Adopted Levels, Gammas

		History	
Туре	Author	Citation	Literature Cutoff Date
Full Evaluation	F. G. Kondev	NDS 166, 1 (2020)	20-Apr-2020

 $Q(\beta^{-})=3520 SY; S(n)=6.19\times 10^{3} SY; S(p)=8.14\times 10^{3} SY; Q(\alpha)=-1.3\times 10^{3} SY$ 2017Wa10

²⁰⁵Au Levels

Cross Reference (XREF) Flags

A ${}^{9}\text{Be}({}^{208}\text{Pb},X\gamma)$

E(level)	J^{π}	T _{1/2}	XREF	Comments				
0.0	(3/2+)	32.0 s <i>14</i>	A	$%β^-=100$ J ^π : Systematics in neighboring Au nuclei; shell model predictions. T _{1/2} : Weighted average of 31 s 2, using β-gated 379γ, 467γ and 946γ(t) spectra, (1994We02) and 32.5 s 14, using implant-β(t) (2014Mo15), and the smallest experimental uncertainty. Other: 34 s 2 (2009Po01) superseded by 2014Mo15, and 34 s 15 using implant-β(t) in 2017Ca12 and 2016Ca25. configuration: $π(d_{-1}^{-1})$ and spherical shape.				
907 5	(11/2 ⁻)	6 s 2	A	 %β⁻>0; %IT<100^{3/2} Additional information 1. E(level): From 2009Po01, based on the observed K- and L-conversion electron lines of 825 keV and 896 keV, respectively. %β⁻: The β⁻ decay branch is postulated from the observed in 2009Po01 966- and 1015-keV γ rays of the ²⁰⁵Hg daughter, depopulating the known 1346-keV (J^π=7/2⁻) and 1395-keV (J^π=9/2⁻) levels, that are not directly fed in the β⁻ decay of the ²⁰⁵Au ground state (J^π=(3/2⁺)). J^π: 907γ (M4) to (3/2⁺); systematics in neighboring Au isotopes; shell model. T_{1/2}: From 825ce(t) and 896ce(t) in 2009Po01. configuration: π(h⁻¹₁₁₀) and spherical shape. 				
1643.93 24	$(11/2^{-})$		A	J^{π} : 736.9 γ to $(11/2^{11/2})$; shell model.				
1853.06 25	(15/2)		A	J^{n} : 946.1 I^{π} , 080.2	γ to $(11/2)$	(2); shell m	iodel.	
1007.22 24	(15/2) $(15/2^+)$		A	J [*] : 980.2 γ to (11/2); shell model.				
2015.51 25	(15/2)		л	$J^{(1)}$ 962.37 to (15/2); shell model.				
2849.7 <i>4</i>	(19/2+)	163 ns 5	A	configuration: $\pi((h_{11/2})^{*}(s_{1/2}))$. J^{π} : 962.5 γ to (13/2 ⁻); shell model. $T_{1/2}$: From $\gamma(t)$ in 2009Po14 using all γ rays below the isomer (except the 243.4 keV one). configuration: $\pi((h_{11/2}^{-2})_{10^+}(s_{1/2}^{-1}))$.				
					,	(1 1 u)		
E _i (level)	\mathbf{J}_i^{π}	Εγ Ι	γ E _f	J_f^π	Mult.	α^{\dagger}	Comments	
907 ((11/2 ⁻)	(907 5)	0.	0 (3/2+)	(M4)	0.177 5	$\begin{aligned} &\alpha(\text{K})=0.132 \ 3; \ \alpha(\text{L})=0.0338 \ 9; \ \alpha(\text{M})=0.00834 \ 22 \\ &\alpha(\text{N})=0.00209 \ 6; \ \alpha(\text{O})=0.000377 \ 10; \ \alpha(\text{P})=2.15\times10^{-5} \ 6 \\ &\text{E}_{\gamma}: \text{ From the observed K- and L-conversion electron} \\ &\text{ lines of 825 keV and 896 keV, respectively. The E}_{\gamma} \\ &\text{ was not directly observed.} \end{aligned}$ Mult.: From the measured K/L(exp)=3.4 9 (2009PoZZ), but E3 assignment (K/L(theory)=3.7) cannot be unambiguously excluded.	
1643.93 ($(11/2^{-})$	736.9 3 10	0 907	$(11/2^{-})$				

Adopted Levels, Gammas (continued)

γ (²⁰⁵Au) (continued)

E _i (level)	\mathbf{J}_i^{π}	Eγ	I_{γ}	E_f	J_f^π	Mult.	α^{\dagger}	Comments
1853.06 1887.22	(15/2 ⁻) (13/2 ⁻)	946.1 <i>3</i> 243.4 <i>5</i>	100 18 8 100 8	907 1643.93	$(11/2^{-})$ $(11/2^{-})$ $(11/2^{-})$			
2815.51	(15/2+)	980.2 3 928.3 3 962.5 3	100 8 23 2 100 5 22 2	1887.22 1853.06	(11/2) $(13/2^{-})$ $(15/2^{-})$ $(11/2^{-})$			
2849.7	(19/2 ⁺)	(34.2 5)	32 2 1.75 16	2815.51	(11/2) $(15/2^+)$	[E2]	8.1×10 ² 7	α (L)=6.1×10 ² 5; α (M)=157 <i>12</i> α (N)=38 3; α (O)=6.1 5; α (P)=0.0052 4 B(E2)(W.u.)=1.19 <i>14</i>
		962.5 3	100 <i>36</i>	1887.22	(13/2 ⁻)	[E3]	0.01435	E _y : From level energy differences. $\alpha(K)=0.01075 \ 15; \ \alpha(L)=0.00273 \ 4; \ \alpha(M)=0.000664 \ 10 \ \alpha(N)=0.0001651 \ 24; \ \alpha(O)=2.92\times10^{-5} \ 4; \ \alpha(P)=1.352\times10^{-6} \ 19 \ B(E3)(W.u.)=0.26 \ 10 \ 10 \ 10 \ 10 \ 10 \ 10 \ 10 \ 1$

[†] Additional information 2.

Adopted Levels, Gammas

Level Scheme

Intensities: Relative photon branching from each level

²⁰⁵₇₉Au₁₂₆

Legend