		Trues	A .	uth on	History	Literature Cutoff Data
		Туре	A	utnor		
		Full Evaluation	n F.G.	Kondev	NDS 166, 1 (2020)	20-Apr-2020
$Q(\beta^{-}) = -4549 \ 183$; S(n)=725	1 15; S(p)=4164 1	4; $Q(\alpha)=$	5325 10	2017Wa10	
					²⁰⁵ Po Levels	
				Cross Re	eference (XREF) Flags	
		A B C	²⁰⁵ A ²⁰⁵ Pe ²⁰⁹ R	t ε decay o IT deca n α decay	D 20 y (57.4 ms) E 20 y	${}^{6}\text{Pb}(\alpha,5n\gamma)$ ${}^{9}\text{Bi}(p,5n\gamma)$
E(level) [†]	$J^{\pi \ddagger}$	T _{1/2}	XREF			Comments
0.0 [#]	5/2-	1.74 h 8	ABCDE	%e+%	$\beta^+=99.960\ 12;\ \%\alpha=0.0$	040 12
				$\mu = +0.7$	76 6; Q=0.17	
				$\%\alpha$: from α	$\cos \frac{\% \alpha (205 \text{At})}{\% \alpha (205 \text{F})}$	Po)=18.4% 16/0.074% 16 (1961La02) and
				%α(*	At = 10% 2 (1974Hc)	527). Others: $\%\alpha$ =0.58% 4 (1970Jo26) and
				J^{π} : Ato	mic beam $(1961Ax02)$	π from μ
				$T_{1/2}$: U	Jnweighted average of	1.66 h 2 (1983 He09) and 1.80 h 4
				(197	0DaZM); Others: 1.8 h	1 (1956Be97) and 1.8 h 2
				(196)	7Ti04,1970Jo26).	
				μ : Ded	uced using the nuclear	magnetic resonance from oriented state
				O Ded	luced using the atomic	blZZ). beam magnetic resonance technique
				(196	10101).	beam magnetie resonance teeninque
				$\Delta < r^2 > 0$	205,208)=-0.185 6 (19	991Ko32) using the laser-induced fluorescence
				spect	troscopy technique.	
143.166 ^w 15	$1/2^{-}$	310 ns 60	A C	$J^{\pi}: 143$	5.166γ E2 to $5/2^-$; unfa	vored α -decay.
154.105 8 11	2/2-			$T_{1/2}$: F	from $\alpha \gamma(t)$ (19/1Jo19)	\sin^{209} Kn α decay.
154.195 ^{°°} 11 384.34.6	$\frac{3}{2}$		AC	$J^{*}: 154$ $I^{\pi}: 230$	1.198γ M1(+E2) to 5/2 12 γ (M1) to $3/2^{-1}$ $38/2^{-1}$, (11) γ to 1/2 . 1.61 γ M1+E2 to 5/2 ⁻
669 43 <i>4</i>	$9/2^{-}$		A	J : 250 $I^{\pi} \cdot 669$	41_{2} F2 to $5/2^{-1}$ direct	feeding in 205 At a decay $(I^{\pi}=9/2^{-})$
719.28^{a} 4	9/2-		AB DE	$J^{\pi}: 719$	0.3γ E2 to $5/2^-$; direct	feeding in ²⁰⁵ At ε decay (J ^{π} =9/2 ⁻).
783.00 5	7/2-		Α	J ^π : 628	3.88γ E2 to $3/2^-$; 782.8	0γ M1+E2 to 5/2 ⁻ ; direct feeding in ²⁰⁵ At ε
				deca	y $(J^{\pi}=9/2^{-}).$	
799.02 15	$(5/2)^{-}$		A	$J^{\pi}: 644$	1.86γ M1+E2 to $3/2^{-}$.	$2(44)$ M1 + E2 to $2/2^{-1}$ 1242 2 for $(7/2)^{+}$
800.45 8 872 10 7	(5/2) $7/2^{-}$		A A	$J^{\pi}: 052$ $I^{\pi}: 202$	2.5γ M1+E2 to $5/2$, 80 6 γ M1(+E2) to $9/2^{-1}$	$J0.44\gamma$ M1+E2 to $3/2$, 1342.3γ from $(7/2)^{-1}$.
$880.31^{b} 4$	13/2+	0.645 ms 20	AR DF	%IT=1	00	+07.00y L2 10 (5/2) .
000.51 7	13/2	0.015 113 20		$\mu = -0.9$	05 <i>5</i>	
				J ^π : 161	.03 γ M2 to 9/2 ⁻ ; direc	t feeding in ²⁰⁵ At ε decay (J ^{π} =9/2 ⁻).
				$T_{1/2}$: F	From 719 γ (t) in 1973Fo	07. Other: 0.644 ms in 1962Ha26.
				μ . deut (1974	4BrXD.2014StZZ).	seturbed angular distribution teeninque
902.26 10	$(7/2)^{-}$		A	$J^{\pi}: 748$	8.5γ (E2) to the $3/2^{-}$, 9	02.22γ M1+E2 to $5/2^{-}$.
1030.38 ^C 4	$(11/2)^{-}$		A DE	J ^π : 311	.09 γ M1+E2 to 9/2 ⁻ ; j	population in ²⁰⁶ Pb(α ,5n γ) favors higher J.
1167.81 7	$7/2^{-}$		A	$J^{\pi}: 369$	γ M1+E2 to (5/2) ⁻ ; 44	48.61γ M1+E2 9/2 ⁻ .
1394.94 9	(9/2)		A	J [*] : 364	1.0γ MI(+E2) to $11/2^{-1}$; $/25.5\gamma$ M1+E2 to 9/2 .
1400.80" 3	$9/2^{-1}$		A A	J ^π : 320	1.44γ E2 to $13/2^{\circ}$, $61/$. 1.70γ M1+E2 to $11/2^{-1}$	$67 E_1 + 11/2 = 10 / 1/2$. 553.94 γ M1+E2 to 7/2 ⁻¹
1461.21^{d} 21	19/2-	57.4 ms 9	B DE	%IT=1	00	,

Continued on next page (footnotes at end of table)

Adopted Levels, Gammas (continued)

²⁰⁵Po Levels (continued)

E(level) [†]	$\mathrm{J}^{\pi \ddagger}$	$T_{1/2}$	XREF	REF Comments			
		<u> </u>		J ^π : 580.9γ E3 to 13/2 ⁺ . T _{1/2} : Weighted average of 57 ms <i>I</i> , from ce(580K)(t) in (1974Ro36), 58 ms 2 from 581γ(t) in 1973Fo07 and 62 ms 5, from 581γ(t) in 1974Oh06.			
1477.38 21			D				
1516.61 ^e 21	$17/2^{+}$		D	J^{π} : 636.3 γ E2 to 13/2 ⁺ .			
1539.94 7	9/2+		Α	J ^{π} : 659.63 γ E2 to 13/2 ⁺ ; direct feeding in ²⁰⁵ At ε decay (J ^{π} =9/2 ⁻).			
1553.17 6	$(11/2)^+$		Α	J^{π} : 672.85 γ M1+E2 to 13/2 ⁺ ; direct feeding in ²⁰⁵ At ε decay ($J^{\pi}=9/2^{-}$).			
1633.30 9	5/2+		Α	J^{π} : 1479.16 γ E1+M2 to 3/2 ⁻ , 232.54 γ to 9/2 ⁺ .			
1651.35 <i>13</i>	7/2-		A	J^{π} : 1651.22 γ (M1) to 5/2 ⁻ , 484.00 γ M1+E2 to 7/2 ⁻ , 1495.4 γ to 3/2 ⁻ ; direct feeding in ²⁰⁵ At ε decay (J ^{π} =9/2 ⁻).			
1761.32 17	$(7/2, 9/2)^{-}$		Α	J ^{π} : 859.2 γ M1+E2 to (7/2) ⁻ ; direct feeding in ²⁰⁵ At ε decay (J ^{π} =9/2 ⁻).			
1856.20 11	11/2+		Α	J ^π : 317.0γ M1(+E2) to 9/2 ⁺ , 976.00γ M1+E2 to 13/2 ⁺ direct feeding in 205 At ε decay (J ^π =9/2 ⁻).			
1890.5 ^f 3	$21/2^+$		D	J^{π} : 373.9 E2 to 17/2 ⁺ .			
1908.38 24	$(5/2^+)$		A	J ^{π} : 1754.7 γ to 3/2 ⁻ ; 890 γ from (9/2) ⁺ ; no direct feeding in ²⁰⁵ At ε decay (J ^{π} =9/2 ⁻).			
1912.00 9	9/2+		Α	J^{π} : 1031.69 γ E2 to 13/2 ⁺ , 744.26 γ to 7/2 ⁻ .			
1954.05 10	$(11/2)^{-}$		Α	J ^{π} : 1171.04 γ E2 to 7/2 ⁻ ; direct feeding in ²⁰⁵ At ε decay (J ^{π} =9/2 ⁻).			
2149.35 15	$(7/2)^+$		Α	J ^{π} : 516.04 γ M1 to 5/2 ⁺ ; direct feeding in ²⁰⁵ At ε decay (J ^{π} =9/2 ⁻).			
2187.88 9	$(11/2)^+$		A	J ^{π} : 1307.6 γ M1(+E2) to 13/2 ⁺ ; direct feeding in ²⁰⁵ At ε decay (J ^{π} =9/2 ⁻).			
2224.7 <mark>8</mark> 4	25/2+	2.0 ns 7	D	J^{π} : 334.2 E2 to 21/2 ⁺ .			
				T _{1/2} : From γ (t) in 1985Ra18, obtained from a two-isomers fit to 334.2 γ , 373.9 γ and 636.3 γ time spectra.			
2355.56 6	9/2+		A	J^{π} : 1475.36 γ E2 to 13/2 ⁺ , 1187.6 γ to 7/2 ⁻ ; direct feeding in ²⁰⁵ At ε decay ($J^{\pi}=9/2^{-}$).			
2483.49 7	$(7/2, 9/2, 11/2)^+$		Α	J^{π} : 127.93 M1(+E2) to 9/2 ⁺ ; direct feeding in ²⁰⁵ At ε decay ($J^{\pi}=9/2^{-}$).			
2712.3 ⁸ 4	27/2+		D	J^{π} : 487.6 γ M1 to 25/2 ⁺ .			
2799.20 15	(9/2)+		A	J^{π} : 649.5 M1+E2 to (7/2) ⁺ , 1768.79 γ (E1) to (11/2) ⁻ ; direct feeding in ²⁰⁵ At ε decay (J^{π} =9/2 ⁻).			
2826.9 4	27/2+		D	J^{π} : 602.2 γ M1 to 25/2 ⁺ .			
2930.82 19	(9/2)+		A	J ^π : 1377.5γ M1(+E2) to (11/2) ⁺ ; 2147.0γ to 7/2 ⁻ ; direct feeding in 205 At ε decay (J ^π =9/2 ⁻).			
2980.7 4	29/2+		D	J^{π} : 756.0 γ E2 to 25/2 ⁺ .			
3033.0 5	(7/2,9/2)		A	J^{π} : 2363.3 γ to 9/2 ⁻ , 3033.5 γ to 5/2 ⁻ ; direct feeding in ²⁰⁵ At ε decay (J^{π} =9/2 ⁻).			
3046.72 20	7/2+		A	J ^π : 691.4γ M1(+E2) to 9/2 ⁺ , 1413.43γ M1(+E2) to 5/2 ⁺ ; direct feeding in ²⁰⁵ At ε decay (J ^π =9/2 ⁻).			
3052.2 4	$(7/2)^+$		A	J ^π : 568.5γ M1+E2 to $(7/2,9/2,11/2)^+$, 3052.0γ to 5/2 ⁻ ; direct feeding in ²⁰⁵ At ε decay (J ^π =9/2 ⁻).			
3087.2 ^h 4	29/2-	115 ns 10	D	J^{π} : 260.3 γ E1 to 27/2 ⁺ ; γ 's to 27/2 ⁺ and 29/2 ⁺ . T _{1/2} : From γ (t) in 1985Ra18.			
3160.7 5	29/2+		D	J^{π} : 448.4 γ M1+E2 to 27/2 ⁺ .			
3170.9 4	$(7/2)^+$		A	J^{π} : 1537.2 γ M1 to 5/2 ⁺ , 1775.5 γ to (9/2) ⁻ , 3172.0 γ to 5/2 ⁻ ; direct feeding in ²⁰⁵ At ε decay (J^{π} =9/2 ⁻).			
3206.4 5	$31/2^+$		D	J^{π} : 225.7 γ M1 to 29/2 ⁺ .			
3298.5 4	29/2+		D	J^{π} : 471.6 γ M1(+E2) to 27/2 ⁺ , 1073.8 γ E2 to 25/2 ⁺ .			
3368.1 5	31/2+		D	J^{π} : 387.4 γ M1 to 29/2 ⁺ .			
3508.9 5	51/2 22/2-		D	J [*] : 210.4 γ E1 to 29/2 ⁺ .			
2808.8 2 4002 2 5	33/2 22/2-		U T	J ^T : 761.07 EZ to $29/2$. I^{π} : 584 Az M1 to 21/2 ⁻			
4093.3 3	$\frac{33}{2}$		ע	J. JOT.TY IVIT 10 $31/2$. I^{π} , 268 (by (E1) to $33/2^{-1}$			
4453.9.6	(35/2) $(37/2^{-})$		ע	$J = 200.07$ (E1) to $33/2^{-1}$			
4628.8.6	$(37/2^+)$		ם ח	J^{π} : 492.0v M1 to (35/2 ⁺).			
	(3.7-)		2				

Continued on next page (footnotes at end of table)

Adopted Levels, Gammas (continued)

²⁰⁵Po Levels (continued)

[†] From least squares fit to $E\gamma$.

[‡] From the deduced γ -ray transition multipolarities, direct population in ²⁰⁵At ε decay, and systematics of structures in neighboring nuclei. Specific arguments are given with most levels.

configuration= $\nu(f_{5/2}^{-1})$.

- ^(a) configuration= $\nu(p_{1/2}^{-1})$. ^(b) configuration= $\nu(p_{3/2}^{-1})$.

 $\begin{array}{l} & \text{configuration} = \nu(\mathbf{p}_{3/2}^{-1}). \\ & a \text{ configuration} = \nu(\mathbf{f}_{5/2}^{-1}) \otimes \pi(\mathbf{h}_{9/2}^{+2})_{2^+}. \\ & b \text{ configuration} = \nu(\mathbf{i}_{13/2}^{-1}). \\ & c \text{ configuration} = \nu(\mathbf{f}_{5/2}^{-1}) \otimes \pi(\mathbf{h}_{9/2}^{+2})_{4^+}. \\ & d \text{ configuration} = \nu(\mathbf{f}_{5/2}^{-1}) \otimes \pi(\mathbf{h}_{9/2}^{+2})_{8^+}. \\ & e \text{ configuration} = \nu(\mathbf{f}_{5/2}^{-2})_{2^+}, \mathbf{i}_{13/2}^{-1}). \\ & f \text{ configuration} = \nu(\mathbf{f}_{5/2}^{-2})_{4^+}, \mathbf{i}_{13/2}^{-1}). \\ & g \text{ configuration} = \nu(\mathbf{f}_{5/2}^{-1}) \otimes \pi(\mathbf{h}_{9/2}^{+1}, \mathbf{i}_{13/2}^{-1})_{11^-}. \\ & h \text{ configuration} = \nu(\mathbf{f}_{5/2}^{-1}) \otimes \pi(\mathbf{h}_{9/2}^{-1}, \mathbf{i}_{13/2}^{-1})_{11^-}. \end{array}$

						Adopted 1	Levels, Gamma	s (continued)	
							γ (²⁰⁵ Po)		
E_i (level)	\mathbf{J}_i^{π}	E_{γ}^{\dagger}	I_{γ}^{\dagger}	E_{f}	J_f^{π}	Mult. [#]	$\delta^{@}$	α ^{&}	Comments
143.166	1/2-	143.166 <i>17</i>	100 7	0.0	5/2-	E2		1.641	$\alpha(K)=0.324 5; \alpha(L)=0.977 14; \alpha(M)=0.260 4$ $\alpha(N)=0.0667 10; \alpha(O)=0.01274 18; \alpha(P)=0.001163 17$ B(E2)(W.u.)=0.16 4 Mult.: $\alpha(K)\exp=0.34 5, (\alpha(L1)\exp+\alpha(L2)\exp)=0.60 8$ and $\alpha(L3)\exp=0.39 5$ (1982Ku20); $\alpha(L)\exp=0.9 7$
154.195	3/2-	(11.032 19)	0.42 3	143.166	1/2-	[M1,E2]		334	$\alpha(M)=253 \ 4$ $\alpha(N)=65.3 \ 10; \ \alpha(O)=13.66 \ 21; \ \alpha(P)=1.76 \ 3$ E_{γ} : Not observed directly, but required by the coincidence relationship in ²⁰⁵ At ε decay. The energy deduced from level energy diffrence.
		154.198 <i>12</i>	100 8	0.0	5/2-	M1(+E2)	≤0.22	3.19 7	$\alpha(K)=2.57$ 7; $\alpha(L)=0.470$ 9; $\alpha(M)=0.1113$ 24 $\alpha(N)=0.0287$ 6; $\alpha(O)=0.00598$ 12; $\alpha(P)=0.000764$ 11 Mult.: $\alpha(K)\exp=2.69$ 13 and $\alpha(M)\exp=0.101$ 15 (1982Ku20): $\alpha(K)\exp=3.0$ 6 (1971L019)
384.34	(3/2)-	230.12 7	25.4 23	154.195	3/2-	(M1)		1.051	$\alpha(K)=0.854 \ 12; \ \alpha(L)=0.1500 \ 21; \ \alpha(M)=0.0354 \ 5 \\ \alpha(N)=0.00911 \ 13; \ \alpha(O)=0.00191 \ 3; \ \alpha(P)=0.000246 \ 4 \\ Mult : \ \alpha(K)exp \approx 1 \ (1982 Kn 20)$
		384.61 14	100 5	0.0	5/2-	M1+E2	0.87 13	0.173 16	
669.43	9/2-	669.41 <i>4</i>	100	0.0	5/2-	E2		0.01661	$\alpha(K)=0.01237\ 18;\ \alpha(L)=0.00320\ 5;\ \alpha(M)=0.000788\ 11$ $\alpha(N)=0.000202\ 3;\ \alpha(O)=4.10\times10^{-5}\ 6;\ \alpha(P)=4.73\times10^{-6}\ 7$ Mult.: $\alpha(K)exp=0.0117\ 10$ and $\alpha(M)exp=0.00084\ 8$ (1982Ku20); $\alpha(K)exp=0.015\ 6\ (1971Jo19).$
719.28	9/2-	719.30 4	100	0.0	5/2-	E2		0.01426	α (K)=0.01077 <i>15</i> ; α (L)=0.00264 <i>4</i> ; α (M)=0.000647 <i>9</i> α (N)=0.0001662 <i>24</i> ; α (O)=3.37×10 ⁻⁵ <i>5</i> ; α (P)=3.94×10 ⁻⁶ <i>6</i> Mult.: α (K)exp=0.0109, α (L)exp=0.00270 <i>20</i> , α (M)exp=0.00066 <i>7</i> and α (N)exp=0.00022 <i>3</i> (1982Ku20); α (K)exp=0.011 <i>3</i> (1971Jo19); K/(L+M)=3.67 <i>53</i> (1970Ho15).
783.00	7/2-	113.3 5	≈0.55	669.43	9/2-	[M1+E2]		7.77 15	α (K)=6.30 <i>12</i> ; α (L)=1.122 <i>22</i> ; α (M)=0.265 <i>5</i> α (N)=0.0682 <i>13</i> ; α (O)=0.0143 <i>3</i> ; α (P)=0.00184 <i>4</i>
		628.88 7	100 7	154.195	3/2-	E2		0.0190	$\alpha(K)=0.01397\ 20;\ \alpha(L)=0.00380\ 6;\ \alpha(M)=0.000940\ 14$ $\alpha(N)=0.000241\ 4;\ \alpha(O)=4.87\times10^{-5}\ 7;\ \alpha(P)=5.57\times10^{-6}\ 8$ Mult.: $\alpha(K)\exp=0.0175\ 18\ (1982Ku20);\ \alpha(K)\exp=0.025\ 8$ (1971Jo19).
		782.80 12	35.0 15	0.0	5/2-	M1+E2	2.8 +12-6	0.0151 <i>16</i>	$\alpha(K)=0.0118$ 14; $\alpha(L)=0.00250$ 20; $\alpha(M)=0.00060$ 5 $\alpha(N)=0.000155$ 12; $\alpha(O)=3.18\times10^{-5}$ 25; $\alpha(P)=3.9\times10^{-6}$ 4 Mult.: $\alpha(K)\exp=0.0117$ 12 (1982Ku20).
799.02	(5/2)-	414.65 20	89 10	384.34	(3/2)-	M1(+E2)	≤0.6	0.189 22	$\alpha(K)=0.153 \ 19; \ \alpha(L)=0.0276 \ 22; \ \alpha(M)=0.0065 \ 5 \ \alpha(N)=0.00168 \ 13; \ \alpha(O)=0.00035 \ 3; \ \alpha(P)=4.5\times10^{-5} \ 4 \ Mult.: \ \alpha(K)exp=0.160 \ 23 \ (1982Ku20).$

 $^{205}_{84} Po_{121} - 4$

						Adopted I	Levels, Gammas (o	continued)	
						<u> </u>	(²⁰⁵ Po) (continued	<u>.)</u>	
E _i (level)	\mathbf{J}_i^{π}	E_{γ}^{\dagger}	I_{γ}^{\dagger}	\mathbf{E}_{f}	\mathbf{J}_f^{π}	Mult. [#]	$\delta^{@}$	α &	Comments
799.02	(5/2)-	644.86 20	100 7	154.195	3/2-	M1+E2	0.59 25	0.053 8	$\alpha(K)=0.043\ 7;\ \alpha(L)=0.0077\ 9;\ \alpha(M)=0.00181\ 20$ $\alpha(N)=0.00047\ 6;\ \alpha(O)=9.7\times10^{-5}\ 11;\ \alpha(P)=1.24\times10^{-5}\ 16$ Mult.: $\alpha(K)\exp=0.043\ 6\ (1982Ku20).$
806.45	(5/2)-	652.5 7	87 23	154.195	3/2-	M1+E2	1.3 +9-5	0.034 11	$\alpha(K) = 0.027 \ 10; \ \alpha(L) = 0.0054 \ 13; \ \alpha(M) = 0.0013 \ 3 \\ \alpha(N) = 0.00034 \ 8; \ \alpha(O) = 6.9 \times 10^{-5} \ 17; \ \alpha(P) = 8.6 \times 10^{-6} \ 23 \\ Mult : \ \alpha(K) = 0.028 \ 8 \ (1982Ku20)$
		806.44 8	100 7	0.0	5/2-	M1+E2	0.4 3	0.033 5	$\alpha(K) = 0.027 4; \alpha(L) = 0.0046 6; \alpha(M) = 0.00109 14$ $\alpha(N) = 0.00028 4; \alpha(O) = 5.9 \times 10^{-5} 8; \alpha(P) = 7.6 \times 10^{-6} 11$ Mult : $\alpha(K) \exp = 0.027 4$ (1982Ku20)
872.10	7/2-	202.60 20	10.5 13	669.43	9/2-	M1(+E2)	≤0.4	1.43 8	$\begin{aligned} &\alpha(K) = 1.15 \ 8; \ \alpha(L) = 0.214 \ 3; \ \alpha(M) = 0.0510 \ 9 \\ &\alpha(N) = 0.01312 \ 22; \ \alpha(O) = 0.00273 \ 4; \ \alpha(P) = 0.000346 \ 8 \\ &\text{Mult.:} \ \alpha(K) \exp = 1.35 \ 22 \ \text{and} \ (\alpha(L1) \exp + \alpha(L2) \exp) = 0.24 \ 4 \\ &(1982 \text{Ku} 20). \end{aligned}$
		487.86 11	17.7 9	384.34	(3/2)-	E2		0.0341	$\alpha(K)=0.0233 4; \alpha(L)=0.00808 12; \alpha(M)=0.00203 3$ $\alpha(N)=0.000522 8; \alpha(O)=0.0001041 15; \alpha(P)=1.138\times10^{-5}$ 16 Mult : $\alpha(K)\exp=0.019 4$ (1982Ku20)
		872.4 5	100 15	0.0	5/2-	M1+E2	0.6 5	0.024 6	$\alpha(K) = 0.020 5; \alpha(L) = 0.0035 7; \alpha(M) = 0.00081 17$ $\alpha(N) = 0.00021 5; \alpha(O) = 4.4 \times 10^{-5} 9; \alpha(P) = 5.6 \times 10^{-6} 12$ Mult : $\alpha(K) \exp = 0.020 4$ (1982Ku20)
880.31	13/2+	161.030 <i>17</i>	100	719.28	9/2-	M2		15.79	$\begin{aligned} \alpha(K) &= 10.91 \ 16; \ \alpha(L) &= 3.65 \ 6; \ \alpha(M) &= 0.933 \ 13 \\ \alpha(N) &= 0.244 \ 4; \ \alpha(O) &= 0.0503 \ 7; \ \alpha(P) &= 0.00619 \ 9 \\ B(M2)(W.u.) &= 0.00076 \ 3 \\ Mult.: \ \alpha(K) &= xp = 11.4 \ 12, (\alpha(L1) exp + \alpha(L2) exp) &= 3.6 \ 4, \\ \alpha(L3) &= xp = 0.50 \ 6, \ \alpha(M) exp &= 1.09 \ 14 \ and \ \alpha(N) exp &= 0.30 \\ 4 \ (1982Ku20); \ \alpha(K) exp &= 11.0 \ 10 \ (1971Jo19); \\ (\alpha(L1) exp + \alpha(L2) exp) &= 2.3 \ (1985Ra18); \ K/L &= 2.95 \ 15 \\ (1974Ro36); \ \alpha(exp) &= 18 \ 2 \ in \ 1962Ha26 \end{aligned}$
902.26	(7/2)-	748.45 30	67 9	154.195	3/2-	(E2)		0.01313	$\alpha(K) = 0.00998 \ 14; \ \alpha(L) = 0.00238 \ 4; \ \alpha(M) = 0.000582 \ 9$ $\alpha(N) = 0.0001495 \ 21; \ \alpha(O) = 3.04 \times 10^{-5} \ 5; \ \alpha(P) = 3.57 \times 10^{-6}$ Multiply of (C) and (1022K-20)
		902.22 10	100 5	0.0	5/2-	M1+E2	2.4 9	0.012 3	Mult.: $\alpha(K)\exp \leq 0.011 (1952K020)$. $\alpha(K)=0.0093 25; \ \alpha(L)=0.0018 4; \ \alpha(M)=0.00044 9$ $\alpha(N)=0.000113 22; \ \alpha(O)=2.3\times10^{-5} 5; \ \alpha(P)=2.9\times10^{-6} 7$ Mult.: $\alpha(K)\exp = 0.0093 25 (1982K020)$.
1030.38	(11/2)-	311.090 25	100 5	719.28	9/2-	M1+E2	0.30 23	0.43 5	$\alpha(K)=0.35$ 5; $\alpha(L)=0.063$ 4; $\alpha(M)=0.0149$ 8 $\alpha(N)=0.00383$ 20; $\alpha(O)=0.00080$ 5; $\alpha(P)=0.000102$ 8 Mult.: $\alpha(K)\exp=0.36$ 4, $(\alpha(L1)\exp+\alpha(L2)\exp)=0.061$ 9 and 0.0168 21 (1982Ku20); $\alpha(K)\exp=0.33$ 5 (1971Jo19); $\alpha(K)\exp=0.27$ 3 (1985Ra18).
		360.91 7	28.2 19	669.43	9/2-	M1+E2	1.00 +26-21	0.19 <i>3</i>	$\alpha(K)=0.147\ 24;\ \alpha(L)=0.0328\ 25;\ \alpha(M)=0.0080\ 6$ $\alpha(N)=0.00205\ 14;\ \alpha(O)=0.00042\ 3;\ \alpha(P)=5.0\times10^{-5}\ 5$ Mult.: $\alpha(K)exp=0.15\ 2$ and $\alpha(L)exp=0.030\ 3$ (1982Ku20); $\alpha(K)exp=0.29\ 8$ (1971Jo19).

S

²⁰⁵₈₄Po₁₂₁-5

						Adopted I	Levels, Gamma	as (continued)
						<u> </u>	(²⁰⁵ Po) (contir	nued)	
E _i (level)	\mathbf{J}_i^{π}	E_{γ}^{\dagger}	I_{γ}^{\dagger}	E_f	\mathbf{J}_f^{π}	Mult. [#]	$\delta^{@}$	α &	Comments
1167.81	7/2-	369 1	10.9 <i>13</i>	799.02	(5/2)-	M1+E2	1.5 +5-4	0.14 4	$\alpha(K)=0.10 \ 3; \ \alpha(L)=0.027 \ 3; \ \alpha(M)=0.0066 \ 7 \ \alpha(N)=0.00170 \ 17; \ \alpha(O)=0.00034 \ 4; \ \alpha(P)=4.0\times10^{-5} \ 6 \ Mult: \ \alpha(K)=0.00170 \ 10^{-5} \ 23 \ (1982Ku20)$
		384.61 ^{<i>a</i>}		783.00	7/2-				E_{γ} : Overlaps with much stronger 384.61 γ , depopulating the
		448.61 7	100 5	719.28	9/2-	M1+E2	0.60 21	0.136 <i>18</i>	
130/ 0/	$(0/2)^{-}$	1167.40 22	12.5 <i>13</i>	0.0	$5/2^{-}$	M1(+F2)	<0.6	0.27.3	$\alpha(\mathbf{K}) = 0.223; \alpha(\mathbf{L}) = 0.0393; \alpha(\mathbf{M}) = 0.00036$
1394.94	(9/2)	304.00 9	100 8	1050.58	(11/2)	WII(+E2)	≤0.0	0.27 5	$\alpha(K)=0.225, \alpha(L)=0.0395, \alpha(M)=0.00950$ $\alpha(N)=0.00240 \ 16; \alpha(O)=0.000504; \alpha(P)=6.4\times10^{-5}6$ Mult.: $\alpha(K)\exp=0.253, \alpha(L)\exp=0.0365$ and $\alpha(M)\exp=0.0154$ 4 (1982Ku20)
		725.51 30	70 4	669.43	9/2-	M1+E2	1.9 +5-4	0.021 3	$\alpha(K)=0.017 \ 3; \ \alpha(L)=0.0035 \ 4; \ \alpha(M)=0.00084 \ 9$ $\alpha(N)=0.000215 \ 22; \ \alpha(O)=4.4\times10^{-5} \ 5; \ \alpha(P)=5.4\times10^{-6} \ 7$ Mult: $\alpha(K)=0.017 \ 2 \ (1982Ku20)$
1400.80	9/2+	520.44 6	100 4	880.31	13/2+	E2		0.0292	Mult.: $\alpha(K) \exp [=0.017/2]$ (1962K020). $\alpha(K) = 0.0204 \ 3; \ \alpha(L) = 0.00661 \ 10; \ \alpha(M) = 0.001657 \ 24$ $\alpha(N) = 0.000426 \ 6; \ \alpha(O) = 8.51 \times 10^{-5} \ 12; \ \alpha(P) = 9.41 \times 10^{-6} \ 14$ Mult.: $\alpha(K) \exp [=0.0186 \ 17 \ and \ \alpha(L) \exp [=0.0061 \ 6]$ (1982K020): $\alpha(K) \exp [=0.015 \ 8; (1971 \ 10.10)]$
		528.90 <i>13</i>	16.2 10	872.10	7/2-	E1+M2	0.18 6	0.019 7	$\alpha(K) = 0.015 \ 6; \ \alpha(L) = 0.0028 \ 12; \ \alpha(M) = 0.0007 \ 3$ $\alpha(N) = 0.00017 \ 8; \ \alpha(O) = 3.6 \times 10^{-5} \ 16; \ \alpha(P) = 4.6 \times 10^{-6} \ 20$
		617.80 7	49.7 22	783.00	7/2-	E1+M2	0.14 3	0.0103 17	Mult.: $\alpha(K)\exp=0.015 4 (1982Ku20)$. $\alpha(K)=0.0084 \ 14; \ \alpha(L)=0.0015 \ 3; \ \alpha(M)=0.00035 \ 7$ $\alpha(N)=9.1\times10^{-5} \ 18; \ \alpha(O)=1.9\times10^{-5} \ 4; \ \alpha(P)=2.4\times10^{-6} \ 5$ Mult.: $\alpha(K)\exp=0.0082 \ 9 \ (1982Ku20); \ \alpha(K)\exp\leq0.009$ (1971Io19)
1426.05	9/2-	395.70 8	68 8	1030.38	(11/2)-	M1(+E2)	≤0.6	0.214 24	$\alpha(K)=0.173\ 21;\ \alpha(L)=0.0314\ 24;\ \alpha(M)=0.0074\ 6$ $\alpha(N)=0.00191\ 14;\ \alpha(O)=0.00040\ 3;\ \alpha(P)=5.1\times10^{-5}\ 5$ Mult: $\alpha(K)=0.173\ 24$ and $\alpha(L)=0.033\ 6\ (1082K)(20)$
		553.94 7	98 7	872.10	7/2-	M1+E2	0.70 22	0.073 11	Mult. $a(K) \exp[-0.175 24]$ and $a(E) \exp[-0.055 6]$ (1982K020). $\alpha(K) = 0.059 9; \alpha(L) = 0.0110 12; \alpha(M) = 0.0026 3$ $\alpha(N) = 0.00067 7; \alpha(O) = 0.000139 15; \alpha(P) = 1.76 \times 10^{-5} 21$ Mult. $\alpha(K) \exp[-0.050 8] (1082K \times 20)$
		756.82 18	100 6	669.43	9/2-	E2(+M1)		0.0428	Mult.: $\alpha(K)\exp=0.059 \ 8 \ (1982Ku20).$ $\alpha(K)=0.0350 \ 5; \ \alpha(L)=0.00597 \ 9; \ \alpha(M)=0.001402 \ 20$ $\alpha(N)=0.000361 \ 5; \ \alpha(O)=7.56\times10^{-5} \ 11; \ \alpha(P)=9.79\times10^{-6} \ 14$ Mult.: $\alpha(K)\exp=0.0078 \ 25 \ (1982Ku20).$
1461.21	19/2-	580.9 [‡] 2	100 [‡]	880.31	13/2+	E3		0.0696	B(E3)(W.u.)=0.000355 6 $\alpha(K)=0.0397$ 6; $\alpha(L)=0.0223$ 4; $\alpha(M)=0.00580$ 9 $\alpha(N)=0.001497$ 21; $\alpha(O)=0.000297$ 5; $\alpha(P)=3.16\times10^{-5}$ 5 Mult.: $\alpha(K)\exp=0.0420$ 21 (1985Ra18), K/(L+M)=1.55 16 (1974Ro36), $\alpha(K)\exp=0.037$ 6 and K/L=1.8 3 (1974Oh06).

					1	Adopted Lev	els, Gammas (cor	ntinued)	
						γ ⁽²⁰	¹⁵ Po) (continued)		
E _i (level)	\mathbf{J}_i^π	${\rm E_{\gamma}}^{\dagger}$	I_{γ}^{\dagger}	E_f	\mathbf{J}_{f}^{π}	Mult. [#]	$\delta^{@}$	α &	Comments
1477.38		447.0 [‡] 2	100 [‡]	1030.38	$(11/2)^{-}$				
1516.61	17/2+	636.3 [‡] 2	100 [‡]	880.31	13/2+	E2		0.0185	α (K)=0.01366 20; α (L)=0.00368 6; α (M)=0.000909 13 α (N)=0.000233 4; α (O)=4.71×10 ⁻⁵ 7;
1539.94	9/2+	659.63 6	100	880.31	13/2+	E2		0.01714	α (P)=5.40×10 ⁻⁶ 8 Mult.: α (K)exp=0.0130 7; A ₂ =0.35 2, A ₄ =-0.06 3 (1985Ra18). α (K)=0.01273 18; α (L)=0.00333 5;
									$\begin{array}{l} \alpha(M) = 0.000821 \ I2 \\ \alpha(N) = 0.000211 \ 3; \ \alpha(O) = 4.26 \times 10^{-5} \ 6; \\ \alpha(P) = 4.91 \times 10^{-6} \ 7 \end{array}$
1553.17	(11/2)+	152.38 7	4.6 6	1400.80	9/2+	[M1]		3.35	Mult.: α (K)exp=0.0137 <i>15</i> (1982Ku20). α (K)=2.72 <i>4</i> ; α (L)=0.480 <i>7</i> ; α (M)=0.1133 <i>16</i> α (N)=0.0292 <i>5</i> ; α (O)=0.00610 <i>9</i> ; α (P)=0.000789 <i>11</i>
		672.85 5	100 5	880.31	13/2+	M1+E2	1.79 +33-24	0.0264 24	α (K)=0.0207 20; α (L)=0.0043 3; α (M)=0.00105 7 α (N)=0.000269 17; α (O)=5.5×10 ⁻⁵ 4; α (P)=6.7×10 ⁻⁶ 5 Mult.: α (K)exp=0.0208 20 (1982Ku20);
1633.30	5/2+	232.54 20	18 5	1400.80	9/2+	[E2]		0.282	$\alpha(K) \exp[=0.018 \ 9 \ (19713619)].$ $\alpha(K) = 0.1192 \ 17; \ \alpha(L) = 0.1207 \ 18; \ \alpha(M) = 0.0317 \ 5$ $\alpha(N) = 0.00814 \ 12; \ \alpha(O) = 0.001573 \ 23;$ $\alpha(P) = 0.0001512 \ 22$
		760.5 5	17.0 24	872.10	7/2-	[E1]		0.00449	$\begin{array}{l} \alpha(\mathbf{X}) = 0.000171222\\ \alpha(\mathbf{K}) = 0.0001726; \ \alpha(\mathbf{L}) = 0.0005899;\\ \alpha(\mathbf{M}) = 0.000137120\\ \alpha(\mathbf{N}) = 3.51 \times 10^{-5}5; \ \alpha(\mathbf{O}) = 7.29 \times 10^{-6}11;\\ \alpha(\mathbf{P}) = 0.22 \times 10^{-7}13 \end{array}$
		1479.16 <i>10</i>	100 7	154.195	3/2-	E1+M2	0.29 9	0.0028 8	$\alpha(K) = 0.0022 \ 7; \ \alpha(L) = 0.00036 \ 12; \ \alpha(M) = 9.E - 5 \ 3$ $\alpha(N) = 2.2 \times 10^{-5} \ 8; \ \alpha(O) = 4.6 \times 10^{-6} \ 16; $ $\alpha(P) = 5.9 \times 10^{-7} \ 20; \ \alpha(IPF) = 0.000144 \ 7$ Multi- $\alpha(K) \approx 0.0025 \ (1082 K) = 20$
		1632.8 <i>3</i>	57 4	0.0	5/2-	[E1]		1.42×10 ⁻³	$\alpha(K)=0.000973 \ 14; \ \alpha(L)=0.0001475 \ 21; \alpha(M)=3.41\times10^{-5} \ 5 \alpha(N)=8.74\times10^{-6} \ 13; \ \alpha(O)=1.83\times10^{-6} \ 3; (D) 2.2(110^{-7} \ 4 \ (DD) \ 0.000050 \ 4 $
1651.35	7/2-	484.00 26	41 6	1167.81	7/2-	M1+E2	1.5 4	0.067 16	$\alpha(\mathbf{r})=2.50\times10^{-4}; \ \alpha(\mathbf{lPF})=0.0002594$ $\alpha(\mathbf{K})=0.051\ 13; \ \alpha(\mathbf{L})=0.0118\ 17; \ \alpha(\mathbf{M})=0.00294$ $\alpha(\mathbf{N})=0.00074\ 10; \ \alpha(\mathbf{O})=0.000150\ 21; $ $\alpha(\mathbf{P})=1.8\times10^{-5}\ 3$ Multiple (C) and (C)
		845.2 8	72 6	806.45	(5/2)-	M1(+E2)	≤0.4	0.0306 16	$\alpha(K)=0.0250 \ 14; \ \alpha(L)=0.00428 \ 20; \ \alpha(M)=0.00101$

					A	aoptea Leve	is, Gammas (cont	inued)	
						γ ⁽²⁰⁵	Po) (continued)		
E _i (level)	\mathbf{J}_i^{π}	E_{γ}^{\dagger}	I_{γ}^{\dagger}	E_f	${ m J}_f^\pi$	Mult. [#]	$\delta^{@}$	α &	Comments
1651.35	7/2-	932.0 10	36 5	719.28	9/2-	(M1)		0.0250	$\frac{5}{\alpha(N)=0.000259 \ 12; \ \alpha(O)=5.42\times10^{-5} \ 25; \ \alpha(P)=7.0\times10^{-6} \ 4}$ Mult.: $\alpha(K)$ exp=0.032 5 (1982Ku20). $\alpha(K)=0.0204 \ 3; \ \alpha(L)=0.00346 \ 5; \ \alpha(M)=0.000812 \ 12 \ \alpha(N)=0.000209 \ 3; \ \alpha(O)=4.38\times10^{-5} \ 7; \ \alpha(P)=5.67\times10^{-6} \ 9$
		1495.4 10	32 4	154.195	3/2-	[E2]		0.00351	with that for 936.03γ. α (K)=0.00280 4; α (L)=0.000494 7; α (M)=0.0001167
		1651.22 <i>15</i>	100 8	0.0	5/2-	(M1)		0.00594	$\alpha(N)=3.00\times10^{-5} 5; \ \alpha(O)=6.22\times10^{-6} 9; \\ \alpha(P)=7.83\times10^{-7} 11; \ \alpha(IPF)=6.10\times10^{-5} 9 \\ \alpha(K)=0.00471 7; \ \alpha(L)=0.000785 11; \ \alpha(M)=0.000184 3 \\ \alpha(N)=4.73\times10^{-5} 7; \ \alpha(O)=9.92\times10^{-6} 14; \\ \alpha(P)=1.289\times10^{-6} 18; \ \alpha(IPF)=0.000204 3 \\ Mult: \ \alpha(K)\exp\approx0.0021 (1982Ku20).$
1761.32	(7/2,9/2) ⁻	859.2 4	94 20	902.26	(7/2)-	M1+E2	2.1 9	0.014 5	$\alpha(K)=0.011 \ 4; \ \alpha(L)=0.0022 \ 6; \ \alpha(M)=0.00052 \ 14 \\ \alpha(N)=0.00013 \ 4; \ \alpha(O)=2.7\times10^{-5} \ 8; \ \alpha(P)=3.4\times10^{-6} \ 10 \\ Mult.: \ \alpha(K)exp=0.011 \ 4 \ (1982Ku20).$
1856.20	11/2+	1091.84 25 1761.34 25 317.0 <i>10</i>	65 7 100 6 20.2 24	669.43 0.0 1539.94	9/2 ⁻ 5/2 ⁻ 9/2 ⁺	M1(+E2)	≤0.6	0.39 5	$\alpha(K)=0.31 4; \ \alpha(L)=0.058 4; \ \alpha(M)=0.0139 8$ $\alpha(N)=0.00356 19; \ \alpha(O)=0.00074 5; \ \alpha(P)=9.4\times10^{-5} 8$
		455.14 <i>18</i>	53 <i>3</i>	1400.80	9/2+	M1+E2	0.38 +20-33	0.148 16	Mult.: From α (K)exp in ²⁰³ At ε decay. α (K)=0.120 <i>14</i> ; α (L)=0.0214 <i>17</i> ; α (M)=0.0051 <i>4</i> α (N)=0.00130 <i>10</i> ; α (O)=0.000272 <i>21</i> ; α (P)=3.5×10 ⁻⁵
		976.00 12	100 4	880.31	13/2+	M1+E2	0.94 +27-22	0.0154 <i>19</i>	Mult.: From α (K)exp in ²⁰⁵ At ε decay. α (K)=0.0125 <i>I6</i> ; α (L)=0.00221 <i>24</i> ; α (M)=0.00052 <i>6</i> α (N)=0.000134 <i>14</i> ; α (O)=2.8×10 ⁻⁵ <i>3</i> ; α (P)=3.6×10 ⁻⁶ <i>4</i>
1890.5	21/2+	373.9 [‡] 2	100 [‡]	1516.61	17/2+	E2		0.0673	Mult.: From α (K)exp in ²⁰⁵ At ε decay. α (K)=0.0410 6; α (L)=0.0196 3; α (M)=0.00503 8 α (N)=0.001292 19; α (O)=0.000254 4; α (P)=2.64×10 ⁻⁵ 4
1908.38 1912.00	(5/2 ⁺) 9/2 ⁺	1101.84 25 1754.7 <i>10</i> 744.26 <i>30</i>	100 <i>16</i> 68 <i>10</i> 14.5 <i>12</i>	806.45 154.195 1167.81	(5/2) ⁻ 3/2 ⁻ 7/2 ⁻	[E1]		0.00468	Mult.: α(K)exp=0.0330 17; A ₂ =0.29 2, A ₄ =-0.09 3 (1985Ra18). α(K)=0.00387 6; α(L)=0.000615 9; α(M)=0.0001430

 ∞

	Adopted Levels, Gammas (continued)													
							γ (²⁰⁵ Po) (contin	nued)						
E_i (level)	J_i^{π}	E_{γ}^{\dagger}	I_{γ}^{\dagger}	E _f	J_f^{π}	Mult. [#]	$\delta^{@}$	α &	Comments					
1912.00	9/2+	1031.69 8	100 9	880.31	13/2+	E2		0.00693	$ \frac{\alpha(N)=3.66\times10^{-5} \ 6; \ \alpha(O)=7.60\times10^{-6} \ 11; \ \alpha(P)=9.60\times10^{-7} \ 14}{\alpha(K)=0.00548 \ 8; \ \alpha(L)=0.001097 \ 16; \ \alpha(M)=0.000263 \ 4} \\ \alpha(N)=6.75\times10^{-5} \ 10; \ \alpha(O)=1.389\times10^{-5} \ 20; \ \alpha(P)=1.698\times10^{-6} \ 24 \\ \text{Mult:} \ \alpha(K)\exp=0.0066 \ 10 \ (1982Ku20); \ \alpha(K)\exp=0.008 \ 4 \\ (1971Jo19). $					
		1194.0 <i>10</i>	6.6 12	719.28	9/2-	[E1]		0.00200	α (K)=0.001654 24; α (L)=0.000254 4; α (M)=5.89×10 ⁻⁵ 9 α (N)=1.510×10 ⁻⁵ 22; α (O)=3.15×10 ⁻⁶ 5; α (P)=4.04×10 ⁻⁷ 6; α (IPF)=1.30×10 ⁻⁵ 4					
		1242.2 5	15.1 20	669.43	9/2-	[E1]		0.00188	$\alpha(K)=0.001544\ 22;\ \alpha(L)=0.000237\ 4;\ \alpha(M)=5.49\times10^{-5}\ 8$ $\alpha(N)=1.407\times10^{-5}\ 20;\ \alpha(O)=2.93\times10^{-6}\ 5;\ \alpha(P)=3.77\times10^{-7}\ 6;$ $\alpha(IPF)=2\ 84\times10^{-5}\ 5$					
1954.05	(11/2)-	1171.04 8	100 5	783.00	7/2-	E2		0.00544	$\alpha(\text{M} 1) = 2.03 \times 10^{-5} \text{ s}^{-2} (\text{M}) = 0.000197 3$ $\alpha(\text{N}) = 0.0435 6; \ \alpha(\text{L}) = 0.000827 12; \ \alpha(\text{M}) = 0.000197 3$ $\alpha(\text{N}) = 5.06 \times 10^{-5} 7; \ \alpha(\text{O}) = 1.045 \times 10^{-5} 15; \ \alpha(\text{P}) = 1.293 \times 10^{-6} 19;$ $\alpha(\text{IPF}) = 1.80 \times 10^{-6} 3$ Mult: $\alpha(\text{K}) \approx p = 0.0040 6 (1982 \text{ K} 120)$					
2149.35	(7/2)+	516.04 12	100 7	1633.30	5/2+	M1		0.1172	α(K)=0.0956 14; α(L)=0.01648 23; α(M)=0.00388 6 α(N)=0.000998 14; α(O)=0.000209 3; α(P)=2.70×10-5 4 Mult.: α(K)exp=0.0185 21 and α(L)exp≈0.006 (1982Ku20); α(K)exp=0.10 4 (1971Jo19).					
2187.88	(11/2)+	1342.3 <i>10</i> 792.5 <i>3</i>	10.4 9 49 5	806.45 1394.94	(5/2) ⁻ (9/2) ⁻	(E1)		0.00416	$\alpha(K)=0.00345 5; \alpha(L)=0.000544 8; \alpha(M)=0.0001265 18$ $\alpha(N)=3.24\times10^{-5} 5; \alpha(O)=6.73\times10^{-6} 10; \alpha(P)=8.52\times10^{-7} 12$ Mult : $\alpha(K)$ or $p=0.0207$ (1083K n/20)					
		1307.60 8	100 6	880.31	13/2+	M1(+E2)	≤0.7	0.0095 10	$\alpha(K)=0.0077 \ 9; \ \alpha(L)=0.00131 \ 13; \ \alpha(M)=0.00031 \ 3 \\ \alpha(N)=7.9\times10^{-5} \ 8; \ \alpha(O)=1.65\times10^{-5} \ 17; \ \alpha(P)=2.14\times10^{-6} \ 22; \\ \alpha(IPF)=2.83\times10^{-5} \ 24 \\ Mult.: \ \alpha(K)exp=0.0080 \ 8 \ (1982Ku20).$					
2224.7	25/2+	334.2 [‡] 2	100 [‡]	1890.5	21/2+	E2		0.0919	B(E2)(W.u.)=0.9 3 α (K)=0.0526 8; α (L)=0.0294 5; α (M)=0.00759 11 α (N)=0.00195 3; α (O)=0.000382 6; α (P)=3.88×10 ⁻⁵ 6					
2355.56	9/2+	802.0 8	19 <i>3</i>	1553.17	(11/2)+	(M1)		0.0368	Mult.: $\alpha(K) \exp=0.0460\ 23$; $A_2=0.31\ 2$, $A_4=-0.08\ 3$ (1985Ra18). $\alpha(K)=0.0301\ 5$; $\alpha(L)=0.00513\ 8$; $\alpha(M)=0.001204\ 18$ $\alpha(N)=0.000310\ 5$; $\alpha(O)=6.49\times10^{-5}\ 10$; $\alpha(P)=8.41\times10^{-6}\ 12$ Mult : $\alpha(K) \exp\approx 0.019$ (1982Ku20).					
		929.61 <i>14</i>	43 3	1426.05	9/2-	(E1)		0.00310	$\alpha(K)=0.00257 \ 4; \ \alpha(L)=0.000402 \ 6; \ \alpha(M)=9.33\times10^{-5} \ 13 \\ \alpha(N)=2.39\times10^{-5} \ 4; \ \alpha(O)=4.97\times10^{-6} \ 7; \ \alpha(P)=6.33\times10^{-7} \ 9 \\ Mult.: \ \alpha(K)\exp\approx0.0046 \ (1982Ku20).$					
		955.3 5	17 4	1400.80	9/2+	M1+E2	1.1 +31-7	0.015 7	$\alpha(K)=0.012 \ 6; \ \alpha(L)=0.0022 \ 8; \ \alpha(M)=0.00052 \ 19$ $\alpha(N)=0.00013 \ 5; \ \alpha(O)=2.8\times10^{-5} \ 10; \ \alpha(P)=3.5\times10^{-6} \ 14$ Mult.: $\alpha(K)\exp=0.012 \ 5 \ (1982Ku20).$					
		961.05 20	25.6 22	1394.94	(9/2)-	(E1)		0.00292	α (K)=0.00242 4; α (L)=0.000378 6; α (M)=8.77×10 ⁻⁵ 13					

From ENSDF

²⁰⁵₈₄Po₁₂₁-9

²⁰⁵₈₄Po₁₂₁-9

					Adopt	ed Levels, G	ammas (co	ntinued)	
						$\gamma(^{205}Po)$ (continued)		
E _i (level)	\mathbf{J}_i^{π}	E_{γ}^{\dagger}	I_{γ}^{\dagger}	\mathbf{E}_{f}	\mathbf{J}_f^{π}	Mult. [#]	$\delta^{@}$	α &	Comments
					<u> </u>				$\alpha(N)=2.25\times10^{-5} 4; \ \alpha(O)=4.67\times10^{-6} 7; \ \alpha(P)=5.96\times10^{-7} 9$
2355.56	9/2+	1187.6 5	11.1 6	1167.81	7/2-	[E1]		0.00202	Mult: $\alpha(\mathbf{K}) \exp \approx 0.0055 (1982 \mathbf{KU} 20)$. $\alpha(\mathbf{K}) = 0.001669 \ 24; \ \alpha(\mathbf{L}) = 0.000257 \ 4; \ \alpha(\mathbf{M}) = 5.95 \times 10^{-5} \ 9$
									$\alpha(N)=1.525\times10^{-5}\ 22;\ \alpha(O)=3.18\times10^{-6}\ 5;\\ \alpha(P)=4.08\times10^{-7}\ 6;\ \alpha(IPF)=1.129\times10^{-5}\ 21$
		1324.95 8	100 6	1030.38	(11/2)-	E1+M2	0.32 5	0.0038 6	$\alpha(K)=0.0030 5; \alpha(L)=0.00052 9;$ $\alpha(M)=0.000122 22$
									$\alpha(N)=3.1\times10^{-5} 6; \alpha(O)=6.5\times10^{-5} 12; \alpha(P)=8.4\times10^{-7} 15; \alpha(IPF)=5.71\times10^{-5} 17$
		1475.36 9	67 <i>3</i>	880.31	13/2+	E2		0.00359	Mult.: $\alpha(\mathbf{K}) \exp [0.0030 \ 4 \ (1982 \mathbf{K} 120)]$. $\alpha(\mathbf{K}) = 0.00287 \ 4; \ \alpha(\mathbf{L}) = 0.000508 \ 8;$ $\alpha(\mathbf{M}) = 0.0001200 \ 17$
									$\alpha(N)=3.08\times10^{-5} 5; \ \alpha(O)=6.39\times10^{-6} 9;$ $\alpha(P)=8.05\times10^{-7} 12; \ \alpha(IPF)=5.51\times10^{-5} 8$
		1637.0 5	14 <i>3</i>	719.28	9/2-	[E1]		1.42×10^{-3}	Mult.: α (K)exp=0.0030 5 (1982Ku20). α (K)=0.000969 14; α (L)=0.0001468 21;
									$\alpha(M) = 3.40 \times 10^{-5} \text{ s}$ $\alpha(N) = 8.70 \times 10^{-6} 13; \ \alpha(O) = 1.82 \times 10^{-6} 3;$ $\alpha(P) = 2.35 \times 10^{-7} 4; \ \alpha(PE) = 0.000262 4$
		1685.5 <i>10</i>	18.6 <i>15</i>	669.43	9/2-	[E1]		1.40×10^{-3}	$\alpha(\Gamma) = 2.53 \times 10^{-4}$, $\alpha(\Pi \Gamma) = 0.0002024$ $\alpha(K) = 0.000923$ 13; $\alpha(L) = 0.0001397$ 20; $\alpha(M) = 3.23 \times 10^{-5}$ 5
									$\alpha(N) = 8.28 \times 10^{-6} \ I2; \ \alpha(O) = 1.731 \times 10^{-6} \ 25;$ $\alpha(R) = 2.24 \times 10^{-7} \ 4; \ \alpha(RE) = 0.000207 \ 5$
2483.49	(7/2,9/2,11/2)+	127.93 4	29.2 22	2355.56	9/2+	M1(+E2)	≤0.5	5.2 3	$\alpha(\mathbf{F}) = 2.24 \times 10^{-4} 4; \ \alpha(\mathbf{FF}) = 0.0002975$ $\alpha(\mathbf{K}) = 4.15; \ \alpha(\mathbf{L}) = 0.879; \ \alpha(\mathbf{M}) = 0.21125$ $\alpha(\mathbf{N}) = 0.0547; \ \alpha(\mathbf{O}) = 0.011212; \ \alpha(\mathbf{P}) = 0.001367$
									Mult.: α (K)exp=4.3 6 and (α (L1)exp+ α (L2)exp)=0.56 25 (1982Ku20).
		1082.72 22	100 7	1400.80	9/2+	(M1)		0.01695	$\alpha(K)=0.01388\ 20;\ \alpha(L)=0.00234\ 4;\ \alpha(M)=0.000549\ 8$
									α (N)=0.0001413 20; α (O)=2.96×10 ⁻⁵ 5; α (P)=3.84×10 ⁻⁶ 6
									Mult.: From $\alpha(K)$ exp in ²⁰⁵ At ε decay.
2712.3	27/2+	487.6 [‡] 2	100 [‡]	2224.7	25/2+	M1		0.1362	α (K)=0.1111 <i>16</i> ; α (L)=0.0192 <i>3</i> ; α (M)=0.00451 7
									α (N)=0.001162 <i>17</i> ; α (O)=0.000243 <i>4</i> ; α (P)=3.15×10 ⁻⁵ <i>5</i>
									Mult.: α(K)exp=0.120 6; A ₂ =-0.38 2, A ₄ =-0.05 2 (1985Ra18).

						Adopted I	evels, Gammas (o	continued)	
						<u> </u>	(²⁰⁵ Po) (continued	<u>l)</u>	
E _i (level)	\mathbf{J}_i^{π}	E_{γ}^{\dagger}	I_{γ}^{\dagger}	E_f	J_f^{π}	Mult. [#]	$\delta^{@}$	α &	Comments
2799.20	(9/2)+	649.5 7	89 12	2149.35	$(7/2)^+$	M1+E2	0.84 +31-25	0.045 8	$\alpha(K)=0.036 7; \alpha(L)=0.0067 9; \alpha(M)=0.00159 20$ $\alpha(N)=0.00041 5; \alpha(O)=8.5\times10^{-5} 11;$ $\alpha(P)=1.07\times10^{-5} 15$ With $\alpha(K)=0.026 6$ (1082/kr20)
		890.0 <i>10</i> 1246.2 <i>5</i>	41 7 96 7	1908.38 1553.17	(5/2 ⁺) (11/2) ⁺	M1		0.01182	Mult.: $\alpha(K)\exp=0.056\ 6\ (1982Ku20)$. $\alpha(K)\exp\approx0.026\ (1982Ku20)$. $\alpha(K)=0.00967\ 14;\ \alpha(L)=0.001625\ 23;$ $\alpha(M)=0.000381\ 6$ $\alpha(N)=9.81\times10^{-5}\ 14;\ \alpha(O)=2.05\times10^{-5}\ 3;$ $\alpha(P)=2.67\times10^{-6}\ 4;\ \alpha(IPF)=1.559\times10^{-5}\ 25$ Mult.: $\alpha(K)\exp=0.0113\ 19\ (1982Ku20)$.
		1374.0 <i>10</i> 1398.3 <i>3</i>	37 <i>4</i> 100 7	1426.05 1400.80	9/2 ⁻ 9/2 ⁺	M1(+E2)	≤0.3	0.00864 24	$\alpha(K)=0.00703 \ 20; \ \alpha(L)=0.00118 \ 4; \\ \alpha(M)=0.000277 \ 8 \\ \alpha(N)=7.11\times10^{-5} \ 19; \ \alpha(O)=1.49\times10^{-5} \ 4; \\ \alpha(P)=1.93\times10^{-6} \ 6; \ \alpha(IPF)=6.30\times10^{-5} \ 16 \\ Mult_{1} = \alpha(K) avp=0 \ 0001 \ 10 \ (1022Kv20) $
		1768.79 20	89 <i>5</i>	1030.38	(11/2)-	(E1)		1.38×10 ⁻³	Mult.: α (K)exp=0.0091 10 (1962K020). α (K)=0.000852 12; α (L)=0.0001287 18; α (M)=2.98×10 ⁻⁵ 5 α (N)=7.63×10 ⁻⁶ 11; α (O)=1.595×10 ⁻⁶ 23; α (P)=2.06×10 ⁻⁷ 3; α (IPF)=0.000357 5 Mult.: α (K)exp≤0.0018 (1982Ku20).
		1928.5 <i>10</i> 2016.5 <i>10</i>	33 <i>3</i> 27 <i>5</i>	872.10 783.00	7/2 ⁻ 7/2 ⁻				206
2826.9	27/2+	$114.6\ 2$ $602.2^{\ddagger}\ 2$	100‡	2712.3 2224.7	27/2 ⁺ 25/2 ⁺	M1		0.0779	E _γ : From ²⁰⁶ Pb(α ,5nγ). α (K)=0.0636 9; α (L)=0.01092 16; α (M)=0.00257 4 α (N)=0.000661 10; α (O)=0.0001383 20; α (P)=1.79×10 ⁻⁵ 3 Mult.: α (K)exp=0.085 9; A ₂ =-0.41 5, A ₄ =-0.10 α (1085Pa18)
2930.82	(9/2)+	1377.5 10	27 3	1553.17	(11/2)+	M1(+E2)	≤0.4	0.0088 4	$\alpha(K) = 0.0072 \ 3; \ \alpha(L) = 0.00121 \ 5; \alpha(M) = 0.000283 \ 12 \alpha(N) = 7.3 \times 10^{-5} \ 3; \ \alpha(O) = 1.53 \times 10^{-5} \ 7; \alpha(P) = 1.98 \times 10^{-6} \ 9; \ \alpha(IPF) = 5.36 \times 10^{-5} \ 20 $ Mult : $\alpha(K) \exp = 0.011 \ 2 \ (1982Ku20)$
		1531.3 8 2028.5 10 2050.46 20 2147.0 10	27.0 <i>21</i> 10.5 <i>17</i> 100 <i>5</i> 14.7 <i>25</i>	1400.80 902.26 880.31 783.00	9/2+ (7/2) ⁻ 13/2+ 7/2 ⁻				man. a(h)exp=0.011 2 (1702hu20).
2980.7	29/2+	756.0 [‡] 2	100 [‡]	2224.7	25/2+	E2		0.01286	$\alpha(K)=0.00979$ 14; $\alpha(L)=0.00232$ 4;

²⁰⁵₈₄Po₁₂₁-11

					Adopt	ed Levels, G	ammas (conti	nued)	
						γ ⁽²⁰⁵ Po) (continued)		
E _i (level)	\mathbf{J}_i^{π}	E_{γ}^{\dagger}	I_{γ}^{\dagger}	\mathbf{E}_{f}	J_f^π	Mult. [#]	$\delta^{@}$	α &	Comments
									α (M)=0.000567 8 α (N)=0.0001456 21; α (O)=2.96×10 ⁻⁵ 5; α (P)=3.48×10 ⁻⁶ 5 Mult.: α (K)exp=0.0090 9; A ₂ =0.34 4, A ₄ =-0.02 5 (1985Ra18).
3033.0	(7/2,9/2)	2160.8 <i>6</i> 2363.3 <i>7</i>	100 <i>11</i> 59 <i>11</i>	872.10 669.43	7/2 ⁻ 9/2 ⁻				(======================================
3046.72	7/2+	3033.5 <i>10</i> 691.4 <i>6</i>	62 8 98 12	0.0 2355.56	5/2 9/2 ⁺	M1(+E2)	≤0.5	0.050 4	α (K)=0.041 4; α (L)=0.0071 5; α (M)=0.00167 11 α (N)=0.00043 3; α (O)=9.0×10 ⁻⁵ 6; α (P)=1.16×10 ⁻⁵ 9
		1413.43 20	100 8	1633.30	5/2+	M1(+E2)	≤0.4	0.0083 4	Mult.: α (K)exp=0.046 8 (1982Ku20). α (K)=0.0067 3; α (L)=0.00113 5; α (M)=0.000265 11 α (N)=6.8×10 ⁻⁵ 3; α (O)=1.43×10 ⁻⁵ 6; α (P)=1.85×10 ⁻⁶ 8; α (IPF)=6.87×10 ⁻⁵ 25 Mult.: α (K)exp=0.0082 11 (1982Ku20).
3052.2	(7/2)+	3045.5 <i>10</i> 568.5 <i>7</i>	≈14 100 <i>17</i>	0.0 2483.49	5/2 ⁻ (7/2,9/2,11/2) ⁺	M1+E2	1.3 +6-4	0.049 13	α (K)=0.038 <i>11</i> ; α (L)=0.0079 <i>14</i> ; α (M)=0.0019 <i>4</i> α (N)=0.00049 <i>8</i> ; α (O)=0.000101 <i>18</i> ; α (P)=1.24×10 ⁻⁵ 25
		2180.7 <i>6</i> 2268.0 <i>10</i> 3052.0 <i>10</i>	20 <i>3</i> ≈22 ≈11	872.10 783.00 0.0	7/2 ⁻ 7/2 ⁻ 5/2 ⁻				Mult.: From $\alpha(\mathbf{K})$ exp in ²⁰³ At ε decay.
3087.2	29/2-	106.5 [‡] 2	30 [‡] 3	2980.7	29/2+	[E1]		0.387	α (K)=0.305 5; α (L)=0.0627 10; α (M)=0.01489 23 α (N)=0.00377 6; α (O)=0.000749 12; α (P)=8.32×10 ⁻⁵ 13
		260.3 [‡] 2	75 [‡] 8	2826.9	27/2+	E1		0.0436	B(E1)(W.u.)=1.89×10 ⁻⁷ 25 α (K)=0.0354 5; α (L)=0.00625 9; α (M)=0.001471 21 α (N)=0.000375 6; α (O)=7.64×10 ⁻⁵ 11; α (P)=9.15×10 ⁻⁶ 13 B(E1)(W.u.)=3.2×10 ⁻⁸ 4 E _γ : The absence of prompt component in the 260γ(t) spectrum (1985Ra18) indicates that 260γ directly depopulates the isomer. Mult.: α (K)exp=0.0160 16; A ₂ =-0.14 1, A ₄ =-0.1 2
		374.8 [‡] 2	100 [‡] 9	2712.3	27/2+	[E1]		0.0190	(1985Ra18). $\alpha(K)=0.01555\ 22;\ \alpha(L)=0.00263\ 4;\ \alpha(M)=0.000617\ 9$ $\alpha(N)=0.0001576\ 23;\ \alpha(O)=3.24\times10^{-5}\ 5;$ $\alpha(P)=3.96\times10^{-6}\ 6$
3160.7	29/2+	448.4 [‡] 2	100 [‡]	2712.3	27/2+	M1(+E2)		0.1703	B(E1)(W.u.)= 1.45×10^{-8} 16 α (K)= 0.1389 20; α (L)= 0.0240 4; α (M)= 0.00566 8

From ENSDF

I	Adopted Levels, Gammas (continued)													
							γ ⁽²⁰	⁾⁵ Po) (co	ontinued)					
	E _i (level)	\mathbf{J}_i^{π}	E_{γ}^{\dagger}	I_{γ}^{\dagger}	\mathbf{E}_{f}	\mathbf{J}_f^{π}	Mult. [#]	$\delta^{\mathbf{@}}$	α &	Comments				
	3170.9	(7/2)+	1262.5 10	34 5	1908.38	(5/2+)	(M1)	_	0.01143 17	$\begin{aligned} \alpha(N) &= 0.001456\ 21;\ \alpha(O) &= 0.000305\ 5;\ \alpha(P) &= 3.94 \times 10^{-5}\ 6\\ \text{Mult.:}\ \alpha(K) &= x_0 = 0.140\ 14;\ A_2 &= -0.19\ 7,\ A_4 &= -0.06\ 11\\ &(1985\text{Ra18}).\\ \alpha(K) &= 0.00936\ 14;\ \alpha(L) &= 0.001571\ 23;\ \alpha(M) &= 0.000369\ 6\\ \alpha(N) &= 9.48 \times 10^{-5}\ 14;\ \alpha(O) &= 1.99 \times 10^{-5}\ 3;\ \alpha(P) &= 2.58 \times 10^{-6}\ 4;\\ \alpha(IPF) &= 1.92 \times 10^{-5}\ 4\\ \text{Mult.:}\ \alpha(K) &= x_0 = 0.0075\ (1082\text{Km}^{2}20) \end{aligned}$				
			1410.0 <i>10</i> 1537.2 <i>4</i>	23 <i>4</i> 100 <i>5</i>	1761.32 1633.30	(7/2,9/2) ⁻ 5/2 ⁺	M1(+E2)	≤0.5	0.0067 4	$\alpha(K)=0.0054 \ 3; \ \alpha(L)=0.00090 \ 5; \ \alpha(M)=0.000210 \ 12 \\ \alpha(N)=5.4\times10^{-5} \ 3; \ \alpha(O)=1.13\times10^{-5} \ 7; \ \alpha(P)=1.47\times10^{-6} \ 9; \\ \alpha(IPF)=0.000128 \ 7 \\ Mult: \ \alpha(K)=0.000128 \ 7 \\ Mult: \ \alpha(K)$				
			1775.5 <i>10</i> 2142.0 <i>10</i> 3172.0 <i>15</i>	28 <i>3</i> 19 <i>4</i> ≈12	1394.94 1030.38 0.0	(9/2) ⁻ (11/2) ⁻ 5/2 ⁻				$u(x) cxp = 0.0001 \ 0 \ (1902 \ Ku20).$				
	3206.4	31/2+	225.7 [‡] 2	100 [‡]	2980.7	29/2+	M1		1.109	α (K)=0.901 <i>13</i> ; α (L)=0.1584 <i>23</i> ; α (M)=0.0373 <i>6</i> α (N)=0.00961 <i>14</i> ; α (O)=0.00201 <i>3</i> ; α (P)=0.000260 <i>4</i> Mult.: α (K)exp=1.02 <i>10</i> (1985Ra18).				
	3298.5	29/2+	471.6 [‡] 2	96 [‡] 11	2826.9	27/2+	M1(+E2)		0.1489	$\alpha(K)=0.1214$ 17; $\alpha(L)=0.0210$ 3; $\alpha(M)=0.00494$ 7 $\alpha(N)=0.001271$ 18; $\alpha(O)=0.000266$ 4; $\alpha(P)=3.44\times10^{-5}$ 5 Mult.: $\alpha(K)\exp=0.030$ 3 (1985Ra18).				
			1073.8 [‡] 2	100 [‡] 11	2224.7	25/2+	E2		0.00641	$\alpha(K)=0.00510 \ 8; \ \alpha(L)=0.001002 \ 14; \ \alpha(M)=0.000240 \ 4$ $\alpha(N)=6.16\times10^{-5} \ 9; \ \alpha(O)=1.268\times10^{-5} \ 18; \ \alpha(P)=1.556\times10^{-6} \ 22$ Mult.: $\alpha(K)\exp=0.0080 \ 8 \ (1985Ra18).$				
	3368.1	31/2+	387.4 [‡] 2	100 [‡]	2980.7	29/2+	M1		0.252	$\alpha(K)=0.205 \ 3; \ \alpha(L)=0.0357 \ 5; \ \alpha(M)=0.00841 \ 12 \ \alpha(N)=0.00216 \ 3; \ \alpha(O)=0.000453 \ 7; \ \alpha(P)=5.86\times10^{-5} \ 9 \ Mult: \ \alpha(K)exp=0.27 \ 3; \ A_2=-0.27 \ 11, \ A_4=0.02 \ 20 \ (1985Ra18)$				
	3508.9	31/2-	210.4 [‡] 2	100 [‡]	3298.5	29/2+	E1		0.0725	$\alpha(K)=0.0586 \ 9; \ \alpha(L)=0.01061 \ 15; \ \alpha(M)=0.00250 \ 4$ $\alpha(N)=0.000638 \ 9; \ \alpha(O)=0.0001293 \ 19; \ \alpha(P)=1.525\times10^{-5} \ 22$ Mult : $\alpha(K)$ exp=0.060 $6: A_2=-0.287 \ A_4=0.121 \ I \ (1985Ra18)$				
	3868.8	33/2-	781.6 [‡] 2	100‡	3087.2	29/2-	E2		0.01201	$\alpha(K)=0.00919 \ 13; \ \alpha(L)=0.00213 \ 3; \ \alpha(M)=0.000519 \ 8 \\ \alpha(N)=0.0001334 \ 19; \ \alpha(O)=2.72\times10^{-5} \ 4; \ \alpha(P)=3.21\times10^{-6} \ 5 \\ Mult.: \ \alpha(K)exp=0.0120 \ 12; \ A_2=0.36 \ 3, \ A_4=-0.08 \ 5 \\ (1985Ra18).$				
	4093.3	33/2-	584.4 [‡] 2	100 [‡]	3508.9	31/2-	M1		0.0843	$\alpha(K)=0.0688 \ 10; \ \alpha(L)=0.01182 \ 17; \ \alpha(M)=0.00278 \ 4 \\ \alpha(N)=0.000716 \ 10; \ \alpha(O)=0.0001498 \ 21; \ \alpha(P)=1.94\times10^{-5} \ 3 \\ Mult.: \ \alpha(K)exp=0.050 \ 5; \ A_2=-0.12 \ 11, \ A_4=0.4 \ 2 \ (1985Ra18).$				
	4136.8	$(35/2^+)$	268.0 [‡] 2	100‡	3868.8	33/2-	(E1)		0.0407	$\alpha(K)=0.0331$ 5; $\alpha(L)=0.00582$ 9; $\alpha(M)=0.001369$ 20				

Adopted Levels, Gammas (continued)

$\gamma(^{205}\text{Po})$ (continued)

E _i (level)	\mathbf{J}_i^{π}	E_{γ}^{\dagger}	I_{γ}^{\dagger}	$E_f \qquad J_f^{\pi}$	Mult. [#]	α &	Comments
							α (N)=0.000349 5; α (O)=7.12×10 ⁻⁵ 10; α (P)=8.54×10 ⁻⁶ 12 Mult.: α (K)exp<0.03 (1985Ra18). Note, that reported A ₂ =0.16 5 and A ₄ =-0.05 7 values (1985Ra18) are inconsistent with these expected for J to J-1 E1 transition.
4453.9	(37/2 ⁻)	360.6 [‡] 2	100 [‡]	4093.3 33/2-	E2	0.0743	α (K)=0.0444 7; α (L)=0.0223 4; α (M)=0.00573 9 α (N)=0.001472 21; α (O)=0.000289 4; α (P)=2.99×10 ⁻⁵ 5 Mult.: α (K)exp=0.057 6 (1985Ra18).
4628.8	(37/2 ⁺)	492.0 [‡] 2	100 [‡]	4136.8 (35/2+)	M1	0.1330	α (K)=0.1085 <i>16</i> ; α (L)=0.0187 <i>3</i> ; α (M)=0.00441 <i>7</i> α (N)=0.001134 <i>16</i> ; α (O)=0.000237 <i>4</i> ; α (P)=3.07×10 ⁻⁵ <i>5</i> Mult.: α (K)exp=0.11 <i>1</i> (1985Ra18).

[†] From ²⁰⁵At ε decay, unless otherwise stated. [‡] From ²⁰⁶Pb(α ,5n γ).

[#] From the conversion electron and angular distribution data in ²⁰⁵At ε decay, ²⁰⁶Pb(α ,5n γ) and ²⁰⁹Bi(p,5n γ) and the observed multiple decay branches. Specific comments are given with most levels.

^(a) Using the briccmixing program and the $\alpha(K)$ exp, $\alpha(L)$ exp, $\alpha(M)$ exp, $\alpha(L12)$ exp data in ²⁰⁵At ε decay (1982Ku20,1971Jo19).

& Additional information 1.

^{*a*} Placement of transition in the level scheme is uncertain.

Level Scheme

Intensities: Relative photon branching from each level

Level Scheme (continued)

Intensities: Relative photon branching from each level

²⁰⁵₈₄Po₁₂₁

Legend

²⁰⁵₈₄Po₁₂₁-17

From ENSDF

Adopted Levels, Gammas

Legend

Level Scheme (continued)

²⁰⁵₈₄Po₁₂₁