silicon strip detectors SIMBA, which also detected β -decay events.

²⁰⁵Pt Levels

E(level)	J^{π}	Comments
0.0	$(9/2^+)$	$\%\beta^{-}=100; \%\beta^{-}n=?$
		J^{π} : From systematics of single-particle structures above N=126.

 $T_{1/2}$: >300 ns from the time-of-flight in 2017Ca12, but the actual lifetime is expected to be much longer. configuration: $v(g_{9/2}^{+1})$ and spherical shape.