205 At ε decay 1971Jo19,1982Ku20,1982Ku21

		History	
Туре	Author	Citation	Literature Cutoff Date
Full Evaluation	F. G. Kondev	NDS 166, 1 (2020)	20-Apr-2020

²⁰⁵Po Levels

Parent: ²⁰⁵At: E=0.0; $J^{\pi}=9/2^{-}$; $T_{1/2}=26.9 \text{ min } 8$; $Q(\varepsilon)=4549 \ 18$; $\%\varepsilon+\%\beta^{+} \text{ decay}=90 \ 2$

1982Ku20, 1982Ku21: mass-separated source produced using spallation of ²³²Th with 660-MeV protons; Detectors:Ge(Li) with energy resolution of 0.6 keV (154 γ), 1.9 keV (719 γ) and 2.8 keV (719 γ), magnetic spectrograph and Si(Li) detector with energy resolution of 2.5 keV for $E(ce) \approx 1$ MeV; Measured: E γ , I γ , Ice, ce γ coin, $\gamma\gamma$ coin. 1971Jo19: source produced as a decay product of mass-separated ²⁰⁵Rn produced using spallation of ²³²Th with 600-MeV protons;

Detectors:Ge(Li) and Si(Li); Measured: E γ , I γ , $\gamma\gamma$ coin, Ice.

Others: 1970DaZM and 1970Ho15.

E(level) [†]	$J^{\pi \ddagger}$	$T_{1/2}^{\ddagger}$	E(level) [†]	$J^{\pi \ddagger}$
0.0 [#]	5/2-	1.74 h 8	1553.17 6	$(11/2)^+$
143.165 [@] 14	$1/2^{-}$	310 ns 60	1633.30 9	5/2+
154.196 ^{&} 11	3/2-		1651.35 <i>13</i>	7/2-
384.34 6	$(3/2)^{-}$		1761.32 17	$(7/2, 9/2)^{-}$
669.43 4	9/2-		1856.20 11	$11/2^+$
719.28 ^b 4	9/2-		1908.38 24	$(5/2^+)$
783.00 5	$7/2^{-}$		1912.00 9	9/2+
799.02 15	$(5/2)^{-}$		1954.05 10	$(11/2)^{-}$
806.45 8	$(5/2)^{-}$		2149.35 15	$(7/2)^+$
872.10 7	7/2-		2187.88 9	$(11/2)^+$
880.31 ^{<i>a</i>} 4	$13/2^{+}$	0.645 ms 20	2355.56 6	9/2+
902.26 10	$(7/2)^{-}$		2483.49 7	$(7/2, 9/2, 11/2)^+$
1030.38 ^c 4	$(11/2)^{-}$		2799.20 15	$(9/2)^+$
1167.81 7	$7/2^{-}$		2930.82 19	$(9/2)^+$
1394.94 9	$(9/2)^{-}$		3033.0 5	(7/2,9/2)
1400.80 5	$9/2^{+}$		3046.72 20	7/2+
1426.05 7	9/2-		3052.2 4	$(7/2)^+$
1539.94 7	9/2+		3170.9 4	$(7/2)^+$

[†] From a least squares fit to $E\gamma$.

[‡] From Adopted Levels.

configuration= $\nu(f_{5/2}^{-1})$.

^{*a*} configuration= $\nu(p_{1/2}^{-1})$.

& configuration= $\nu(p_{3/2}^{-1})$.

^{*a*} configuration= $\nu(i_{13/2}^{-1})$. ^{*b*} configuration= $\nu(f_{5/2}^{-1})\otimes \pi(h_{9/2}^{+2})_{2^+}$. ^{*c*} configuration= $\nu(f_{5/2}^{-1})\otimes \pi(h_{9/2}^{+2})_{4^+}$.

 ε, β^+ radiations

E(decay)	E(level)	Iβ ⁺ ‡	$I\varepsilon^{\ddagger}$	Log ft	$I(\varepsilon + \beta^+)^{\dagger \ddagger}$	Comments
(1378 18)	3170.9		1.60 9	6.90 4	1.60 9	εK=0.7896 3; εL=0.15749 20; εM+=0.05279 8
(1497 18)	3052.2		1.34 16	7.05 6	1.34 16	εK=0.7910 2; εL=0.15627 18; εM+=0.05231 7
(1502 18)	3046.72		1.21 9	7.10 4	1.21 9	εK=0.7910 2; εL=0.15622 18; εM+=0.05229 7
(1516 18)	3033.0		0.56 5	7.44 5	0.56 5	εK=0.7911 2; εL=0.15609 18; εM+=0.05224 7
(1618 18)	2930.82	0.0023 3	2.03 10	6.94 <i>3</i>	2.03 10	av Eβ=291.5 81; εK=0.79183 9; εL=0.15516 16;

Continued on next page (footnotes at end of table)

205 At ε decay 1971Jo19,1982Ku20,1982Ku21 (continued)

ϵ, β^+ radiations (continued)

E(decay)	E(level)	$\mathrm{I}\!\beta^+$ ‡	$\mathrm{I}\varepsilon^{\ddagger}$	Log ft	$I(\varepsilon + \beta^+)^{\dagger \ddagger}$	Comments
(1750 18)	2799.20	0.0076 8	3.02 15	6.84 <i>3</i>	3.03 15	ε M+=0.05187 7 av E β =349.8 80; ε K=0.7920; ε L=0.1540 2; ε M+=0.05142 6
(2066 18)	2483.49	0.0150 23	1.60 22	7.27 7	1.61 22	ϵ_{M1} = 0.05145 0 av E β = 488.4 79; ϵ K = 0.7890 4; ϵ L = 0.15129 17;
(2193 18)	2355.56	0.056 5	3.9 <i>3</i>	6.93 4	4.0 3	av $E\beta$ =544.3 79; ε K=0.7861 5; ε L=0.15005 19; ε M = -0.04005 7
(2361 18)	2187.88	0.054 4	2.43 16	7.21 4	2.48 16	av $E\beta$ =617.6 79; ε K=0.7807 7; ε L=0.14826 21; ε M = -0.04931 8
(2400 18)	2149.35	0.046 5	1.87 <i>19</i>	7.33 5	1.92 19	av $E\beta = 634.4$ 79; $\varepsilon K = 0.7792$ 8; $\varepsilon L = 0.14781$ 22; $\varepsilon M = -0.04916$ 8
(2595 18)	1954.05	0.040 3	1.05 7	7.65 4	1.09 7	av $E\beta$ =719.8 79; ε K=0.7700 10; ε L=0.14534 25; ε M+=0.04830 9
(2637 18)	1912.00	0.17 2	4.0 4	7.08 5	4.2 4	av $E\beta$ =738.2 79; ε K=0.7677 11; ε L=0.1448 3; ε M+=0.04810 9
(2693 18)	1856.20	0.118 7	2.58 11	7.30 <i>3</i>	2.70 12	av $E\beta$ =762.6 79; ε K=0.7644 11; ε L=0.1440 3; ε M+=0.04782 9
(2788 18)	1761.32	0.056 6	1.02 11	7.73 6	1.08 12	av $E\beta$ =804.1 80; ε K=0.7584 13; ε L=0.1425 3; ε M=-0.04733 10
(2898 18)	1651.35	0.134 8	2.03 11	7.47 3	2.16 12	av $E\beta$ =852.5 79; ε K=0.7505 14; ε L=0.1408 3; ε M+-0.04672 11
(2996 18)	1553.17	0.35 3	4.5 4	7.15 4	4.9 4	av $E\beta$ =895.6 80; ε K=0.7429 15; ε L=0.1391 4; ε M+=0.04615 11
(3009 18)	1539.94	0.232 15	2.94 18	7.34 4	3.17 19	av $E\beta$ =901.4 80; ε K=0.7418 15; ε L=0.1388 4; ε M+=0.04607 11
(3123 18)	1426.05	0.153 14	1.63 15	7.63 5	1.78 16	av $E\beta$ =951.5 80; ϵ K=0.7320 17; ϵ L=0.1367 4; ϵ M+=0.04536 12
(3148 18)	1400.80	0.65 5	6.7 5	7.03 4	7.3 5	av $E\beta$ =962.6 80; ϵ E=0.7297 17; ϵ L=0.1362 4; ϵ M+=0.04520 12
(3154 18)	1394.94	0.096 16	0.97 16	7.86 8	1.07 18	av $E\beta$ =965.2 80; ε K=0.7291 17; ε L=0.1361 4; ε M+=0.04516 12
(3381 18)	1167.81	0.311 25	2.32 18	7.55 4	2.63 20	av $E\beta$ =1065.4 80; ε K=0.7067 19; ε L=0.1315 4; ε M+=0.04360 13
(3519 18)	1030.38	0.85 10	5.3 6	7.22 6	6.2 7	av $E\beta$ =1126.3 80; ε K=0.6918 21; ε L=0.1285 4; ε M+=0.04259 14
(3647 18)	902.26	0.087 19	0.47 10	8.30 10	0.56 12	av $E\beta$ =1183.1 80; ε K=0.6770 22; ε L=0.1256 5; ε M+=0.04160 75
(3669 18)	880.31	0.16 11	2.5 18	9.3 ¹ <i>u</i> 3	2.7 19	av $E\beta$ =1167.5 76; ε K=0.7475 10; ε L=0.14481 25; ε M+=0.04833 9
(3677 18)	872.10	0.66 13	3.4 7	7.45 9	4.1 8	av $E\beta$ =1196.5 80; ε K=0.6735 22; ε L=0.1248 5; ε M+=0.04137 15
(3766 18)	783.00	1.3 1	6.0 6	7.23 5	7.3 7	av $E\beta$ =1236.2 81; ε K=0.6627 23; ε L=0.1227 5; ε M+=0.04066 15
(3830 18)	719.28	1.5 4	6.8 16	7.19 10	8.3 19	av $E\beta$ =1264.5 81; ε K=0.6548 23; ε L=0.1212 5; ε M+=0.04014 15
(3880 18)	669.43	1.3 1	5.3 6	7.31 5	6.6 7	av E β =1286.8 81; ε K=0.6485 23; ε L=0.1199 5; ε M+=0.03973 15

 † From the decay scheme and intensity balance considerations. ‡ For absolute intensity per 100 decays, multiply by 0.90 2.

$^{205}{\rm At}\,\varepsilon$ decay 1971Jo19,1982Ku20,1982Ku21 (continued)

$\gamma(^{205}\text{Po})$

Iy normalization: From the decay scheme by assuming $\Sigma I_i(\gamma + ce)(g.s.) = 100\%$. The $\varepsilon + \beta^+$ feeding to the g.s. is not expected, since it involves a second forbidden $(\Delta J=2, \pi=No)$ transition. Note, that normalization factors of 0.31 5 in 1971Jo19 and 0.31 4 in 1982Ku21 imply a significant feeding to the g.s..

x-ray	<pre>measured intensity (1982Ku20) a)</pre>
Po-K α_2 x ray	86 6
Po-K α_1 x ray	146 8
$Po-K\beta_1 x rav$	52 3

ω

PO- $K\beta_1$ x ray 52.3 PO- $K\beta_2$ x ray 16.5 10 a) For absolute intensities multiply by 0.530 8

E_{γ}^{\dagger}	$I_{\gamma}^{\dagger}\&$	$E_i(level)$	\mathbf{J}_i^{π}	\mathbf{E}_{f}	\mathbf{J}_f^{π}	Mult. [‡]	$\delta^{\#}$	α@	Comments
(11.032 19)	0.0212 15	154.196	3/2-	143.165	1/2-	[M1,E2]		334	 %Iγ=0.0101 8 α(M)=253 4 α(N)=65.3 10; α(O)=13.66 21; α(P)=1.76 3 E_γ: From Adopted Levels. Not observed directly, but required by the coincidence relationship (1982Ku21). I_γ: From intensity balance at the 154-keV level, by assuming that there is no direct β-decay feeding to this level.
^x 105.15 <i>10</i>	0.21 3					(M1,E1)		55	%Iγ=0.100 15 α (K)=4 4; α (L)=0.7 7; α (M)=0.17 16 α (N)=0.04 4; α (O)=0.009 9; α (P)=0.0012 11 Mult.: α (L)exp≤1.21 (1982Ku20).
113.3 5	≈0.1	783.00	7/2-	669.43	9/2-	[M1+E2]		7.77 15	% Ιγ \approx 0.0477 α (K)=6.30 <i>12</i> ; α (L)=1.122 <i>22</i> ; α (M)=0.265 <i>5</i> α (N)=0.0682 <i>13</i> ; α (O)=0.0143 <i>3</i> ; α (P)=0.00184 <i>4</i>
^x 123.35 4	0.281 25					M1		6.10	%Iγ=0.134 12 α (K)=4.95 7; α (L)=0.879 13; α (M)=0.207 3 α (N)=0.0534 8; α (O)=0.01118 16; α (P)=0.001444 21 Mult.: α (K)exp=5.6 8 (1982Ku20).
127.93 4	0.54 4	2483.49	(7/2,9/2,11/2)+	2355.56	9/2+	M1(+E2)	≤0.5	5.2 3	%Iγ=0.258 20 α (K)=4.1 5; α (L)=0.87 9; α (M)=0.211 25 α (N)=0.054 7; α (O)=0.0112 12; α (P)=0.00136 7 Mult.: α (K)exp=4.3 6 and (α (L1)exp+ α (L2)exp)=0.56 25 (1982Ku20).
143.166 17	2.69 19	143.165	1/2-	0.0	5/2-	E2		1.641	%Iγ=1.28 10 α (K)=0.324 5; α (L)=0.977 14; α (M)=0.260 4 α (N)=0.0667 10; α (O)=0.01274 18; α (P)=0.001163 17 Mult.: α (K)exp=0.34 5, (α (L1)exp+ α (L2)exp)=0.60 8

				205 A	At ε de	cay 1971J	lo19,1982Ku	20,1982Kı	a21 (continued)
						$\gamma(2)$	²⁰⁵ Po) (conti	nued)	
${\rm E}_{\gamma}^{\dagger}$	I_{γ}^{\dagger} &	E _i (level)	\mathbf{J}_i^{π}	E_f	\mathbf{J}_f^{π}	Mult. [‡]	δ#	α [@]	Comments
152.38 7	0.48 6	1553.17	(11/2)+	1400.80	9/2+	[M1]		3.35	and α (L3)exp=0.39 5 (1982Ku20); α (L)exp=0.9 7 (1971Jo19). %I γ =0.229 29
									$\alpha(\mathbf{K})=2.72$ 4; $\alpha(\mathbf{L})=0.480$ 7; $\alpha(\mathbf{M})=0.1133$ 16 $\alpha(\mathbf{N})=0.0292$ 5; $\alpha(\mathbf{O})=0.00610$ 9; $\alpha(\mathbf{P})=0.000789$ 11
154.198 12	5.0 4	154.196	3/2-	0.0	5/2-	M1(+E2)	≤0.22	3.19 7	%Iy=2.38 <i>19</i>
									$\alpha(K)=2.577; \alpha(L)=0.4709; \alpha(M)=0.111324$ $\alpha(N)=0.02876; \alpha(O)=0.0059812; \alpha(P)=0.00076411$
									I_{γ} : From intensity balance and by assuming that there is no direct β-decay feeding to the 154-keV level. I(154γ)=8.4 6 in 1982Ku20.
									Mult.: α (K)exp=2.69 <i>13</i> and α (M)exp=0.101 <i>15</i> (1982Ku20); α (K)exp=3.0.6 (1971Jo19)
161.030 17	3.39 21	880.31	$13/2^{+}$	719.28	9/2-	M2		15.79	$\%$ I γ =1.62 11
									α (K)=10.91 <i>16</i> ; α (L)=3.65 <i>6</i> ; α (M)=0.933 <i>13</i>
									$\alpha(N)=0.244 4; \alpha(O)=0.0503 7; \alpha(P)=0.00619 9$ Mult : $\alpha(K)=114 12 (\alpha(L1)=x_1+\alpha(L2)=x_2)=3.6.4$
									α (L3)exp=0.50 6, α (M)exp=1.09 14 and α (N)exp=0.30 4
X1/5 7 1	0.0.2								(1982Ku20); α (K)exp=11.0 <i>10</i> (1971Jo19).
~165./ 1	0.9 2								$\%_{1\gamma}=0.43~10$ E _v : L _v : From 19711019
^x 178.6 1	0.4 1								%Ιγ=0.19 5
202 (0.20	1 07 12	972 10	7/2-	((0.42	0/2-	M1(+E2)	<0.4	1 42 0	E_{γ}, I_{γ} : From 1971Jo19.
202.00 20	1.07 15	872.10	1/2	009.43	9/2	MI(+E2)	≤0.4	1.43 8	$\alpha(K)=1.15 8; \alpha(L)=0.214 3; \alpha(M)=0.0510 9$
									$\alpha(N)=0.01312\ 22;\ \alpha(O)=0.00273\ 4;\ \alpha(P)=0.000346\ 8$
									Mult.: α (K)exp=1.35 22 and (α (L1)exp+ α (L2)exp)=0.24 4 (1082K)20)
230.12 7	1.01 9	384.34	$(3/2)^{-}$	154.196	$3/2^{-}$	(M1)		1.051	$\%$ I γ =0.48 4
					,				$\alpha(K)=0.854 \ 12; \ \alpha(L)=0.1500 \ 21; \ \alpha(M)=0.0354 \ 5$
									$\alpha(N)=0.00911 \ 13; \ \alpha(O)=0.00191 \ 3; \ \alpha(P)=0.000246 \ 4$
232.54 20	0.53 15	1633.30	$5/2^{+}$	1400.80	9/2+	[E2]		0.282	% $I\gamma = 0.257$
									$\alpha(K)=0.1192$ 17; $\alpha(L)=0.1207$ 18; $\alpha(M)=0.0317$ 5
x275.6.2	052								$\alpha(N)=0.00814\ 12;\ \alpha(O)=0.001573\ 23;\ \alpha(P)=0.0001512\ 22$
215.0 2	0.5 2								$E_{\gamma}I_{\gamma}$: From 1971Jo19.
311.090 25	13.5 7	1030.38	$(11/2)^{-}$	719.28	9/2-	M1+E2	0.30 23	0.43 5	%Iγ=6.4 4
									$\alpha(\mathbf{K})=0.35 \ 3; \ \alpha(\mathbf{L})=0.063 \ 4; \ \alpha(\mathbf{M})=0.0149 \ 8 \ \alpha(\mathbf{N})=0.00383 \ 20; \ \alpha(\mathbf{O})=0.00080 \ 5; \ \alpha(\mathbf{P})=0.000102 \ 8 \ 100000000000000000000000000000000$
									Mult.: $\alpha(K)\exp=0.36$ 4, $(\alpha(L1)\exp+\alpha(L2)\exp)=0.061$ 9 and
X212.5.2	2 10 7 4					141		0.450	0.0168 21 (1982Ku20); α (K)exp=0.33 5 (1971Jo19).
~312.5 2	2.10 14					MI		0.452	$\gamma \gamma = 1.00 / \alpha(K) = 0.368 6 \cdot \alpha(L) = 0.0642 9 \cdot \alpha(M) = 0.01514 22$
									$\alpha(N) = 0.00390 \ 6; \ \alpha(O) = 0.000815 \ 12; \ \alpha(P) = 0.0001054 \ 15$
									Mult.: α (K)exp=0.37 5 (1982Ku20).

From ENSDF

²⁰⁵₈₄Po₁₂₁-4

					205 At ε d	ecay 197	IJ019,1982Ku20,1	982Ku21 (c	continued)
						<u> </u>	(²⁰⁵ Po) (continued	1)	
E_{γ}^{\dagger}	$I_{\gamma}^{\dagger}\&$	E _i (level)	\mathbf{J}_i^{π}	\mathbf{E}_{f}	\mathbf{J}_f^{π}	Mult. [‡]	δ #	α [@]	Comments
317.0 <i>10</i>	0.60 7	1856.20	11/2+	1539.94	9/2+	M1(+E2)	≤0.6	0.39 5	%I γ =0.286 34 α (K)=0.31 4; α (L)=0.058 4; α (M)=0.0139 8 α (N)=0.00356 19; α (O)=0.00074 5; α (P)=9.4×10 ⁻⁵ 8 Mult.: α (K)exp=0.35 6 (1982Ku20). %I γ =0 33 10
360.91 7	3.80 25	1030.38	(11/2)-	669.43	9/2-	M1+E2	1.00 +26-21	0.19 3	E_{γ}, I_{γ} : From 1971Jo19. $\% I_{\gamma}=1.81 \ I3$ $\alpha(K)=0.147 \ 24; \ \alpha(L)=0.0328 \ 25; \ \alpha(M)=0.0080 \ 6$ $\alpha(N)=0.00205 \ I4; \ \alpha(O)=0.00042 \ 3; \ \alpha(P)=5.0\times10^{-5} \ 5$ Mult.: $\alpha(K)$ exp=0.15 2 and $\alpha(L)$ exp=0.030 3 (1982Ku20);
364.60 9	2.75 22	1394.94	(9/2)-	1030.38	(11/2)-	M1(+E2)	≤0.6	0.27 3	α (K)exp=0.29 8 (1971Jo19). %I γ =1.31 <i>11</i> α (K)=0.22 <i>3</i> ; α (L)=0.039 <i>3</i> ; α (M)=0.0093 <i>6</i> α (N)=0.00240 <i>16</i> ; α (O)=0.00050 <i>4</i> ; α (P)=6.4×10 ⁻⁵ <i>6</i> Mult.: α (K)exp=0.25 <i>3</i> , α (L)exp=0.036 <i>5</i> and
369 1	0.60 7	1167.81	7/2-	799.02	(5/2)-	M1+E2	1.5 +5-4	0.14 4	α (M)exp=0.015 4 (1982Ku20). %I γ =0.286 34 α (K)=0.10 3; α (L)=0.027 3; α (M)=0.0066 7 α (N)=0.00170 17; α (O)=0.00034 4; α (P)=4.0×10 ⁻⁵ 6
384.61 <i>14</i>	3.98 20	384.34	(3/2)-	0.0	5/2-	M1+E2	0.87 13	0.173 16	Mult.: $\alpha(K)\exp=0.105\ 23\ (1982Ku20)$. %I $\gamma=1.90\ 11$ $\alpha(K)=0.136\ 14;\ \alpha(L)=0.0284\ 15;\ \alpha(M)=0.0068\ 4$ $\alpha(N)=0.00176\ 9;\ \alpha(O)=0.000362\ 19;\ \alpha(P)=4.4\times10^{-5}\ 3$
384.61 ^{<i>a</i>}		1167.81	7/2-	783.00	7/2-				Mult.: $\alpha(\mathbf{K})\exp[0.136 T2]$ (1982Ku20). %I γ =0.286 34 E $_{\gamma}$: Overlaps with much stronger 384.61 γ , depopulating the 384 keV level
395.70 8	1.40 <i>16</i>	1426.05	9/2-	1030.38	(11/2)-	M1(+E2)	≤0.6	0.214 24	% Iy=0.67 8 $\alpha(K)=0.173 21; \alpha(L)=0.0314 24; \alpha(M)=0.0074 6$ $\alpha(N)=0.00191 14; \alpha(O)=0.00040 3; \alpha(P)=5.1\times10^{-5} 5$
414.65 20	0.96 11	799.02	(5/2)-	384.34	(3/2)-	M1(+E2)	≤0.6	0.189 22	Mult.: $\alpha(\mathbf{K})\exp=0.175\ 24$ and $\alpha(\mathbf{L})\exp=0.055\ 6\ (1982Ku20)$. %I $\gamma=0.46\ 5$ $\alpha(\mathbf{K})=0.153\ 19;\ \alpha(\mathbf{L})=0.0276\ 22;\ \alpha(\mathbf{M})=0.0065\ 5$ $\alpha(\mathbf{N})=0.00168\ 13;\ \alpha(\mathbf{O})=0.00035\ 3;\ \alpha(\mathbf{P})=4.5\times10^{-5}\ 4$ $\mathrm{E}_{\gamma},\mathrm{I}_{\gamma}$: Possibly a doublet.
448.61 7	5.51 29	1167.81	7/2-	719.28	9/2-	M1+E2	0.60 21	0.136 18	Mult.: α (K)exp=0.160 23 (1982Ku20). %I γ =2.63 15 α (K)=0.109 15; α (L)=0.0204 18; α (M)=0.0049 4 α (N)=0.00125 11; α (O)=0.000260 23; α (P)=3.3×10 ⁻⁵ 4 Mult.: α (K)exp=0.116 12 and α (L)exp=0.0196 30
455.14 18	1.58 8	1856.20	11/2+	1400.80	9/2+	M1+E2	0.38 +20-33	0.148 16	(1982Ku20); α (K)exp=0.08 3 (1971Jo19). %I γ =0.75 4 α (K)=0.120 14; α (L)=0.0214 17; α (M)=0.0051 4

S

From ENSDF

					205 At ε decay	1971Jo19,	,1982Ku20,19	982Ku21 (co	ontinued)
						γ ⁽²⁰⁵ Pc	o) (continued)	<u>)</u>	
E_{γ}^{\dagger}	I_{γ}^{\dagger} &	E _i (level)	\mathbf{J}_i^{π}	\mathbf{E}_{f}	\mathbf{J}_f^π	Mult. [‡]	$\delta^{\#}$	α [@]	Comments
^x 462.5 1	1.8 4				č				α (N)=0.00130 <i>10</i> ; α (O)=0.000272 <i>21</i> ; α (P)=3.5×10 ⁻⁵ <i>3</i> Mult.: α (K)exp=0.120 <i>13</i> (1982Ku20). %I γ =0.86 <i>19</i> F. L.: From 1971[o19
484.00 26	0.65 9	1651.35	7/2-	1167.81	7/2-	M1+E2	1.5 4	0.067 16	$%_{I}\gamma=0.31 4$ $\alpha(K)=0.051 13; \ \alpha(L)=0.0118 17; \ \alpha(M)=0.0029 4$ $\alpha(N)=0.00074 10; \ \alpha(O)=0.000150 21; \ \alpha(P)=1.8\times10^{-5} 3$ Mult: $\alpha(K)\approx n=0.051 8 (1082Ku20)$
487.86 <i>11</i>	1.80 <i>9</i>	872.10	7/2-	384.34	(3/2) ⁻	E2		0.0341	Mult.: $\alpha(K)\exp[-0.051/8]$ (1982Ku20). %Iy=0.86 5 $\alpha(K)=0.0233$ 4; $\alpha(L)=0.00808$ 12; $\alpha(M)=0.00203$ 3 $\alpha(N)=0.000522$ 8; $\alpha(O)=0.0001041$ 15; $\alpha(P)=1.138\times10^{-5}$ 16 Mult:: $\alpha(K)\exp[-0.019]$ 4 (1982Ku20)
x506.2 3	0.5 4								%Iy=0.24 <i>I</i> 9 F. L. From 1971[019
^x 511 516.04 <i>12</i>	14.3 9 4.24 <i>30</i>	2149.35	(7/2)+	1633.30	5/2+	M1		0.1172	$\%_{I}\gamma_{=}6.85$ $\%_{I}\gamma_{=}2.0215$ $\alpha(K)=0.095614; \alpha(L)=0.0164823; \alpha(M)=0.003886$ $\alpha(N)=0.00099814; \alpha(O)=0.0002093; \alpha(P)=2.70\times10^{-5}4$ Mult: $\alpha(K)\exp(=0.018521)$ and $\alpha(L)\exp(=0.006)$
520.44 6	14.4 6	1400.80	9/2+	880.31	13/2+	E2		0.0292	(1982Ku20); $\alpha(K)exp=0.10 \ 4 \ (1971Jo19)$. %Iy=6.87 34 $\alpha(K)=0.0204 \ 3; \ \alpha(L)=0.00661 \ 10; \ \alpha(M)=0.001657 \ 24$ $\alpha(N)=0.000426 \ 6; \ \alpha(O)=8.51\times10^{-5} \ 12; \ \alpha(P)=9.41\times10^{-6} \ 14$ Mult.: $\alpha(K)exp=0.0186 \ 17 \ and \ \alpha(L)exp=0.0061 \ 6$
528.90 <i>13</i>	2.33 14	1400.80	9/2+	872.10	7/2-	E1+M2	0.18 6	0.019 7	(1982Ku20); α (K)exp=0.015 8 (1971Jo19). %Iy=1.11 7 α (K)=0.015 6; α (L)=0.0028 12; α (M)=0.0007 3 α (N)=0.00017 8; α (O)=3.6×10 ⁻⁵ 16; α (P)=4.6×10 ⁻⁶ 20
553.94 7	2.01 14	1426.05	9/2-	872.10	7/2-	M1+E2	0.70 22	0.073 11	Mult.: α (K)exp=0.015 4 (1982Ku20). %Iy=0.96 7 α (K)=0.059 9; α (L)=0.0110 12; α (M)=0.0026 3 α (N)=0.00067 7; α (O)=0.000139 15; α (P)=1.76×10 ⁻⁵ 21
^x 566.2 7	1.39 25					M1		0.0917	Mult.: $\alpha(K)\exp=0.059 \ 8 \ (1982Ku20)$. %Iy=0.66 12 $\alpha(K)=0.0748 \ 11; \ \alpha(L)=0.01286 \ 19; \ \alpha(M)=0.00303 \ 5$ $\alpha(N)=0.000778 \ 12; \ \alpha(O)=0.0001630 \ 24; \ \alpha(P)=2.11\times10^{-5} \ 3$
568.5 7	1.76 30	3052.2	(7/2)+	2483.49	(7/2,9/2,11/2)+	M1+E2	1.3 +6-4	0.049 <i>13</i>	Mult.: $\alpha(K)\exp=0.094\ 20\ (1982Ku20)$. % $I\gamma=0.84\ 14$ $\alpha(K)=0.038\ 11;\ \alpha(L)=0.0079\ 14;\ \alpha(M)=0.0019\ 4$ $\alpha(N)=0.00049\ 8;\ \alpha(O)=0.000101\ 18;\ \alpha(P)=1.24\times10^{-5}\ 25$ Mult.: $\alpha(K)\exp=0.039\ 9\ (1982Ku20)$.

From ENSDF

²⁰⁵₈₄Po₁₂₁-6

				-	²⁰⁵ At ε d	ecay 197	71Jo19,1982Ku2	0,1982Ku21	(continued)
							$\gamma(^{205}\text{Po})$ (contin	ued)	
E_{γ}^{\dagger}	I_{γ}^{\dagger} &	E _i (level)	\mathbf{J}_i^{π}	\mathbf{E}_{f}	\mathbf{J}_f^{π}	Mult. [‡]	$\delta^{\#}$	α [@]	Comments
^x 577.10 9	1.80 <i>13</i>					M1+E2		0.0872	%Iγ=0.86 7 α (K)=0.0712 10; α (L)=0.01223 18; α (M)=0.00288 4 α (N)=0.000740 11; α (O)=0.0001549 22; α (P)=2.01×10 ⁻⁵ 3 Mult.: α (K)exp=0.043 5 (1982Ku20). %Iγ=0.43 19
^x 587.04 8	1.61 <i>17</i>					E2		0.0221	E _y , I _y : From 1971Jo19. %I γ =0.77 8 α (K)=0.01601 23; α (L)=0.00462 7; α (M)=0.001149 16 α (N)=0.000295 5; α (O)=5.93×10 ⁻⁵ 9; α (P)=6.70×10 ⁻⁶ 10
^x 595.43 10	1.72 11					M1+E2		0.0803	Mult.: α (K)exp=0.016 2 (1982Ku20). %I γ =0.82 6 α (K)=0.0655 10; α (L)=0.01125 16; α (M)=0.00265 4 α (N)=0.000681 10; α (O)=0.0001425 20; α (P)=1.85×10 ⁻⁵ 3 Mult: α (K)exp=0.041 5 (1982Ku20)
617.80 7	7.16 32	1400.80	9/2+	783.00	7/2-	E1+M2	0.14 3	0.0103 17	Mult: α (K)exp=0.041 5 (1982Ku20). %I γ =3.41 18 α (K)=0.0084 14; α (L)=0.0015 3; α (M)=0.00035 7 α (N)=9.1×10 ⁻⁵ 18; α (O)=1.9×10 ⁻⁵ 4; α (P)=2.4×10 ⁻⁶ 5 Mult: α (K)exp=0.0082 9 (1982Ku20); α (K)exp≤0.009 (1971L019)
628.88 7	18.3 <i>13</i>	783.00	7/2-	154.196	3/2-	E2		0.0190	(19713019). %Iγ=8.7 7 α (K)=0.01397 20; α (L)=0.00380 6; α (M)=0.000940 14 α (N)=0.000241 4; α (O)=4.87×10 ⁻⁵ 7; α (P)=5.57×10 ⁻⁶ 8 Mult.: α (K)exp=0.0175 18 (1982Ku20); α (K)exp=0.025 8 (1971Jo19).
^x 636.85 <i>15</i> 644.86 <i>20</i>	0.82 <i>10</i> 1.08 8	799.02	(5/2)-	154.196	3/2-	M1+E2	0.59 25	0.053 8	%I γ =0.39 5 %I γ =0.52 4 α (K)=0.043 7; α (L)=0.0077 9; α (M)=0.00181 20 α (N)=0.00047 6; α (O)=9.7×10 ⁻⁵ 11; α (P)=1.24×10 ⁻⁵ 16 Mult: α (K)=0.042 6 (1022K)20)
649.5 7	1.10 <i>15</i>	2799.20	(9/2)+	2149.35	(7/2)+	M1+E2	0.84 +31-25	0.045 8	with: α (K)exp=0.045 σ (1982Ku20). %Iγ=0.52 7 α (K)=0.036 7; α (L)=0.0067 9; α (M)=0.00159 20 α (N)=0.00041 5; α (O)=8.5×10 ⁻⁵ 11; α (P)=1.07×10 ⁻⁵ 15 Mult: α (K)exp=0.036 6 (1982Ku20).
652.5 7	1.50 38	806.45	(5/2)-	154.196	3/2-	M1+E2	1.3 +9-5	0.034 11	%Iγ=0.72 <i>18</i> α (K)=0.027 <i>10</i> ; α (L)=0.0054 <i>13</i> ; α (M)=0.0013 <i>3</i> α (N)=0.00034 <i>8</i> ; α (O)=6.9×10 ⁻⁵ <i>17</i> ; α (P)=8.6×10 ⁻⁶ <i>23</i> Mult.: α (K)exp=0.028 <i>8</i> (1982Ku20).
659.63 <i>6</i>	7.36 32	1539.94	9/2+	880.31	13/2+	E2		0.01714	%Iγ=3.51 <i>18</i> α (K)=0.01273 <i>18</i> ; α (L)=0.00333 <i>5</i> ; α (M)=0.000821 <i>12</i> α (N)=0.000211 <i>3</i> ; α (O)=4.26×10 ⁻⁵ <i>6</i> ; α (P)=4.91×10 ⁻⁶ <i>7</i> E _γ : Not in coin with any γ (1982Ku21), suggesting decay either to g.s. or to isomer. Mult.: α (K)exp=0.0137 <i>15</i> (1982Ku20).

				205	At ε dec	ay 1971J	019,1982Ku20,198	82Ku21 (cont	tinued)
						$\gamma(^2$	⁰⁵ Po) (continued)		
E_{γ}^{\dagger}	I_{γ}^{\dagger} &	E _i (level)	\mathbf{J}_i^π	E_f	\mathbf{J}_f^{π}	Mult. [‡]	$\delta^{\#}$	α [@]	Comments
669.41 4	28.1 12	669.43	9/2-	0.0	5/2-	E2		0.01661	%I γ =13.4 6 $\alpha(K)$ =0.01237 18; $\alpha(L)$ =0.00320 5; $\alpha(M)$ =0.000788 11 $\alpha(N)$ =0.000202 3; $\alpha(O)$ =4.10×10 ⁻⁵ 6; $\alpha(P)$ =4.73×10 ⁻⁶ 7 Mult.: $\alpha(K)$ exp=0.0117 10 and $\alpha(M)$ exp=0.00084 8 (1982Ku20); $\alpha(K)$ exp=0.015 6 (1971Jo19)
672.85 5	10.5 5	1553.17	(11/2)+	880.31	13/2+	M1+E2	1.79 +33-24	0.0264 24	(1962Ku20), α (K)exp=0.013 0 (19713019). %Iγ=5.01 27 α (K)=0.0207 20; α (L)=0.0043 3; α (M)=0.00105 7 α (N)=0.000269 17; α (O)=5.5×10 ⁻⁵ 4; α (P)=6.7×10 ⁻⁶ 5 Mult.: α (K)exp=0.0208 20 (1982Ku20); α (K)exp=0.018 9 (1971Jo19).
691.4 6	1.15 14	3046.72	7/2+	2355.56	9/2+	M1(+E2)	≤0.5	0.050 4	%I γ =0.55 7 $\alpha(K)$ =0.041 4; $\alpha(L)$ =0.0071 5; $\alpha(M)$ =0.00167 11 $\alpha(N)$ =0.00043 3; $\alpha(O)$ =9.0×10 ⁻⁵ 6; $\alpha(P)$ =1.16×10 ⁻⁵ 9 Mult: $\alpha(K)$ =0.046 & (182Ku20)
^x 693.5 7	0.71 11					M1		0.0538	With: α (K)exp=0.040 8 (1982K020). %Iγ=0.34 5 α (K)=0.0440 7; α (L)=0.00751 11; α (M)=0.00177 3 α (N)=0.000454 7; α (O)=9.51×10 ⁻⁵ 14; α (P)=1.232×10 ⁻⁵ 18 With: α (K)=0.056 10 (1082K020)
719.30 4	100	719.28	9/2-	0.0	5/2-	E2		0.01426	Mult: α (K)exp=0.056 <i>I0</i> (1982Ku20). %I γ =47.7 8 α (K)=0.01077 <i>15</i> ; α (L)=0.00264 <i>4</i> ; α (M)=0.000647 <i>9</i> α (N)=0.0001662 <i>24</i> ; α (O)=3.37×10 ⁻⁵ <i>5</i> ; α (P)=3.94×10 ⁻⁶ <i>6</i> Mult: α (K)exp=0.0109, α (L)exp=0.00270 <i>20</i> , α (M)exp=0.00066 <i>7</i> and α (N)exp=0.00022 <i>3</i> (1982Ku20); α (K)exp=0.011 <i>3</i> (1971Jo19); K/(L+M)=3.67 53 (1970Ho15)
725.51 30	1.92 10	1394.94	(9/2)-	669.43	9/2-	M1+E2	1.9 +5-4	0.021 3	$\kappa_{\rm N}(\rm L^{+}\rm M^{-}5.6755~(19701015)).$ $\%_{\rm I}\gamma=0.925$ $\alpha(\rm K)=0.0173; \ \alpha(\rm L)=0.00354; \ \alpha(\rm M)=0.000849$ $\alpha(\rm N)=0.00021522; \ \alpha(\rm O)=4.4\times10^{-5}5; \ \alpha(\rm P)=5.4\times10^{-6}7$ Mult: $\alpha(\rm K)=\rm v=0.0172~(1982Ku20)$
744.26 30	0.94 8	1912.00	9/2+	1167.81	7/2-	[E1]		0.00468	%I γ =0.45 4 α (K)=0.00387 6; α (L)=0.000615 9; α (M)=0.0001430 20 α (N)=3.66×10 ⁻⁵ 6; α (O)=7.60×10 ⁻⁶ 11; α (P)=9.60×10 ⁻⁷ 14
748.45 <i>30</i>	0.95 12	902.26	(7/2)-	154.196	3/2-	(E2)		0.01313	% $I\gamma$ =0.45 6 α (K)=0.00998 14; α (L)=0.00238 4; α (M)=0.000582 9 α (N)=0.0001495 21; α (O)=3.04×10 ⁻⁵ 5; α (P)=3.57×10 ⁻⁶ 5
756.82 18	2.06 13	1426.05	9/2-	669.43	9/2-	E2(+M1)		0.0428	Mult.: $\alpha(K)\exp \le 0.011$ (1982Ku20). %I $\gamma=0.98$ 7 $\alpha(K)=0.0350$ 5; $\alpha(L)=0.00597$ 9; $\alpha(M)=0.001402$ 20 $\alpha(N)=0.000361$ 5; $\alpha(O)=7.56\times10^{-5}$ 11; $\alpha(P)=9.79\times10^{-6}$

 ∞

²⁰⁵₈₄Po₁₂₁-8

l

				205	At ε deca	iy 1971Jo	19,1982Ku20,1	982Ku21 (coi	ntinuea)
						γ ⁽²⁰	⁵ Po) (continued)	
E_{γ}^{\dagger}	$I_{\gamma}^{\dagger}\&$	E_i (level)	\mathbf{J}_i^{π}	E_f	\mathbf{J}_{f}^{π}	Mult. [‡]	δ#	α [@]	Comments
760.5 5	0.49 7	1633.30	5/2+	872.10	7/2-	[E1]		0.00449	$ \frac{14}{Mult.: \alpha(K)exp=0.0078 \ 25 \ (1982Ku20).} \\ \%I\gamma=0.234 \ 34} \\ \alpha(K)=0.00372 \ 6; \ \alpha(L)=0.000589 \ 9; \ \alpha(M)=0.0001371 \ 20} \\ \alpha(N)=3.51\times10^{-5} \ 5; \ \alpha(O)=7.29\times10^{-6} \ 11; $
782.80 12	6.41 28	783.00	7/2-	0.0	5/2-	M1+E2	2.8 +12-6	0.0151 <i>16</i>	$\alpha(P)=9.22\times10^{-7} \ 13$ %Iy=3.06 15 $\alpha(K)=0.0118 \ 14; \ \alpha(L)=0.00250 \ 20; \ \alpha(M)=0.00060 \ 5$ $\alpha(N)=0.000155 \ 12; \ \alpha(O)=3.18\times10^{-5} \ 25; \ \alpha(P)=3.9\times10^{-6} \ 4$
^x 789.20 <i>16</i>	4.16 22					(E2)		0.01177	Mult.: $\alpha(K)\exp=0.0117 \ 12 \ (1982Ku20)$. % $I\gamma=1.98 \ 12 \ \alpha(K)=0.00902 \ 13; \ \alpha(L)=0.00208 \ 3; \ \alpha(M)=0.000507 \ 7 \ \alpha(N)=0.0001301 \ 19; \ \alpha(O)=2.65\times10^{-5} \ 4; \ \alpha(P)=3.14\times10^{-6} \ 5$
792.5 3	1.69 <i>18</i>	2187.88	(11/2)+	1394.94	(9/2)-	(E1)		0.00416	Mult.: $\alpha(K)\exp\approx 0.010$ (1982Ku20). %I γ =0.81 9 $\alpha(K)$ =0.00345 5; $\alpha(L)$ =0.000544 8; $\alpha(M)$ =0.0001265 18 $\alpha(N)$ =3.24×10 ⁻⁵ 5; $\alpha(O)$ =6.73×10 ⁻⁶ 10; $\alpha(P)$ =8.52×10 ⁻⁷ 12
802.0 8	0.78 11	2355.56	9/2+	1553.17	(11/2)+	(M1)		0.0368	Mult.: $\alpha(K)\exp=0.0207$ (1982Ku20). %I $\gamma=0.37$ 5 $\alpha(K)=0.0301$ 5; $\alpha(L)=0.00513$ 8; $\alpha(M)=0.001204$ 18 $\alpha(N)=0.000310$ 5; $\alpha(O)=6.49\times10^{-5}$ 10; $\alpha(P)=8.41\times10^{-6}$ 12 Mult.: $\alpha(K)\exp=0.010$ (1082Ku20)
806.44 8	1.72 12	806.45	(5/2)-	0.0	5/2-	M1+E2	0.4 3	0.033 5	Mult.: $\alpha(K)\exp\approx0.019$ (1982Ku20). %Iy=0.82 6 $\alpha(K)=0.027$ 4; $\alpha(L)=0.0046$ 6; $\alpha(M)=0.00109$ 14 $\alpha(N)=0.00028$ 4; $\alpha(O)=5.9\times10^{-5}$ 8; $\alpha(P)=7.6\times10^{-6}$ 11 Mult.: $\alpha(K)\exp=0.007$ 4 (1082Ku20)
^x 819.49 <i>10</i>	2.14 17					M1+E2		0.0348	%Iy=1.02 9 $\alpha(K)=0.0285 4; \alpha(L)=0.00484 7; \alpha(M)=0.001138 16$ $\alpha(N)=0.000293 4; \alpha(O)=6.13\times10^{-5} 9; \alpha(P)=7.94\times10^{-6}$ 12
845.2 8	1.13 10	1651.35	7/2-	806.45	(5/2)-	M1(+E2)	≤0.4	0.0306 <i>16</i>	Mult.: α (K)exp=0.013 2 (1982Ku20). %I γ =0.54 5 α (K)=0.0250 14; α (L)=0.00428 20; α (M)=0.00101 5 α (N)=0.000259 12; α (O)=5.42×10 ⁻⁵ 25; α (P)=7.0×10 ⁻⁶
859.2 4	0.95 20	1761.32	(7/2,9/2)-	902.26	(7/2)-	M1+E2	2.1 9	0.014 5	$\int_{\alpha}^{\pi} Mult.: \alpha(K)exp=0.032 \ 5 \ (1982Ku20).$ $%I\gamma=0.45 \ 10$ $\alpha(K)=0.011 \ 4; \ \alpha(L)=0.0022 \ 6; \ \alpha(M)=0.00052 \ 14$

I

				2	05 At ε de	ecay 197	71Jo19,1982K	u20,1982K	u21 (continued)			
	γ ⁽²⁰⁵ Po) (continued)											
${\rm E_{\gamma}}^{\dagger}$	I_{γ}^{\dagger} &	E _i (level)	\mathbf{J}_i^{π}	\mathbf{E}_{f}	J_f^{π}	Mult. [‡]	$\delta^{\#}$	α [@]	Comments			
872.4 5	10.2 15	872.10	7/2-	0.0	5/2-	M1+E2	0.6 5	0.024 6	$\alpha(N)=0.00013 \ 4; \ \alpha(O)=2.7\times10^{-5} \ 8; \ \alpha(P)=3.4\times10^{-6} \ 10$ Mult.: $\alpha(K)\exp=0.011 \ 4 \ (1982Ku20).$ %I $\gamma=4.9 \ 8$ $\alpha(K)=0.020 \ 5; \ \alpha(L)=0.0035 \ 7; \ \alpha(M)=0.00081 \ 17$ $\alpha(N)=0.00021 \ 5; \ \alpha(Q)=4.4\times10^{-5} \ 9; \ \alpha(P)=5.6\times10^{-6} \ 12$			
890.0 10	0.50 9	2799.20	(9/2)+	1908.38	(5/2+)				Mult.: $\alpha(K)$ exp=0.020 4 (1982Ku20). %I γ =0.24 4 $\alpha(K)$ =0.0230 4; $\alpha(L)$ =0.00390 6; $\alpha(M)$ =0.000916 14 $\alpha(N)$ =0.000236 4; $\alpha(O)$ =4.94×10 ⁻⁵ 7; $\alpha(P)$ =6.40×10 ⁻⁶ 10			
902.22 10	1.42 7	902.26	(7/2)-	0.0	5/2-	M1+E2	2.4 9	0.012 3	α (K)exp \approx 0.026 (1982Ku20). %I γ =0.68 4 α (K)=0.0093 25; α (L)=0.0018 4; α (M)=0.00044 9 α (N)=0.000113 22; α (O)=2.3 \times 10 ⁻⁵ 5; α (P)=2.9 \times 10 ⁻⁶ 7			
^x ≈913.5 929.61 <i>14</i>	0.44 <i>6</i> 1.75 <i>14</i>	2355.56	9/2+	1426.05	9/2-	(E1)		0.00310	Mult.: α (K)exp=0.0093 25 (1982Ku20). %I γ =0.210 29 %I γ =0.83 7 α (K)=0.00257 4; α (L)=0.000402 6; α (M)=9.33×10 ⁻⁵ 13 α (K)=2.20×10 ⁻⁵ 4; α (C)=4.07×10 ⁻⁶ 7; α (R)=6.23×10 ⁻⁷ 0			
932.0 10	0.57 8	1651.35	7/2-	719.28	9/2-	(M1)		0.0250	$\alpha(N)=2.39\times10^{-4}, \alpha(O)=4.97\times10^{-7}, \alpha(P)=0.33\times10^{-9}$ Mult.: $\alpha(K)\exp\approx0.0046$ (1982Ku20). $\%I\gamma=0.27$ 4 $\alpha(K)=0.0204$ 3; $\alpha(L)=0.00346$ 5; $\alpha(M)=0.000812$ 12 $\alpha(N)=0.000209$ 3; $\alpha(Q)=4.38\times10^{-5}$ 7; $\alpha(P)=5.67\times10^{-6}$ 9			
^x 936.03 <i>15</i>	1.26 <i>17</i>					(E2)		0.00837	Mult.: $\alpha(K)\exp\approx0.021$ (1982Ku20). Value overlaps with that for 936.03 γ . %I γ =0.60 8 $\alpha(K)$ =0.00656 10; $\alpha(L)$ =0.001373 20; $\alpha(M)$ =0.000331 5 $\alpha(N)$ =8.50×10 ⁻⁵ 12; $\alpha(O)$ =1.743×10 ⁻⁵ 25; $\alpha(P)$ =2.11×10 ⁻⁶ 3 Mult.: $\alpha(K)$ exp=0.009 (1982Ku20). Ice value overlaps with that			
^x 941.94 20	1.37 15								for 932.0 <i>γ</i> . %Iγ=0.65 7			
^x 947.45 20	0.66 12					M1		0.0239	E _{γ} : Possibly a doublet. %I γ =0.31 6 α (K)=0.0196 3; α (L)=0.00331 5; α (M)=0.000778 11 α (N)=0.000200 3; α (O)=4.19×10 ⁻⁵ 6; α (P)=5.44×10 ⁻⁶ 8			
955.3 5	0.69 18	2355.56	9/2+	1400.80	9/2+	M1+E2	1.1 +31-7	0.015 7	Mult.: α (K)exp=0.026 9 (1982Ku20). %I γ =0.33 9 α (K)=0.012 6; α (L)=0.0022 8; α (M)=0.00052 19 α (N)=0.00013 5; α (O)=2.8×10 ⁻⁵ 10; α (P)=3.5×10 ⁻⁶ 14			
961.05 20	1.06 9	2355.56	9/2+	1394.94	(9/2)-	(E1)		0.00292	Mult.: $\alpha(K)\exp=0.012 \ 5 \ (1982Ku20)$. % $I\gamma=0.51 \ 4$ $\alpha(K)=0.00242 \ 4; \ \alpha(L)=0.000378 \ 6; \ \alpha(M)=8.77\times10^{-5} \ 13$ $\alpha(N)=2.25\times10^{-5} \ 4; \ \alpha(O)=4.67\times10^{-6} \ 7; \ \alpha(P)=5.96\times10^{-7} \ 9$ Mult.: $\alpha(K)\exp\approx0.0033 \ (1982Ku20)$.			

From ENSDF

²⁰⁵₈₄Po₁₂₁-10

²⁰⁵₈₄Po₁₂₁-10

						²⁰⁵ At a	ε decay	1971Jo19,1982K	(u20,1982Ku	21 (continued)
								γ ⁽²⁰⁵ Po) (con	tinued)	
	E_{γ}^{\dagger}	$I_{\gamma}^{\dagger}\&$	E _i (level)	\mathbf{J}_i^{π}	\mathbf{E}_{f}	\mathbf{J}_f^{π}	Mult. [‡]	$\delta^{\#}$	α [@]	Comments
	^x 971.87 35	0.78 6					(M1)		0.0224	%I γ =0.372 30 α (K)=0.0183 3; α (L)=0.00310 5; α (M)=0.000728 11 α (N)=0.000187 3; α (O)=3.92×10 ⁻⁵ 6; α (P)=5.09×10 ⁻⁶ 8
	976.00 12	2.97 12	1856.20	11/2+	880.31	13/2+	M1+E2	0.94 +27-22	0.0154 <i>19</i>	Mult: $\alpha(K)\exp\approx0.009$ (1982Ku20). $\%I\gamma=1.42$ 7 $\alpha(K)=0.0125$ 16; $\alpha(L)=0.00221$ 24; $\alpha(M)=0.00052$ 6 $\alpha(N)=0.000134$ 14; $\alpha(O)=2.8\times10^{-5}$ 3; $\alpha(P)=3.6\times10^{-6}$ 4 E_{γ} : Not in coin with any γ (1982Ku21), suggesting decay either to g.s. or to isomer. Mult: $\alpha(K)\exp=0.0125$ 15 (1982Ku20)
	^x 993.3 3	1.10 20					(M1)		0.0212	Mult: $\alpha(\mathbf{K})\exp[=0.0125 \ 15\ (1962\mathbf{K}\mathbf{u}20)]$ $\%$ I γ =0.52 10 $\alpha(\mathbf{K})=0.01733 \ 25;\ \alpha(\mathbf{L})=0.00293 \ 5;\ \alpha(\mathbf{M})=0.000688 \ 10$ $\alpha(\mathbf{N})=0.0001769 \ 25;\ \alpha(\mathbf{O})=3.71\times10^{-5} \ 6;\ \alpha(\mathbf{P})=4.81\times10^{-6} \ 7$ Mult: $\alpha(\mathbf{K})\exp[=0.000 \ 3 \ (1982\mathbf{K}\mathbf{u}20)]$
	^x 1013.70 <i>14</i>	2.05 9					(E1)		0.00265	With: $\alpha(\mathbf{K}) \exp[-0.003^{\circ} 5] (1962\mathbf{K}\mathbf{U}20)$. %Iγ=0.98 5 $\alpha(\mathbf{K}) = 0.00220^{\circ} 3; \alpha(\mathbf{L}) = 0.000342^{\circ} 5; \alpha(\mathbf{M}) = 7.94 \times 10^{-5}^{\circ} 12^{\circ} \alpha(\mathbf{N}) = 2.03 \times 10^{-5}^{\circ} 3; \alpha(\mathbf{O}) = 4.23 \times 10^{-6}^{\circ} 6; \alpha(\mathbf{P}) = 5.41 \times 10^{-7}^{\circ} 8$ Mult.: $\alpha(\mathbf{K}) \exp[=0.0035^{\circ} 12^{\circ} (1982\mathbf{K}\mathbf{U}20)$.
11	^x 1026.2 <i>3</i> 1031.69 8	3.0 <i>6</i> 6.5 <i>6</i>	1912.00	9/2+	880.31	13/2+	E2		0.00693	%I γ =1.43 29 E $_{\gamma}$,I $_{\gamma}$: From 1971Jo19. %I γ =3.10 30 α (K)=0.00548 8; α (L)=0.001097 16; α (M)=0.000263 4 α (N)=6.75×10 ⁻⁵ 10; α (O)=1.389×10 ⁻⁵ 20; α (P)=1.698×10 ⁻⁶
	^x 1038.0 <i>10</i>	0.50 10					M1		0.0189	E_{γ} : Not in coin with any γ (1982Ku21), suggesting decay either to g.s. or to isomer. Mult.: α (K)exp=0.0066 <i>10</i> (1982Ku20); α (K)exp=0.008 <i>4</i> (1971Jo19). %I γ =0.24 <i>5</i>
	×1064.0_10	0.47.5					MI		0.0177	$\alpha(K) = 0.01547\ 22;\ \alpha(L) = 0.00261\ 4;\ \alpha(M) = 0.000613\ 9$ $\alpha(K) = 0.0001577\ 23;\ \alpha(O) = 3.30 \times 10^{-5}\ 5;\ \alpha(P) = 4.29 \times 10^{-6}\ 6$ Mult.: $\alpha(K) \exp = 0.014\ 3\ (1982Ku20).$
	~1064.0 <i>10</i>	0.47 3					IVI I		0.01//	$\gamma_{01}\gamma_{=0.224} 25$ $\alpha(K)=0.01452 21; \ \alpha(L)=0.00245 4; \ \alpha(M)=0.000575 9$ $\alpha(N)=0.0001479 21; \ \alpha(O)=3.10\times10^{-5} 5; \ \alpha(P)=4.02\times10^{-6} 6$ Mult.: $\alpha(K)\exp=0.014 3 (1982Ku20).$
	^x 1071.82 <i>32</i>	0.52 5					(M1)		0.01740	%I γ =0.248 25 α (K)=0.01425 20; α (L)=0.00240 4; α (M)=0.000564 8 α (N)=0.0001451 21; α (O)=3.04×10 ⁻⁵ 5; α (P)=3.94×10 ⁻⁶ 6 Mult.: α (K)exp≈0.014 (1982Ku20).

From ENSDF

²⁰⁵₈₄Po₁₂₁-11

γ ⁽²⁰⁵ Po) (continued)										
E_{γ}^{\dagger}	I_{γ} †&	E_i (level)	\mathbf{J}^{π}_{i}	E_{f}	${ m J}_f^\pi$	Mult. [‡]	α@	Comments		
1082.72 22	1.85 12	2483.49	(7/2,9/2,11/2)+	1400.80	9/2+	(M1)	0.01695	%Iγ=0.88 6 α (K)=0.01388 20; α (L)=0.00234 4; α (M)=0.000549 8 α (N)=0.0001413 20; α (O)=2.96×10 ⁻⁵ 5; α (P)=3.84×10 ⁻⁶ 6 Mult : α (K)exp≈0.0032 (1982Ku20)		
1091.84 25 1101.84 25 ^x 1160.5 10	0.66 7 0.62 <i>10</i> 0.42 <i>6</i>	1761.32 1908.38	(7/2,9/2) ⁻ (5/2 ⁺)	669.43 806.45	9/2 ⁻ (5/2) ⁻			$\% I_{\gamma} = 0.315 \ 34$ $\% I_{\gamma} = 0.30 \ 5$ $\% I_{\gamma} = 0.200 \ 29$		
1167.40 22	0.69 7	1167.81	7/2-	0.0	5/2-			%Iγ=0.33 4		
1171.04 8	2.28 12	1954.05	(11/2)-	783.00	7/2-	E2	0.00544	%Iγ=1.09 6 α (K)=0.00435 6; α (L)=0.000827 12; α (M)=0.000197 3 α (N)=5.06×10 ⁻⁵ 7; α (O)=1.045×10 ⁻⁵ 15; α (P)=1.293×10 ⁻⁶ 19; α (IPF)=1.80×10 ⁻⁶ 3 Mult.: α (K)exp=0.0040 6 (1982Ku20).		
<i>x</i> ≈1174.5	≈0.35							%Iy≈0.167		
1187.6 5	0.460 23	2355.56	9/2+	1167.81	7/2-	[E1]	0.00202	%I γ =0.219 <i>12</i> α (K)=0.001669 <i>24</i> ; α (L)=0.000257 <i>4</i> ; α (M)=5.95×10 ⁻⁵ <i>9</i> α (N)=1.525×10 ⁻⁵ <i>22</i> ; α (O)=3.18×10 ⁻⁶ <i>5</i> ; α (P)=4.08×10 ⁻⁷ <i>6</i> ; α (IPF)=1.129×10 ⁻⁵ <i>21</i>		
1194.0 <i>10</i>	0.43 8	1912.00	9/2+	719.28	9/2-	[E1]	0.00200	%1 γ =0.21 4 α (K)=0.001654 24; α (L)=0.000254 4; α (M)=5.89×10 ⁻⁵ 9 α (N)=1.510×10 ⁻⁵ 22; α (O)=3.15×10 ⁻⁶ 5; α (P)=4.04×10 ⁻⁷ 6; α (IPF)=1.30×10 ⁻⁵ 4		
1242.2 5	0.98 13	1912.00	9/2+	669.43	9/2-	[E1]	0.00188	%I _Y =0.47 6 α (K)=0.001544 22; α (L)=0.000237 4; α (M)=5.49×10 ⁻⁵ 8 α (N)=1.407×10 ⁻⁵ 20; α (O)=2.93×10 ⁻⁶ 5; α (P)=3.77×10 ⁻⁷ 6; α (IPF)=2.84×10 ⁻⁵ 5		
1246.2 5	1.18 8	2799.20	(9/2)+	1553.17	(11/2)+	M1	0.01182	$%I\gamma = 0.56 4$ $\alpha(K) = 0.00967 14; \alpha(L) = 0.001625 23; \alpha(M) = 0.000381 6$ $\alpha(N) = 9.81 \times 10^{-5} 14; \alpha(O) = 2.05 \times 10^{-5} 3; \alpha(P) = 2.67 \times 10^{-6} 4;$ $\alpha(IPF) = 1.559 \times 10^{-5} 25$		
^x 1252.02 <i>11</i>	1.80 <i>10</i>					M1+E2	0.01168	Mult.: α (K)exp=0.0113 <i>19</i> (1982Ku20). %I γ =0.86 5 α (K)=0.00956 <i>14</i> ; α (L)=0.001606 <i>23</i> ; α (M)=0.000377 6 α (N)=9.69 \times 10 ⁻⁵ <i>14</i> ; α (O)=2.03 \times 10 ⁻⁵ <i>3</i> ; α (P)=2.63 \times 10 ⁻⁶ <i>4</i> ; α (IPF)=1.683 \times 10 ⁻⁵ <i>24</i>		
1262.5 10	0.53 8	3170.9	(7/2)+	1908.38	(5/2+)	(M1)	0.01143 <i>17</i>	Mult.: $\alpha(K) \exp=0.0069 \ I4 \ (1982Ku20).$ $\% I\gamma = 0.25 \ 4$ $\alpha(K) = 0.00936 \ I4; \ \alpha(L) = 0.001571 \ 23; \ \alpha(M) = 0.000369 \ 6$ $\alpha(N) = 9.48 \times 10^{-5} \ I4; \ \alpha(O) = 1.99 \times 10^{-5} \ 3; \ \alpha(P) = 2.58 \times 10^{-6} \ 4; \ \alpha(IPF) = 1.92 \times 10^{-5} \ 4$ Mult.: $\alpha(K) \exp\approx 0.0075 \ (1982Ku20).$		

From ENSDF

l

				20	$^{)5}$ At ε decay	1971Jo1	9,1982Ku2	0,1982Ku21 (c	continued)	
γ ⁽²⁰⁵ Po) (continued)										
${\rm E_{\gamma}}^{\dagger}$	$I_{\gamma}^{\dagger}\&$	E_i (level)	\mathbf{J}_i^{π}	E_f	\mathbf{J}_{f}^{π}	Mult. [‡]	δ #	α [@]	Comments	
1307.60 8	3.48 22	2187.88	(11/2)+	880.31	13/2+	M1(+E2)	≤0.7	0.0095 10	%Iγ=1.66 11 α (K)=0.0077 9; α (L)=0.00131 13; α (M)=0.00031 3 α (N)=7.9×10 ⁻⁵ 8; α (O)=1.65×10 ⁻⁵ 17; α (P)=2.14×10 ⁻⁶ 22; α (IPF)=2.83×10 ⁻⁵ 24 E _γ : Not in coin with any γ (1982Ku21), suggesting decay either to g.s. or to isomer. Mult: α (K)= α T=0.0080 8 (1982Ku20)	
1324.95 8	4.14 24	2355.56	9/2+	1030.38	(11/2)-	E1+M2	0.32 5	0.0038 6	Mult.: α (K)exp=0.0030 8 (1982Ku20). %Iγ=1.97 13 α (K)=0.0030 5; α (L)=0.00052 9; α (M)=0.000122 22 α (N)=3.1×10 ⁻⁵ 6; α (O)=6.5×10 ⁻⁶ 12; α (P)=8.4×10 ⁻⁷ 15; α (IPF)=5.71×10 ⁻⁵ 17 Mult.: α (K)exp=0.0030 4 (1982Ku20).	
^x 1325.4 3	4.2 5								% I_{γ} =2.00 24 E _{γ} , I_{γ} : From 1971Jo19.	
1342.3 <i>10</i>	0.44 4	2149.35	$(7/2)^+$	806.45	$(5/2)^{-}$				$\%$ I γ =0.210 20 $\%$ I γ =0.215 20	
~1358.2 <i>5</i> 1374 0 <i>1</i> 0	0.00 0	2700 20	$(0/2)^+$	1426.05	$0/2^{-}$				$\%1\gamma = 0.515 \ 50$ $\%1\gamma = 0.215 \ 25$	
1377.5 10	0.43 5	2930.82	(9/2) $(9/2)^+$	1553.17	9/2 (11/2) ⁺	M1(+E2)	≤0.4	0.0088 4	$\%_{I\gamma=0.215}^{20}$ $\%_{I\gamma=0.31}^{20}$ $\alpha(K)=0.0072 \ 3; \ \alpha(L)=0.00121 \ 5; \ \alpha(M)=0.000283 \ 12$ $\alpha(N)=7.3\times10^{-5} \ 3; \ \alpha(O)=1.53\times10^{-5} \ 7; \ \alpha(P)=1.98\times10^{-6} \ 9;$ $\alpha(IPF)=5.36\times10^{-5} \ 20$ Mult : $\alpha(K)=n=0.011 \ 2 \ (1982Ku20)$	
^x 1389.0 <i>10</i>	0.73 7					(M1+E2)		0.00899	%Iγ=0.348 35 α(K)=0.00732 11; $α$ (L)=0.001227 18; $α$ (M)=0.000288 4 α(N)=7.40×10 ⁻⁵ 11; $α$ (O)=1.550×10 ⁻⁵ 22; α(P)=2.01×10 ⁻⁶ 3; $α$ (IPF)=6.02×10 ⁻⁵ 10 Mult: $α$ (K)exp≈0.0048 (1982Kµ20).	
1398.3 <i>3</i>	1.23 9	2799.20	(9/2)+	1400.80	9/2+	M1(+E2)	≤0.3	0.00864 24	%Iy=0.59 5 $\alpha(K)=0.00703 \ 20; \ \alpha(L)=0.00118 \ 4; \ \alpha(M)=0.000277 \ 8$ $\alpha(N)=7.11\times10^{-5} \ 19; \ \alpha(O)=1.49\times10^{-5} \ 4; \ \alpha(P)=1.93\times10^{-6}$ $6; \ \alpha(IPF)=6.30\times10^{-5} \ 16$ Mult.: $\alpha(K)\exp=0.0091 \ 10 \ (1982Ku20).$	
1410.0 <i>10</i> 1413.43 <i>20</i>	0.36 <i>6</i> 1.17 9	3170.9 3046.72	(7/2) ⁺ 7/2 ⁺	1761.32 1633.30	(7/2,9/2) ⁻ 5/2 ⁺	M1(+E2)	≤0.4	0.0083 4	%I γ =0.172 29 %I γ =0.56 5 α (K)=0.0067 3; α (L)=0.00113 5; α (M)=0.000265 11 α (N)=6.8×10 ⁻⁵ 3; α (O)=1.43×10 ⁻⁵ 6; α (P)=1.85×10 ⁻⁶ 8; α (IPF)=6.87×10 ⁻⁵ 25 Mult: α (K)=0.0082 11 (1082Ku20)	
^x 1429.24 <i>36</i>	0.48 5					(M1)		0.00838	With: $\alpha(\mathbf{K})$ exp=0.0062 <i>II</i> (1762K020). %Iγ=0.229 25 $\alpha(\mathbf{K})$ =0.00681 <i>I0</i> ; $\alpha(\mathbf{L})$ =0.001140 <i>I6</i> ; $\alpha(\mathbf{M})$ =0.000267 <i>4</i> $\alpha(\mathbf{N})$ =6.87×10 ⁻⁵ <i>I0</i> ; $\alpha(\mathbf{O})$ =1.440×10 ⁻⁵ 2 <i>I</i> ; $\alpha(\mathbf{P})$ =1.87×10 ⁻⁶ <i>3</i> ; $\alpha(\mathbf{IFF})$ =7.82×10 ⁻⁵ <i>I1</i> Mult.: $\alpha(\mathbf{K})$ exp≈0.008 (1982K020).	

²⁰⁵₈₄Po₁₂₁-13

From ENSDF

 $^{205}_{84}\mathrm{Po}_{121}\text{-}13$

				205	5 At ε de	cay 1971,	Jo19,1982K	u20,1982Ku2	1 (continued)
						<u> </u>	²⁰⁵ Po) (con	tinued)	
E_{γ}^{\dagger}	I_{γ}^{\dagger} &	E _i (level)	\mathbf{J}_i^{π}	E_f	\mathbf{J}_{f}^{π}	Mult. [‡]	δ#	α [@]	Comments
^x 1437.0 5 ^x 1442.89 20	0.56 8 1.11 8					E2		0.00373	%I γ =0.27 4 %I γ =0.53 4 α (K)=0.00298 5; α (L)=0.000532 8; α (M)=0.0001257 18 α (N)=3.23×10 ⁻⁵ 5; α (O)=6.69×10 ⁻⁶ 10; α (P)=8.41×10 ⁻⁷ 12; α (IPF)=4.60×10 ⁻⁵ 7
^x 1455.8 <i>4</i> 1475.36 9	0.72 8 2.75 <i>13</i>	2355.56	9/2+	880.31	13/2+	E2		0.00359	Mult.: α (K)exp=0.0036 6 (1982Ku20). %I γ =0.34 4 %I γ =1.31 7 α (K)=0.00287 4; α (L)=0.000508 8; α (M)=0.0001200 17 α (N)=3.08×10 ⁻⁵ 5; α (O)=6.39×10 ⁻⁶ 9; α (P)=8.05×10 ⁻⁷ 12; α (IPF)=5.51×10 ⁻⁵ 8
1479.16 <i>10</i>	2.89 19	1633.30	5/2+	154.196	3/2-	E1+M2	0.29 9	0.0028 8	Mult.: α (K)exp=0.0030 5 (1982Ku20). %I γ =1.38 10 α (K)=0.0022 7; α (L)=0.00036 12; α (M)=9.E-5 3 α (N)=2.2×10 ⁻⁵ 8; α (O)=4.6×10 ⁻⁶ 16; α (P)=5.9×10 ⁻⁷ 20; α (IPF)=0.000144 7
^x 1484.43 <i>37</i>	0.78 5					M1+E2		0.00764	Mult.: $\alpha(K)\exp=0.0022 \ 5 \ (1982Ku20)$. $\%I\gamma=0.372 \ 26$ $\alpha(K)=0.00618 \ 9; \ \alpha(L)=0.001033 \ 15; \ \alpha(M)=0.000242 \ 4$ $\alpha(N)=6.23\times10^{-5} \ 9; \ \alpha(O)=1.306\times10^{-5} \ 19; \ \alpha(P)=1.696\times10^{-6} \ 24; \ \alpha(IPF)=0.0001054 \ 15$ Mult.: $\alpha(K)\exp=0.0055 \ 10 \ (1982Ku20)$.
^x 1488.5 <i>10</i> 1495.4 <i>10</i>	≈0.45 0.50 7	1651.35	7/2-	154.196	3/2-	[E2]		0.00351	%I γ ≈0.215 %I γ =0.238 34 α (K)=0.00280 4; α (L)=0.000494 7; α (M)=0.0001167 17 α (N)=3.00×10 ⁻⁵ 5; α (O)=6.22×10 ⁻⁶ 9; α (P)=7.83×10 ⁻⁷ 11: α (IPE)=6.10×10 ⁻⁵ 9
1531.3 8 1537.2 <i>4</i>	0.64 <i>5</i> 1.55 <i>8</i>	2930.82 3170.9	(9/2) ⁺ (7/2) ⁺	1400.80 1633.30	9/2 ⁺ 5/2 ⁺	M1(+E2)	≤0.5	0.0067 4	$%I\gamma = 0.305 \ 25$ $\%I\gamma = 0.305 \ 25$ $\%I\gamma = 0.74 \ 4$ $\alpha(K) = 0.0054 \ 3; \ \alpha(L) = 0.00090 \ 5; \ \alpha(M) = 0.000210 \ 12$ $\alpha(N) = 5.4 \times 10^{-5} \ 3; \ \alpha(O) = 1.13 \times 10^{-5} \ 7; \ \alpha(P) = 1.47 \times 10^{-6}$ $9; \ \alpha(IPF) = 0.000128 \ 7$ Mult: $\alpha(K) \approx p = 0.0061 \ 8 \ (1982Ku20)$
x1561.5 <i>10</i> x1600.0 <i>10</i> 1632.8 <i>3</i>	0.46 6 0.56 <i>12</i> 1.66 <i>12</i>	1633.30	5/2+	0.0	5/2-	[E1]		1.42×10 ⁻³	%I γ =0.219 29 %I γ =0.27 6 %I γ =0.79 6 α (K)=0.000973 14; α (L)=0.0001475 21; α (M)=3.41×10 ⁻⁵ 5 α (N)=8 74×10 ⁻⁶ 13: α (O)=1.83×10 ⁻⁶ 3:
1637.0 <i>5</i>	0.56 11	2355.56	9/2+	719.28	9/2-	[E1]		1.42×10 ⁻³	$\alpha(P)=2.36\times10^{-7} 4; \ \alpha(D)=1.65\times10^{-5} 5, \ \alpha(P)=2.36\times10^{-7} 4; \ \alpha(IPF)=0.000259 4 \ \%I\gamma=0.27 5 \ \alpha(K)=0.000969 14; \ \alpha(L)=0.0001468 21; \ \alpha(M)=3.40\times10^{-5} 5$

From ENSDF

I

				205 At ε	decay	1971Jo19	,1982Ku20,19	82Ku21 (continued)		
γ ⁽²⁰⁵ Po) (continued)										
E_{γ}^{\dagger}	I_{γ} †&	E_i (level)	\mathbf{J}_i^{π}	E_f	\mathbf{J}_{f}^{π}	Mult. [‡]	α@	Comments		
1651.22 15	1.58 <i>13</i>	1651.35	7/2-	0.0	5/2-	(M1)	0.00594	$\begin{aligned} &\alpha(\text{N}) = 8.70 \times 10^{-6} \ 13; \ \alpha(\text{O}) = 1.82 \times 10^{-6} \ 3; \ \alpha(\text{P}) = 2.35 \times 10^{-7} \ 4; \\ &\alpha(\text{IPF}) = 0.000262 \ 4 \\ &\% \text{I} \gamma = 0.75 \ 7 \\ &\alpha(\text{K}) = 0.00471 \ 7; \ \alpha(\text{L}) = 0.000785 \ 11; \ \alpha(\text{M}) = 0.000184 \ 3 \\ &\alpha(\text{N}) = 4.73 \times 10^{-5} \ 7; \ \alpha(\text{O}) = 9.92 \times 10^{-6} \ 14; \ \alpha(\text{P}) = 1.289 \times 10^{-6} \ 18; \end{aligned}$		
1685.5 <i>10</i>	0.77 6	2355.56	9/2+	669.43	9/2-	[E1]	1.40×10 ⁻³	α (IPF)=0.000204 3 Mult.: α (K)exp \approx 0.0021 (1982Ku20). %I γ =0.367 30 α (K)=0.000923 13; α (L)=0.0001397 20; α (M)=3.23×10 ⁻⁵ 5 α (N)=8.28×10 ⁻⁶ 12; α (O)=1.731×10 ⁻⁶ 25; α (P)=2.24×10 ⁻⁷ 4;		
^x 1688.6 8 ^x 1749.8 5	0.88 8 0.66 7							$\alpha(IFF)=0.0002975$ %Iy=0.42 4 %Iy=0.315 34 F : Possibly a doublet		
1754.7 <i>10</i> 1761.34 <i>25</i> 1768.79 <i>20</i>	0.42 6 1.01 6 1.09 6	1908.38 1761.32 2799.20	$(5/2^+)$ $(7/2,9/2)^-$ $(9/2)^+$	154.196 0.0 1030.38	3/2 ⁻ 5/2 ⁻ (11/2) ⁻	(E1)	1.38×10 ⁻³	%Iγ=0.200 29 %Iγ=0.482 33 %Iγ=0.520 32 α(K)=0.000852 12; α(L)=0.0001287 18; α(M)=2.98×10 ⁻⁵ 5		
1775.5 <i>10</i> <i>x</i> 1788.5 <i>10</i>	0.44 <i>5</i> 0.46 <i>5</i> 0.47 <i>5</i>	3170.9	(7/2)+	1394.94	(9/2)-			$\alpha(N)=7.63 \times 10^{-6} \ 11; \ \alpha(O)=1.595 \times 10^{-6} \ 23; \ \alpha(P)=2.06 \times 10^{-7} \ 3; \ \alpha(PF)=0.000357 \ 5$ Mult.: $\alpha(K)\exp \le 0.0018 \ (1982Ku20).$ %Iy=0.210 24 %Iy=0.2219 25 %Iv=0.224 25		
x1851.5 10 x1851.5 10 x1875.0 10 x1906.70 25	0.47 5 0.37 4 0.48 5 0.92 6							$\% I\gamma = 0.224 2.5$ $\% I\gamma = 0.176 20$ $\% I\gamma = 0.229 25$ $\% I\gamma = 0.439 31$		
x2006.0 6 2016.5 10 2028.5 10	$\begin{array}{c} 0.40 \ 4 \\ 0.39 \ 4 \\ 0.33 \ 6 \\ 0.25 \ 4 \end{array}$	2799.20 2799.20 2930.82	$(9/2)^+$ $(9/2)^+$ $(9/2)^+$	872.10 783.00 902.26	$7/2^{-}$ $(7/2)^{-}$			$\%_{1\gamma=0.191} 20$ $\%_{1\gamma=0.186} 20$ $\%_{1\gamma=0.157} 29$ $\%_{1\gamma=0.119} 19$		
$x^{2}2031.9 5$ 2050.46 20 $x^{2}\approx 2069.5$ $x^{2}2119.4 5$	0.93 5 2.38 11 0.23 4 0.36 6	2930.82	(9/2)+	880.31	13/2+			%Iy=0.444 27 %Iy=1.14 6 %Iy=0.110 19 %Iy=0.172 29		
2142.0 <i>10</i> 2147.0 <i>10</i> 2160.8 <i>6</i> 2180.7 <i>6</i>	0.29 6 0.35 6 0.53 6 0.36 5	3170.9 2930.82 3033.0 3052.2	$(7/2)^+$ $(9/2)^+$ (7/2,9/2) $(7/2)^+$	1030.38 783.00 872.10 872.10	(11/2) ⁻ 7/2 ⁻ 7/2 ⁻ 7/2 ⁻			$\%$ $i_{y}=0.138$ 29 $\%$ $i_{y}=0.167$ 29 $\%$ $i_{y}=0.253$ 29 $\%$ $i_{y}=0.172$ 24		
2268.0 10 2363.3 7 *2709.0 15 *2865.0 15	≈0.4 0.31 6 ≈0.3 ≈0.17	3052.2 3033.0	$(7/2)^+$ (7/2,9/2)	783.00 669.43	7/2- 9/2-			% $I_{\gamma \approx 0.191}$ % $I_{\gamma = 0.148}$ 29 % $I_{\gamma \approx 0.143}$ % $I_{\gamma \approx 0.0811}$		

²⁰⁵₈₄Po₁₂₁-15

From ENSDF

²⁰⁵₈₄Po₁₂₁-15

205 At ε decay 1971Jo19,1982Ku20,1982Ku21 (continued)

γ (²⁰⁵Po) (continued)

E_{γ}^{\dagger}	$I_{\gamma}^{\dagger}\&$	E _i (level)	\mathbf{J}_i^{π}	$E_f J_f^{\pi}$	Comments
3033.5 <i>10</i> 3045.5 <i>10</i> 3052.0 <i>10</i> 3172.0 <i>15</i>	$0.33 \ 4 \approx 0.16 \approx 0.20 \approx 0.18$	3033.0 3046.72 3052.2 3170.9	(7/2,9/2)7/2+(7/2)+(7/2)+	0.0 5/2 ⁻ 0.0 5/2 ⁻ 0.0 5/2 ⁻ 0.0 5/2 ⁻	$\% I_{\gamma} = 0.157 \ 21$ $\% I_{\gamma} \approx 0.0763$ $\% I_{\gamma} \approx 0.0954$ $\% I_{\gamma} \approx 0.0858$

[†] From 1982Ku20, unless otherwise stated.

[‡] From adopted gammas.

[#] Using the briccmixing program and the $\alpha(K)$ exp, $\alpha(L)$ exp, $\alpha(M)$ exp, $\alpha(L12)$ exp data (1982Ku20,1971Jo19).

^(a) Additional information 1.
^(b) For absolute intensity per 100 decays, multiply by 0.477 13.

^{*a*} Placement of transition in the level scheme is uncertain.

 $x \gamma$ ray not placed in level scheme.

²⁰⁵At ε decay 1971Jo19,1982Ku20,1982Ku21

²⁰⁵At ε decay 1971Jo19,1982Ku20,1982Ku21

Decay Scheme (continued)

²⁰⁵At ε decay 1971Jo19,1982Ku20,1982Ku21

