Adopted Levels, Gammas

		т	A	1	History	
		Type	Autr	Author Citation		
		Full Evaluation	F. G. K	ondev	NDS 166, 1 (2020	0) 20-Apr-2020
Q(β ⁻)=1533 4	; S(n)=5669 4; S	$S(p) = 8.93 \times 10^3 SY$	$q; Q(\alpha) = -9$	9.7×10^2	5 2017Wa10	
				-	²⁰⁵ Hg Levels	
			С	ross Re	ference (XREF) Fla	gs
		А	²⁰⁵ Hg IT	decay	$(1.09 \text{ ms}) = \frac{2}{2}$	204 Hg(t,d γ)
		В	203 Au β 204 Hg(d)	decay	F -	10 Hg(208 Pb X $_{20}$)
		D	²⁰⁴ Hg(d,	pγ)	C C	
+	+					
E(level)	J ^{<i>n</i>} +	T _{1/2}	XREF			Comments
0.0	1/2-	5.14 min 9 A	BCDEFG	$\%\beta^{-}=1$	100 60089-10	
				J^{π} : From	om 1975Ro10 using	the optical pumping technique; π from L(d,p)=1.
				$T_{1/2}$: V	Weighted average of	f 5.1 min <i>I</i> (1953Bu88) and 5.5 min <i>3</i>
				(196)	(0Po01). Other: 31.2 (0Ku02)	2 min 25 for a fully-ionized 203 Hg ⁶⁰ atom
				μ : From	m 1975Ro10,2014S	tZZ using the Nuclear Magnetic Resonance
				tech	nique.	
379 46 10	5/2-	A	BCDFFG	$I^{\pi} \cdot L(c)$	$\nu(p_{1/2})$. $(1 n) = (1 3) \cdot 379 42 \gamma$	E2 to $1/2^{-1}$
077110 10	0,12			configu	uration: $\nu(f_{5/2}^{-1})$.	
467.51 11	3/2-	A	BCDEF	J^{π} : L(c	$(1,p)=3, (1); 467.58\gamma$	$^{\prime}$ M1 to $1/2^{-}$.
1280.7 3	1/23/2.5/2-		В	J^{π} : 813	3.1γ to $3/2^{-1}$, 901.61	γ to 5/2 ⁻ and 1280.5 γ to 1/2 ⁻ levels.
1325.2 4	1/2-,3/2,5/2-		BF	$J^{\pi}: 858$	8γ to $3/2^{-}$, 946.0 γ t	to $5/2^-$ and 1346.12γ to $1/2^-$ levels.
1346.12 13	7/2-	A	BCDEFG	XREF: I^{π} 501	: C(1352). 1 282(E1) from 9/2	$^{+}$ 210 32 F3 from 13/2 ⁺ 966 622 (M1) to 5/2 ⁻
				and	878.83γ to $3/2^-$.	, 210.57 L5 11011 15/2 , 900.027 (M11) to 5/2
1205 00 01	0/2-			configu	uration: $\nu(f_{5/2}^{-1}) \otimes \pi(s_1)$	$\frac{1}{\sqrt{2}} \frac{1}{\sqrt{2}} \frac{1}{\sqrt{2}$
1395.08 21	9/2	A	B DEFG	J [*] : 16	1.4 γ M2 from 13/2 tration: $\gamma(f^{-1}) \otimes \pi(s^{-1})$; 1015.63 γ to 5/2 .
1447.5 <i>4</i>	1/2-,3/2,5/2	:	В	J^{π} : 106	58.0 γ to 5/2 ⁻ ; direc	t feeding in ²⁰⁵ Au β^- decay (J ^{π} =(3/2 ⁺)).
1556.4 <i>3</i>	$13/2^{+}$	1.09 ms 4 A	DEFG	%IT=1	100	
				neig	hboring nuclei.	10.5γ E5 to $1/2$; systematics of similar isomers in
				T _{1/2} : V	Weighted average of	f 1.04 ms 10 in ²⁰⁴ Hg(d,py) (1986Ze03) and 1.10
				ms 4	4 in 204 Hg(t,d γ) (19	85Ma48).
1818.2.5			F	configu	uration: $\nu(1_{13/2})$.	
1847.3 3	9/2+		CDEF	XREF:	: C(1855).	
				J^{π} : L(c	$(1,p)=4$; 290.8 γ to 1.	$3/2^+$ and 501.2 γ (E1) to $7/2^-$.
2011.4 3	$(11/2^+)$		DF	$J^{\pi}: 16^{2}$	4.1 γ (M1) to 9/2 ⁺ le	evel; 455.1γ to $13/2^+$.
	/			configu	uration: Suggested i	n 1994Po21 (based on a shell-model predictions)
2205.0.6			F	as th	the $\nu(i_{11/2}^{+1})$ single-particular	rticle state.
2205.9 0 2337 [#]			C r			
2350.7 5			F	_		
2366.4 6	$(17/2^+)$		G	$J^{\pi}: 810$	0.0γ to $13/2^+$.	

Continued on next page (footnotes at end of table)

²⁰⁵Hg Levels (continued)

$E(level)^{\dagger}$	$J^{\pi \ddagger}$	T _{1/2}	XREF	Comments	
				configuration: $v(i_{1,2/2}^{-1}) \otimes 2^+$.	
2368.9 5			F	C (13)2'	
2540 [#]			С		
2566 [#]	+		С	J^{π} : L(d,p)=(4).	
2570 5 (-	configuration: $\nu(g_{9/2}^{+1})$.	
2579.5 0 2501 <mark>#</mark>	+		r C		
2591"			C	J [*] : $L(0,p)=4$.	
2594.0 8	$(19/2^+)$		G	J^{π} : 227.6 γ to (17/2 ⁺).	
				configuration: $\nu(f_{5/2}^{-1}) \otimes \pi(d_{3/2}^{-1}, h_{11/2}^{-1})_{7^-}$.	
2668 <mark>#</mark>			С	5/2 5/2 11/2	
2920 [#]	+		С	J^{π} : L(d,p)=2, (4).	
2956 [#]	+		С	J^{π} : L(d,p)=2, (4).	
3026 [#]			С		
3070 [#]			С		
3095 [#]			С		
3163 [#]			С		
3187 [#]			С		
3316.6 8	$(23/2^{-})$	5.89 µs 18	G	J^{n} : 722.6 γ to (19/2 ⁺), 950.2 γ to (17/2 ⁺); proposed configuration.	
				$1_{1/2}$: From (810.07+950.27)(1) In 'Be(-**PD, X7) (2011St21).	
3332#	+		C	I_{12}^{π} I (d p)=(2)	
5552			C	configuration: $v(d_{-1}^{-1})$.	
3366 <mark>#</mark>			с	8	
3488 [#]	+		C	J^{π} : L(d,p)=(2).	
				configuration: $\nu(d_{5/2}^{-1})$.	
3593 [#]	+		С	J^{π} : L(d,p)=2.	
				configuration: $v(d_{5/2}^{-1})$.	
3693#			С		
3720 <mark>#</mark>			С		
3838 <mark>#</mark>	$1/2^{+}$		C	J^{π} : L(d,p)=0.	
201 0 #				configuration: $v(s_{1/2}^{-1})$.	
3912"			C		
3942" 2020#			C		
3989" 4020 #			C		
4022" 4027 #	1/2+		C	$\overline{\mathbf{M}}$, \mathbf{I} (J -) ()	
4037**	1/2		C	J^{*} : L($(l,p)=0$.	
4101 [#]			C	configuration. $v(s_{1/2})$.	
4140 [#]	+		c	$I^{\pi}: L(d, p) = 2$ (4)	
4170 [#]	+		c	$I^{\pi}: L(d,p)=2, (1).$	
4198 [#]	+		c	J^{π} : L(d,p)=2, (4).	
4238 [#]			c	$\cdot - (-)_{\Gamma} - (-)_{\Gamma}$	
4313 [#]			C		
4375 [#]	+		C	J^{π} : L(d,p)=2, (4).	
4436 [#]	+		С	J^{π} : L(d,p)=2, 4.	
4453 [#]	+		С	J^{π} : L(d,p)=2, (4).	

²⁰⁵Hg Levels (continued)

E(level) [†]	$J^{\pi \ddagger}$	XREF	Comments
4475 [#]	+	С	J^{π} : L(d,p)=4, 2.
4507 [#]		С	
4551 [#]		С	
4627 [#]	+	С	J^{π} : L(d,p)=4, 2.
4660 [#]		С	
4725 [#]		С	
4779 [#]		С	
4853? [#]		С	
4915 [#]		С	
4978 [#]		С	
4994 [#]		С	

 † From a least-squares fit to Ey, unless otherwise stated.

[‡] From the deduced transition multipolarities, L values in transfer reactions and γ -ray de-excitation pattern. Specific arguments are given with most levels. # From 204 Hg(d,p). ΔE =0.4% for well-resolved peaks.

$\gamma(^{205}\text{Hg})$

E _i (level)	\mathbf{J}_i^π	E_{γ}^{\dagger}	I_{γ}^{\dagger}	E_f	\mathbf{J}_f^{π}	Mult.	α ^{<i>a</i>}	Comments
379.46	5/2-	379.42 [‡] 11	100‡	0.0	1/2-	E2	0.0546	α(K)=0.0362 5; α(L)=0.01395 20; α(M)=0.00349 5 α(N)=0.000870 13; α(O)=0.0001522 22; α(P)=4.74×10-6 7 Mult.: α(K)exp≤0.05 in ²⁰⁵ Au β ⁻ decay (1994We02); A ₂ =+0.18 <i>I</i> in ²⁰⁴ Hg(t.dγ) (1985Ma48).
467.51	3/2-	467.58 [‡] 12	100‡	0.0	1/2-	M1	0.1095	$\alpha(K)=0.0901 \ 13; \ \alpha(L)=0.01486 \ 21; \\ \alpha(M)=0.00345 \ 5 \\ \alpha(N)=0.000865 \ 13; \ \alpha(O)=0.0001638 \ 23; \\ \alpha(P)=1.261\times10^{-5} \ 18 \\ Mult.: \ \alpha(K)exp=0.08 \ 2 \ in \ ^{205}Au \ \beta^{-} \\ decay \ (1994We02); \ A_2=-0.11 \ 4 \ in \ ^{204}Hg(t,d\gamma) \ (1985Ma48).$
1280.7	1/2 ⁻ ,3/2,5/2 ⁻	813.1 [#] 5 901.6 [#] 5 1280.5 [#] 5	$100^{\#} 6$ $29^{\#} 6$ $62^{\#} 3$	467.51 379.46	3/2 ⁻ 5/2 ⁻ 1/2 ⁻			
1325.2	1/2 ⁻ ,3/2,5/2 ⁻	858 ^{#b} 1 946.0 [#] 5 1325.0 [#] 5	$\leq 7^{\#}$ 100 [#] 5 31.8 [#] 23	467.51 379.46 0.0	3/2 ⁻ 5/2 ⁻ 1/2 ⁻			
1346.12	7/2-	878.83 [‡] 21	6.4 [‡] 11	467.51	3/2-	[E2]	0.00780	α (K)=0.00620 9; α (L)=0.001226 18; α (M)=0.000291 4 α (N)=7.27×10 ⁻⁵ 11; α (O)=1.340×10 ⁻⁵ 19; α (P)=8.17×10 ⁻⁷ 12
		966.62 [‡] 10	100.0 [‡] 20	379.46	5/2-	(M1)	0.01663	$\alpha(K)=0.01374 \ 20; \ \alpha(L)=0.00222 \ 4;$

γ (²⁰⁵Hg) (continued)

E _i (level)	\mathbf{J}_i^π	E_{γ}^{\dagger}	I_{γ}^{\dagger}	E_f	\mathbf{J}_f^{π}	Mult.	α^{a}	Comments
1305.08	0/2-	(40.0 + 3)	1 80 11	1346 12	7/2-	[M1]	11.5.3	$\alpha(M)=0.000513 \ 8$ $\alpha(N)=0.0001286 \ 18;$ $\alpha(O)=2.44\times10^{-5} \ 4;$ $\alpha(P)=1.90\times10^{-6} \ 3$ Mult.: A ₂ =-0.22 \ 4 in ²⁰⁴ Hg(t,d\gamma) (1985Ma48). $\alpha(L)=8.82 \ 2^{11}; \ \alpha(M)=2.06 \ 5$
1393.08	9/2	(49.01 3)	1.891 11	1340.12	1/2	[MII]	11.5 5	$\begin{array}{l} \alpha(L) = 8.82 \ 21; \ \alpha(M) = 2.06 \ 5 \\ \alpha(N) = 0.516 \ 12; \ \alpha(O) = 0.0975 \ 23; \\ \alpha(P) = 0.00746 \ 18 \end{array}$
		1015.63 [‡] 25	100.0 [‡] <i>11</i>	379.46	5/2-	[E2]	0.00586	$\begin{aligned} &\alpha(\mathbf{K}) = 0.00471 \ 7; \ \alpha(\mathbf{L}) = 0.000876 \ 13; \\ &\alpha(\mathbf{M}) = 0.000206 \ 3 \\ &\alpha(\mathbf{N}) = 5.16 \times 10^{-5} \ 8; \\ &\alpha(\mathbf{O}) = 9.57 \times 10^{-6} \ 14; \\ &\alpha(\mathbf{P}) = 6.18 \times 10^{-7} \ 9 \end{aligned}$
1447.5	1/2-,3/2,5/2	1068.0 [#] 3	100 [#]	379.46	5/2-			
1556.4	13/2+	161.4 5	100	1395.08	9/2-	M2	11.63 21	$\begin{aligned} &\alpha(K) = 8.30 \ I5; \ \alpha(L) = 2.51 \ 5; \\ &\alpha(M) = 0.628 \ I2 \\ &\alpha(N) = 0.159 \ 3; \ \alpha(O) = 0.0296 \ 6; \\ &\alpha(P) = 0.00198 \ 4 \\ &B(M2)(W.u.) = 0.000487 \ 23 \\ &I_{\gamma}: \ From \ ^{205}Hg \ IT \ decay \ (1.09 \ ms). \\ &Mult.: \ From \ intensity \ balance \\ &considerations \ in \ ^{204}Hg(^9Be, 2\alpha\gamma) \\ &(1994Po21), \ and \ \alpha(K)exp \ and \\ &\alpha(L)exp \ in \ ^{204}Hg(d,p\gamma) \\ &(1986Ze03). \end{aligned}$
		210.3 5	73 7	1346.12	7/2-	E3	2.73 5	$\alpha(K)=0.407 \ 7; \ \alpha(L)=1.72 \ 4; \ \alpha(M)=0.466 \ 9 \ \alpha(N)=0.1167 \ 22; \ \alpha(O)=0.0196 \ 4; \ \alpha(P)=0.0001193 \ 20 \ B(E3)(W.u.)=1.17 \ 11 \ I_{\gamma}: From \ ^{205}Hg \ IT \ decay \ (1.09 \ ms). \ Mult.: From intensity \ balance \ considerations in \ ^{204}Hg(^{9}Be,2\alpha\gamma) \ (1004Bc,21)$
1818.2		1438.7 5	100	379.46	5/2-			(1994F021).
1847.3	9/2+	290.8 5 501.2 5	7.5 100	1556.4 1346.12	13/2 ⁺ 7/2 ⁻	(E1)	0.00885	$\begin{aligned} &\alpha(\mathbf{K}) = 0.00735 \ 11; \ \alpha(\mathbf{L}) = 0.001156 \\ &17; \ \alpha(\mathbf{M}) = 0.000267 \ 4 \\ &\alpha(\mathbf{N}) = 6.65 \times 10^{-5} \ 10; \\ &\alpha(\mathbf{O}) = 1.238 \times 10^{-5} \ 18; \\ &\alpha(\mathbf{P}) = 8.63 \times 10^{-7} \ 13 \\ &\text{Mult.: } \mathbf{A}_2 = -0.22 \ 3 \text{ in } ^{204} \text{Hg}(t, d\gamma) \\ &(1985\text{Ma48}). \end{aligned}$
		1467.6 5	2.7	379.46	5/2-			
2011.4	(11/2 ⁺)	164.1 [@] 2	100 ^w 20	1847.3	9/2+	(M1)	1.93	$\begin{aligned} &\alpha(\text{K}) = 1.579 \ 23; \ \alpha(\text{L}) = 0.266 \ 4; \\ &\alpha(\text{M}) = 0.0620 \ 9 \\ &\alpha(\text{N}) = 0.01556 \ 23; \ \alpha(\text{O}) = 0.00294 \ 5; \\ &\alpha(\text{P}) = 0.000225 \ 4 \\ &\text{Mult.: From } \alpha_{\text{T}}(\exp) = 4.3 \ 10 \text{ in} \\ &\frac{204}{\text{Hg}}({}^{9}\text{Be}, 2\alpha\gamma) \ (1994\text{Po21}), \\ &\text{deduced from intensity balance} \\ &\text{considerations.} \end{aligned}$
2205.9		455.1 [@] 2	50 [@] 10	1556.4 1847 3	$\frac{13}{2^{+}}$			
2203.9		550.0 5	Contin	ued on ney	xt page (footnotes	s at end of ta	ıble)

$\gamma(^{205}\text{Hg})$ (continued)

E _i (level)	\mathbf{J}_i^{π}	E_{γ}^{\dagger}	I_{γ}^{\dagger}	E_{f}	\mathbf{J}_f^{π}	Mult.	α ^{<i>a</i>}	Comments
2350.7	$(17/2^+)$	1971.2 <i>5</i>	100 100	379.46	$5/2^{-}$			
2368.9 2579.5	(17/2)	1989.4 <i>5</i> 568.1 <i>5</i>	100 100 100	379.46 2011.4	$5/2^{-}$ (11/2 ⁺)			
2594.0	$(19/2^+)$	227.6 ^{&} 5	100 <mark>&</mark>	2366.4	$(17/2^+)$			
3316.6	(23/2 ⁻)	722.6 5	12.6 12	2594.0	(19/2+)	[M2]	0.0921	$\alpha(K)=0.0738 \ 11; \ \alpha(L)=0.01398 \ 20; \alpha(M)=0.00331 \ 5 \alpha(N)=0.000834 \ 12; \ \alpha(O)=0.0001572 \ 23; \alpha(P)=1.166\times10^{-5} \ 17 B(M2)(W.u.)=8.4\times10^{-5} \ 8$
		950.2 5	100 4	2366.4	(17/2 ⁺)	[E3]	0.01560	$\begin{aligned} \alpha(\mathbf{K}) &= 0.01157 \ 17; \ \alpha(\mathbf{L}) = 0.00306 \ 5; \\ \alpha(\mathbf{M}) &= 0.000748 \ 11 \\ \alpha(\mathbf{N}) &= 0.000187 \ 3; \ \alpha(\mathbf{O}) = 3.41 \times 10^{-5} \ 5; \\ \alpha(\mathbf{P}) &= 1.749 \times 10^{-6} \ 25 \\ \mathbf{B}(\mathbf{E3})(\mathbf{W}.\mathbf{u}.) &= 0.102 \ 4 \end{aligned}$

[†] From ²⁰⁴Hg(⁹Be, $2\alpha\gamma$), unless otherwise stated. [‡] From ²⁰⁴Hg(t, $d\gamma$). [#] From ²⁰⁵Au β^- decay. [@] From ²⁰⁴Hg(d, $p\gamma$). [&] From ⁹Be(²⁰⁸Pb, $X\gamma$). ^a Additional information 1. ^b Placement of transition in the level scheme is uncertain.

 $^{205}_{80}\text{Hg}_{125}$