	History											
	Type			Autior								
		Full E	Evaluation	F. G. Kondev	NDS 166, 1 (2020)	20-Apr-2020						
$Q(\beta^{-}) = -7150\ 70;\ S(n) = 9988\ 26;\ S(p) = 629\ 11;\ Q(\alpha) = 7054.7\ 24$ 2017Wa10												
²⁰⁵ Fr Levels												
Cross Reference (XREF) Flags												
A $\frac{209}{160}$ Ac α decay												
$B \qquad {}^{169}\mathrm{Tm}({}^{40}\mathrm{Ar},\!4\mathrm{n}\gamma)$												
E(level) [†]	$J^{\pi \ddagger}$	T _{1/2}	XREF			Comments						
0.0	9/2-	3.90 s 7	AB	$\%\alpha = 98.5 4; \%\varepsilon + \%\beta^{+} = 1.5 4$								
				$\mu = +3.80 \ 3; \ Q = -$	-0.308 18	201						
				$\%\varepsilon + \%\beta^{+}: 1.5\%$	2 from 2010De04 usit	In the γ -ray intensities in ²⁰¹ Po and ²⁰³ Rn,						
				$\%_{\epsilon+}\%_{\beta+}(201)$	A(t)=29% The recomm	ended uncertainty is determined by the						
				evaluator by t	aking in quadratures th	the uncertainties of $\%\epsilon + \%\beta^+ (^{205}\text{Fr}) = 1.5\% 2$						
				(2010De04) a	nd $\%\epsilon + \%\beta^+ (^{201}\text{At}) = 29$	9% 7. Others: upper limit on $\%\varepsilon + \%\beta^+ < 3$						
(1974Ho27) based on non-observation of $E\alpha$ =6262 keV (²⁰⁵ Rn); $\%\varepsilon + \%\beta^+ < 1$												
				(1981R104).	05, using the collinear	laser spectroscopy technique. Others: +3.83.5						
				(2013F109,201	14Ly01) and +3.81 5 (2)	2013Vo10).						
				Q: From 2015Vo05, using the collinear laser spectroscopy technique. Other: $-0.351 4$								
				(2015 Vo10). $\delta < r^2 > (205 \text{ Er} 208 \text{ Er}) = 0.0083 \text{ fm}^2 I (2015 \text{ Vo05}) \text{ and } 0.0005 \text{ fm}^2 I (2012 \text{ Vo10})$								
				$0 < 1^{-} > (2017 \text{ Fr}) = -0.0985 \text{ Im}^{-1} (2015 \text{ VOUS}) \text{ and } -0.0995 \text{ Im}^{-4} (2013 \text{ VOID}).$ $\delta < r^{2} < (203 \text{ Fr})^{-1} = -1.475 \text{ fm}^{2} (2013 \text{ Fr}) = -1.475 \text{ fm}^{2} (2013 \text{ Fr}$								
				J^{π} : From the measure hyperfine structure (2013Vo10,2013Fl09,2015Vo05); π is								
				from μ and systematics of similar structures in neighboring nuclei.								
				$T_{1/2}$: Weighted	average (external uncer	rtainty) of 3.96 s 4 (1981Ri04), 3.80 s 3						
				(2005De01), a	and 4.02 s 4 (2010De04) $rs: 3.7 s I (1974H_027)$	4, weighted average of all values quoted in 3.7 ± 2 (1967Va20) and 3.7 ± 4 (1964Gr04)						
				Table 1). Others: 3.7 s I (19/4Ho27), 3.7 s 2 (1967va20), and 3.7 s 4 (1964Gr04), 3.7 s 6 (2015Ma63). E α =6910 keV 20 (1964Gr04), 6917 keV 5 (1967va20), 6912 keV 5 (1974Ho27), 6917 keV 5 (1981Ri04), 6915 keV I (1995Le04), 6916 keV 5 (2005De01), and 6024 keV 2 (2015Me62)								
				configuration: π	$(h_{0/2}^{+1}).$							
209.0 10	$(7/2^{-})$		В	J^{π} : 209 γ to 9/2 ⁻ ; proposed configuration.								
444 0 12	$(5/2^{-})$		D	configuration: $\pi(f_{7/2}^{+1})$.								
444.0 12	(3/2)		В	J ^{**} : 25/ γ to $1/2$, 444 γ to 9/2; proposed configuration. configuration: $\pi(h^{+1}_{+1}) \otimes 2^{+}_{+}$.								
516.80 [#] 20	13/2-		В	J ^π : 516.8γ (E2)	to $9/2^-$; proposed conf	figuration.						
5 44 0 0 10	12/2+	20	_	configuration: π	$(h_{9/2}^{+1}) \otimes 2^+.$							
544.0° 10	13/2+	80 ns 20	В	J^{n} : 544 γ (M2) to	o $9/2^-$; proposed configurate) in 169°	guration. $Tm(^{40} \Delta r 4n_2)$ based on the feeding intensity						
		1.15 ms 4		of the isomer	measured by the JURC	DGAM array (target position), the number of						
				events detecte	d in the GREAT clove	r detector (focal plane), and the time-of-flight						
	(1/2+)			of the recoilin	g nuclei between the ta	arget position and focal plane.						
(00 (configuration: π	$(i_{13/2}^{+1}).$							
609 0			В	%11=100 1^{π} 165 to (5/2)	-): proposed configurat	tion						
				$T_{1/2}$. From impl	$T_{1/2}$: From implant-ce(t) in ¹⁶⁹ Tm(⁴⁰ Ar,4n γ) (2012Ja01).							
				configuration: π	$(s_{1,2}^{+1}).$, m, , (20120001).						
				0	` 1/Z'							

Continued on next page (footnotes at end of table)

Adopted Levels, Gammas (continued)

²⁰⁵Fr Levels (continued)

E(level) [†]	$J^{\pi \ddagger}$	XREF	Comments
763 6	$(5/2^+)$	В	J^{π} : 154.3 γ to (1/2 ⁺).
840.0? 14	$(11/2^{-})$	В	J^{π} : 631 γ to (7/2 ⁻).
1020.6 [@] 10	$15/2^{+}$	В	J^{π} : 476.6 γ (M1) to 13/2 ⁺ .
1097.30 [#] 23	$17/2^{-}$	В	J^{π} : 580.5 γ (E2) to 13/2 ⁻ : proposed configuration.
			configuration: $\pi(h_{0,0}^{+1})\otimes 4^+$.
1169.8 11		В	2 (9/2)
1176? 6	$(9/2^+)$	В	J^{π} : 413.1 γ to (5/2 ⁺).
1197.2 [@] 10	$17/2^{+}$	В	J^{π} : 175.8 γ to 15/2 ⁺ , 653.2 γ (E2) to 13/2 ⁺ .
1588.5 10	$(17/2^+)$	В	J^{π} : 390.6 γ to 17/2 ⁺ , 568.5 γ D to 15/2 ⁺ .
			configuration: $\pi(h_{9/2}^{+1}) \otimes \nu(f_{5/2}^{-1}, i_{13/2}^{-1})_{5^-}$ or $\pi(h_{9/2}^{+1}) \otimes \nu(p_{3/2}^{-1}, i_{13/2}^{-1})_{5^-}$.
1592.8 3		В	
1643.9 [@] 10	$19/2^{+}$	В	J^{π} : 446.6 γ to 17/2 ⁺ , 623.5 γ to 15/2 ⁺ .
1761.90 [#] 25	$21/2^{-}$	В	J^{π} : 664.6 γ (E2) to 17/2 ⁻ ; proposed configuration.
			configuration: $\pi(h_{9/2}^{+1}) \otimes 6^+$.
1827.8 [@] 11	$21/2^{+}$	В	J^{π} : 183.6 γ to 19/2 ⁺ , 630.9 γ (E2) to 17/2 ⁺ .
1873.5 11	$(19/2^+)$	В	J^{π} : 285.0 γ to (17/2 ⁺).
1894.1 <i>11</i>	$(21/2^+)$	В	J^{π} : 305.6 γ to (17/2 ⁺).
2037.2 3	$(23/2^{-})$	В	J^{π} : 275.3 γ D to 21/2 ⁻ .
		_	configuration: $\pi(h_{9/2}^{+2}f_{7/2}^{+1})$.
2039.7 3		В	
2080.5 5	$(21/2^{+})$	В	I^{π} : 550 6x to (17/2 ⁺)
2139.5711	(21/2)	D D	J . 350.07 to $(17/2)$.
2183.4 - 11	25/2	Б	$J^{*}: 538.27$ (M1) to $21/2^{*}, 341.47$ (E2) to $19/2^{*}$.
2180 8 11	$(21/2^{+})$	R	Configuration: $\pi(n_{9/2}) \otimes \nu(n_{5/2}, n_{3/2})^{7-}$ or $\pi(n_{9/2}) \otimes \nu(p_{3/2}, n_{3/2})^{7-}$. I^{π} : 601 32/ to $(17/2^{+})$
2348 3 11	$(21/2^{+})$ $(27/2^{+})$	B	I^{π} : 162.9 γ (E2) to 23/2 ⁺
2010.011	(21/2)	2	configuration: $\pi(h^{+1}) \otimes \nu(f^{-1}, i^{-1}) \otimes \nu(f^{-1}, i^{-1})$
2441.6 11	$(23/2^+)$	В	J^{π} : 547.5 γ D to (21/2 ⁺).
2481.1 [#] 4	$(25/2^{-})$	В	J^{π} : 719.2 γ to 21/2 ⁻ : proposed configuration.
	()		configuration: $\pi(h_{+5}^{+5})$ or $\pi(h_{+2}^{+3})\otimes 2^+$.
2643.0 4	$(27/2^{-})$	В	J^{π} : 605.8 γ to (23/2 ⁻).
			configuration: $\pi(h_{0/2}^{+4}f_{7/2}^{+1})$ or $\pi(h_{0/2}^{+2}f_{7/2}^{+1})\otimes 2^+$.
2644.3 11	$(29/2^+)$	В	J^{π} : 296.0 γ to $(27/2^{\pm})$.
			configuration: $\pi(h_{9/2}^{+1}) \otimes \nu(f_{7/2}^{-1}, i_{13/2}^{-1}).$
2831.1? 11	$(25/2^+)$	В	J^{π} : 640.9 γ to (21/2 ⁺).
2922.8 11	$(27/2^+)$	B	J^{n} : 481.2 γ to (23/2 ⁺).
2990.5 <i>11</i>	$(31/2^{+})$ $(32/2^{+})$	В	J [*] : 048.2 γ IO (2//2 ⁺). I ^{π} : 427.2 $_{24}$ (O) to (20/2 ⁺)
5081.0 11	$(33/2^{-})$	в	J^{-1} 457.57 (Q) 10 (29/2).

[†] From least squares fit to Eγ.
[‡] From the deduced γ-ray transition multipolarities in ¹⁶⁹Tm(⁴⁰Ar,4nγ) and systematics of structures in neighboring nuclei. Specific arguments are given with most levels.
[#] Seq.(A): Based on the π(h⁺¹_{9/2}) state.
[@] Seq.(B): Based on the π(i⁺¹_{13/2}) state.

Adopted Levels, Gammas (continued)

$\gamma(^{205}{\rm Fr})$

E _i (level)	\mathbf{J}_i^{π}	E_{γ}^{\dagger}	I_{γ}^{\dagger}	E_f	${ m J}_f^\pi$	Mult.	Comments
209.0 444.0	(7/2 ⁻) (5/2 ⁻)	209 <i>1</i> 235 <i>1</i> 444 2	100	0.0 209.0 0.0	9/2 ⁻ (7/2 ⁻) 9/2 ⁻		
516.80 544.0	13/2 ⁻ 13/2 ⁺	516.8 2 544 <i>1</i>	100 100	$\begin{array}{c} 0.0\\ 0.0\end{array}$	9/2 ⁻ 9/2 ⁻	(E2) (M2)	Mult.: $A_2 = +0.25 I$. B(M2)(W.u.)=0.23 6 Mult.: $a(K)aya=0.25 I0 (20121x01)$
609	(1/2 ⁺)	(165 5)	100	444.0	(5/2 ⁻)	[M2]	B(M2)(W.u.)=0.0063 <i>10</i> E_{γ} : From the observed summed (K+L+M)ce peak at 169 keV and GEANT4 simulations of the J^{π} =(1/2 ⁺) isomer decay in ¹⁶⁹ Tm(⁴⁰ Ar,4n\gamma) (2012Ja01).
763	$(5/2^+)$	154.3 [#] 5	100	609	$(1/2^+)$		
840.0?	$(11/2^{-})$	631 [‡] 1	100	209.0	(7/2-)		
1020.6	$15/2^+$	476.6 2	100	544.0	$13/2^{+}$	(M1)	Mult.: $A_2 = -0.17 4$.
1097.30	17/2	580.5 1	100	516.80	13/2	(E2)	Mult.: $A_2 = 0.28 \ 4$.
1169.8	(0.12+)	653 ⁺ 1	100	516.80	13/2		
11/6?	$(9/2^+)$ $17/2^+$	413.1" 5	100 67.6	763	$(5/2^+)$ 15/2 ⁺		
1197.2	17/2	175.81	100.3	544.0	13/2 $13/2^+$	$(\mathbf{F2})$	Mult: $\Lambda_{a} = \pm 0.21.5$
1588.5	$(17/2^+)$	390.6 1	14.2 11	1197.2	$17/2^+$	(E2)	Mult.: $A_2 = \pm 0.21$ J.
100010	(1)/=)	568.5 1	100 4	1020.6	$15/2^+$	D	Mult.: $A_2 = -0.28$ 16.
1592.8		1076.0 2	100	516.80	13/2-		
1643.9	19/2+	446.6 1	100 4	1197.2	$17/2^+$		
1761.00	21/2-	623.5 2	37 4	1020.6	15/21	$(\mathbf{F2})$	Mult: $\Lambda_{2} = \pm 0.20$ 7
1827.8	$\frac{21/2}{21/2^+}$	183.6 2	10.0 13	1643.9	$19/2^+$	(L2)	Mult.: $A_2 = \pm 0.29$ 7.
102/10	= -/ =	$630.9^{\ddagger} 2$	100 4	1197.2	$17/2^+$	(E2)	Mult.: $A_2 = +0.24$ 3.
1873.5	$(19/2^+)$	285.0 1	100	1588.5	$(17/2^+)$		
1894.1	$(21/2^+)$	305.6 1	100	1588.5	$(17/2^+)$	_	
2037.2	$(23/2^{-})$	275.3 1	100	1761.90	$21/2^{-}$	D	Mult.: $A_2 = -0.51 \ I3$.
2039.7		942.4 2	100	1097.30	$\frac{17/2}{17/2^{-1}}$	0	Mult : $\Delta_2 = \pm 0.25 I$
2000.5	$(21/2^{+})$	$550.6^{\#}$ 3	100	1588 5	$(17/2^+)$	X	101010.112 - 10.231.
2135.3	$\frac{(21/2)}{23/2^+}$	358.2 6	100 6	1827.8	$(17/2^{+})$ $21/2^{+}$	(M1)	Mult.: $A_2 = -0.29 \ 11$.
	,	541.4 2	40 6	1643.9	$19/2^{+}$	(E2)	Mult.: $A_2^2 = +0.6 \ 3.$
2189.8	$(21/2^+)$	601.3 <i>1</i>	100	1588.5	$(17/2^+)$		
2348.3	$(2^{7}/2^{+})$	162.9 <i>I</i>	100	2185.4	$\frac{23}{2^{+}}$	(E2) D	Mult.: $A_2 = +0.23$ 9.
2441.0 2481.1	$(25/2^{+})$ $(25/2^{-})$	547.5 I 719 2 2	100	1894.1	$(21/2^{-1})$ $21/2^{-1}$	D	Mult.: $A_2 = -0.48$ 4.
2643.0	$(23/2^{-})$ $(27/2^{-})$	605.8 <i>3</i>	100	2037.2	$(23/2^{-})$		
2644.3	$(29/2^+)$	296.0 2	100	2348.3	$(27/2^+)$		
2831.1?	$(25/2^+)$	640.9 [#] 2	100	2189.8	$(21/2^+)$		
2922.8	$(27/2^+)$	481.2 2	100	2441.6	$(23/2^+)$		
2996.5	$(31/2^+)$ $(33/2^+)$	648.2 2	100	2348.3	$(27/2^+)$ $(20/2^+)$	(0)	Mult : $A_{r} = \pm 0.43.17$
5001.0	(33/2)	TJ1.J 1	100	2074.3	$\left(\frac{2\gamma}{2} \right)$		$1111111111112 = \pm 0.13171$

[†] From ¹⁶⁹Tm(⁴⁰Ar,4nγ) (2012Ja01).
[‡] Doublet in ¹⁶⁹Tm(⁴⁰Ar,4nγ) (2012Ja01).
[#] Placement of transition in the level scheme is uncertain.

Legend

Level Scheme

Intensities: Relative photon branching from each level

 $--- \rightarrow \gamma$ Decay (Uncertain)

Legend

•

γ Decay (Uncertain)

Level Scheme (continued)

Intensities: Relative photon branching from each level

 $^{205}_{87}\mathrm{Fr}_{118}$

