⁹Be(²⁰⁸Pb,Xγ) 2009Po14,2009Po01

History									
Туре	Author	Citation	Literature Cutoff Date						
Full Evaluation	F. G. Kondev	NDS 166, 1 (2020)	20-Apr-2020						

2009Po01, 2009Po14: ⁹Be target, 2.5 g/cm² thick, was bombarded with a 1 GeV/nucleon ²⁰⁸Pb beam at GSI. E=1 GeV/nucleon; fragments were selected and identified using FRS separator at GSI, magnetic rigidity, energy loss and time-of-flight used to identify fragments. Measured E γ , I γ , $\gamma\gamma$, delayed γ , half-life using RISING γ -ray detector spectrometer array at GSI. Comparison with shell model calculations. Others: 2009PoZZ, 2010FaZX, 2011St21, 2016Ca25, 2017Ca12.

²⁰⁵Au Levels

E(level) [†]	Jπ‡	T _{1/2}	Comments		
0	$(3/2^+)$				
907 5	$(11/2^{-})$	6 s 2	$\%\beta^{-}>0; \%IT<100$		
			Additional information 1.		
			E(level): From 2009Po01, based on the observed K- and L-conversion electron lines of 825 keV and 896 keV, respectively.		
			$\%\beta^-$: The β^- decay branch is postulated from the observed in 2009Po01 967- and 1016-keV γ rays of the ²⁰⁵ Hg daughter, depopulating the known 1346-keV ($J^{\pi}=7/2^-$) and 1395-keV ($J^{\pi}=9/2^-$) levels, that are not directly fed in the β^- decay of the ²⁰⁵ Au ground state ($J^{\pi}=(3/2^+)$).		
			$T_{1/2}$: From 825ce(t) and 896ce(t) in 2009Po01.		
			configuration: $\pi(h_{1,1/2}^{-1})$ and spherical shape.		
1643.93 24	$(11/2^{-})$				
1853.06 25	$(15/2^{-})$				
1887.22 24	$(13/2^{-})$				
2815.51 25	$(15/2^+)$		configuration: $\pi((h_{11/2}^{-2})_{8^+}(s_{1/2}^{-1}))$.		
2849.7 4	(19/2+)	163 ns 5	T _{1/2} : From γ (t) in 2009Po14 using all γ rays below the isomer (except the 243.4 keV one). configuration: $\pi((h_{11/2}^{-2})_{10^+}(s_{1/2}^{-1}))$.		

[†] From a least-squares fit to $E\gamma$.

[‡] From 2009Po14, based on comparison with shell-model calculations.

$\gamma(^{205}{\rm Au})$ I_{γ} E_i(level) \mathbf{J}_i^{π} \mathbf{E}_{f} \mathbf{J}_{f}^{π} Mult. Comments [E2] 2815.51 (15/2+) $(19/2^+)$ 8.1×10² 7 (34.2.5)0.192 18 2849.7 $\alpha(L)=6.1\times10^2$ 5; $\alpha(M)=157$ 12 $\alpha(N)=38$ 3; $\alpha(O)=6.1$ 5; $\alpha(P)=0.0052$ 4 E_{γ} : From level energy differences. I_{γ} : From intensity balances and α . 243.4 5 1887.22 1643.93 (11/2-) 42 $(13/2^{-})$ $(11/2^{-})$ 736.9 3 39 2 1643.93 $(11/2^{-})$ 907 (907 5) 907 $(11/2^{-})$ 0 $(3/2^+)$ 0.177 5 $\alpha(K)=0.132$ 3; $\alpha(L)=0.0338$ 9; (M4) $\alpha(M)=0.00834\ 22$ α (N)=0.00209 6; α (O)=0.000377 10; $r(P) = 2.15 \times 10^{-5} 6$

$$\alpha(r)=2.13\times10^{-6}$$
 of E_{γ} : From 2009Po01, based on the observed K- and L-conversion electron lines of 825 keV and 896 keV, respectively. The E_{γ} was not directly observed.

Mult.: From the measured K/L(exp)=3.4 9 (2009PoZZ), but E3 assignment

⁹Be(²⁰⁸Pb,X γ) 2009Po14,2009Po01 (continued)

γ (²⁰⁵Au) (continued)

E_{γ}^{\dagger}	I_{γ}^{\dagger}	E_i (level)	\mathbf{J}_i^{π}	E_f	\mathbf{J}_{f}^{π}	Mult.	α^{\ddagger}	Comments
928.3 <i>3</i>	23 2	2815.51	(15/2+)	1887.22	(13/2 ⁻)	[E1]	0.00253	(K/L(theory)=3.7) cannot be unambiguously excluded. $\alpha(K)=0.00212 \ 3; \ \alpha(L)=0.000316 \ 5; \ \alpha(M)=7.22\times10^{-5} \ 11 \ \alpha(N)=1.79\times10^{-5} \ 3; \ \alpha(O)=3.27\times10^{-6} \ 5; \ \alpha(P)=2.16\times10^{-7} \ 3$
946.1.3	94 <i>4</i>	1853.06	$(15/2^{-})$	907	$(11/2^{-})$			
962.5 3	100 5	2815.51	$(15/2^+)$	1853.06	$(15/2^{-})$	[E1]	0.00237	$\alpha(K)=0.00199 \ 3; \ \alpha(L)=0.000295 \ 5;$
								$\alpha(M) = 6.74 \times 10^{-5} 10$
								$\alpha(N) = 1.672 \times 10^{-5} 24; \ \alpha(O) = 3.06 \times 10^{-6} 5; \ \alpha(P) = 2.03 \times 10^{-7} 3$
962.5 <i>3</i>	11 4	2849.7	$(19/2^+)$	1887.22	$(13/2^{-})$	[E3]	0.01435	$\alpha(K)=0.01075 \ 15; \ \alpha(L)=0.00273 \ 4;$
								α(M)=0.000664 10
								α (N)=0.0001651 24; α (O)=2.92×10 ⁻⁵ 4; α (P)=1.352×10 ⁻⁶ 19
980.2 <i>3</i>	24 2	1887.22	$(13/2^{-})$	907	$(11/2^{-})$			
1171.5 3	32 2	2815.51	$(15/2^+)$	1643.93	$(11/2^{-})$	[M2]	0.0228	α (K)=0.0186 3; α (L)=0.00321 5; α (M)=0.000750 <i>11</i>
								α (N)=0.000187 3; α (O)=3.44×10 ⁻⁵ 5;
								α (P)=2.31×10 ⁻⁶ 4; α (IPF)=7.17×10 ⁻⁷ 12

[†] From 2009Po14.
[‡] Additional information 2.

²⁰⁵₇₉Au₁₂₆