¹⁹⁷Au(¹³C,5nγ) 1984Da19

		History	
Туре	Author	Citation	Literature Cutoff Date
Full Evaluation	F. G. Kondev	NDS 166, 1 (2020)	20-Apr-2020

1984Da19: Reaction: ¹⁹⁷Au(¹³C,5n γ); Beam: ¹³C, E=85 MeV; Target: ¹⁹⁷Au, 5 mg/cm² thick; Experiments: $\gamma\gamma(t)$ and $n\gamma(t)$ using two large volume Ge(Li) detectors positioned at ±90°, LEPS detector and NE213 detector positioned at forward angles. A 8 μ s time range was used; $\gamma\gamma(t)$ using two Compton-suppressed Ge(Li) detectors positioned at ±90°. The time range for $\gamma\gamma$ coin was 2 μ s; $\gamma(t)$ measurements using a single Compton-suppressed Ge(Li) detector (beam on 1 μ s/ beam off 40 μ s); $\gamma(\theta)$ using Ge(Li) and LEPS detectors over an angular range of 90° to 150° with both millisecond-chopped and continuous beams; conversion electron measurements using a cooled Si(Li) detector at 125° in conjunction with a mini-orange magnetic filter and a Compton-suppressed Ge(Li) detector at 55°. Pulsed beam with 1 μ s on and 40 μ s off. Measured: E γ , I γ , $\gamma(\theta)$, $\alpha(K)$ exp, $\alpha(L)$ exp, $\alpha(M)$ exp, $\alpha(exp)$ and T_{1/2}. Deduced: levels, J^{\pi}, transition multipolarities and strengths, and configurations.

²⁰⁵At Levels

E(level) [†]	$J^{\pi \ddagger}$	T _{1/2}	Comments
0.0 [#]	9/2-	26.9 min 8	$J^{\pi}, T_{1/2}$: From Adopted Levels.
638.20 [@] 8	$11/2^{-}$		· · · ·
664.25 [@] 9	$13/2^{-}$		
969.81 ^{&} 11	$13/2^{+}$		
1132.28 ^a 10	$15/2^{-}$		
1230.58 ^{<i>a</i>} 11	$17/2^{-}$		
1441.36 ⁸ 13	$15/2^{+}$		
1563.53 ^J 22	21/2-		
1756.10 ⁸ 16	$17/2^+$		
1862.29 11	19/2-		
18//./4 <i>13</i>	1 //2 ·		
1935.94 23	$\frac{23}{2^+}$		
2054.52 15 2062 57 ^C 25	$21/2^{+}$ 25/2+	67.0 ns 14	$T_{t,r}$: From $r_{r,r}(t)$ Note, that the absence of prompt peak in the time spectrum gated on
2002.37 23	23/2	07.9 118 14	1/2. From hy(t), note, that the absence of prompt peak in the time spectrum gated on 126.7 γ implies that this γ ray directly depopulates the isomer.
2339.60 ^{<i>d</i>} 25	29/2+	7.76 μs <i>14</i>	$T_{1/2}$: From γ (t) (beam on 1 μ s, beam off 40 μ s). No direct verification of the isomeric nature of this level was possible in 1984Da19, owing to the contamination of 227.1 γ with the strong 279 γ , ¹⁹⁷ Au Coulomb excitation line, and of 403.6 γ with 402.6 γ and 404.8 γ .
2499.24 ^e 25	$27/2^{-}$		
2499.24+x			Additional information 1. E(level): Tentatively suggested in 1984Da19 to decay via γ rays with unknown energies to the 2499.2-keV, 2339.6-keV, 1563.5-keV and 1132.3-keV levels.
2696.24+x 10			
2721.6 ^h 3 3040.44+x 23	29/2+		
3221.7 ^{<i>f</i>} 3	$29/2^{-}$		
3274.6 ⁱ 3	$33/2^+$		
3335.24+x 25 3382.8+x 3 3480.9 3 3505.1+x 4	,		
3524.7^{h} 3	$31/2^{(+)}$		
3700.7 <i>4</i> 3795 24 × <i>4</i>	$(33/2^+)$		
3793.2 ± 3.4	35/2+		
3894.9.3	35/2		
3897.3+x 5	55/2		

¹⁹⁷ Au(¹³ C,5n γ)	1984Da19 (continued)
Au(C,Suy)	1904Dally (continued

²⁰⁵At Levels (continued)

E(level) [†]	J ^{π‡}	E(level) [†]	$J^{\pi \ddagger}$	E(level) [†]	Jπ‡	E(level) [†]	J ^{π‡}
3954.4 <i>4</i> 4017.7+x <i>6</i>	(37/2+)	4150.1 <i>4</i> 4150.4+x <i>6</i>	37/2	4341.5 <i>4</i> 4387.4+x <i>9</i>	37/2 ⁽⁺⁾	4405.7 <i>5</i> 4546.0 <i>4</i>	(39/2 ⁺) 39/2

[†] From least-squares fit to $E\gamma$.

[‡] From 1984Da19, based on deduced γ -ray transition multipololarities, unless otherwise stated.

configuration= $\pi(h_{0/2}^{+1})$.

^(a) configuration= $\pi(h_{9/2}^{+1}) \otimes \nu(f_{5/2}^{-2})_{2^+}$.

& configuration= $\pi(i_{13/2}^{+1})$.

^{*a*} configuration= $\pi(h_{9/2}^{+1}) \otimes \nu(f_{5/2}^{-2})_{4^+}$.

^b configuration= $\pi((h_{9/2}^{+2})\otimes \nu(i_{7/2}^{-1}))$. ^c configuration= $\pi(h_{9/2}^{+1})\otimes \nu(i_{13/2}^{-1},f_{5/2}^{-1})_{9}$.

 $c \text{ configuration} = \pi(\mathbf{h}_{9/2}^{+1}) \otimes \nu(\mathbf{1}_{13/2}^{-1}, \mathbf{1}_{5/2}^{-1}) \mathbf{9}^{-}.$ $d \text{ configuration} = \pi((\mathbf{h}_{9/2}^{+2})_{8^+}, \mathbf{i}_{13/2}^{+1}).$ $e \text{ configuration} = \pi((\mathbf{h}_{9/2}^{+2})_{8^+}, \mathbf{f}_{7/2}^{+1}) \otimes \nu(\mathbf{f}_{5/2}^{-2})_{2^+}.$ $f \text{ configuration} = \pi((\mathbf{h}_{9/2}^{+2})_{8^+}, \mathbf{f}_{7/2}^{+1}) \otimes \nu(\mathbf{f}_{5/2}^{-2})_{4^+}.$ $g \text{ configuration} = \pi(\mathbf{i}_{13/2}^{+1}) \otimes \nu(\mathbf{f}_{5/2}^{-2})_{2^+}.$ $h \text{ configuration} = \pi(\mathbf{h}_{9/2}^{+3})_{13/2} - \otimes \nu(\mathbf{i}_{13/2}^{-1}, \mathbf{f}_{5/2}^{-1})_{9^-}.$ $i \text{ configuration} = \pi(\mathbf{h}_{9/2}^{+3})_{17/2} - \otimes \nu(\mathbf{i}_{13/2}^{-1}, \mathbf{f}_{5/2}^{-1})_{9^-}.$ $j \text{ configuration} = \pi(\mathbf{h}_{9/2}^{+3})_{17/2} - \otimes \nu(\mathbf{i}_{13/2}^{-1}, \mathbf{f}_{5/2}^{-1})_{9^-}.$

Comments
5 11 5 5; ce(O)/(γ +ce)=0.038 11; 0037 11 α (O)=1.4×10 ⁴ 3; α (P)=1.4×10 ³ 3 gammas. Not observed directly, but coincidence relationships. intensity balance (by the evaluator).
gammas. Not observed directly, but
Concidence relationships. (7 8; ce(L)/(γ +ce)=0.137 3; (0324 8) (839 21; ce(O)/(γ +ce)=0.00180 5; (000248 6) (L)=1.86 4; α (M)=0.440 8 α (O)=0.0244 5; α (P)=0.00337 7 0 30: A ₂ =-0.10 13; A ₄ =-0.15 20;
ed from the in-beam intensity. 12 A = -0.03 17
$\begin{array}{l} 2.7 & A_{4} = -0.03 \ 17. \\ 25 \ 3; \ ce(L)/(\gamma + ce) = 0.0376 \ 7; \\ .00897 \ 17 \\ 0229 \ 5; \ ce(O)/(\gamma + ce) = 0.000468 \ 9; \\ 68 \times 10^{-5} \ 11 \\ .) = 0.0491 \ 9; \ \alpha(M) = 0.01171 \ 21 \\ \alpha(O) = 0.000611 \ 11; \ \alpha(P) = 7.41 \times 10^{-5} \end{array}$
B, $A_4=0.16 \ 31$. ed from the in-beam intensity.
14, A_4 =0.00 23. 17 7; ce(L)/(γ +ce)=0.1271 25; .0301 7 1780 17; ce(O)/(γ +ce)=0.00167 4; 000231 5 0=1.005 16; α (M)=0.238 4 α (O)=0.01321 21; α (P)=0.00182 3 intensity balance (by the evaluator). in 1984Da19. 5 (deduced from the decay of the from 121 7 γ of unknown origin
$6, A_4 = 0.01 9.$
$-5) 0 \qquad \exists c i \exists c i u v 0 (1 x 0 e L i u) 2 (0 x - 3 e L i) u) 0 (1 x 0 e L i u) 2 (0 x - 3 e L i) u) 0 (1 x - 3 e L i) (1 x - 3 e L i) u) 0 (1 x - 3 e L i) (1 x - 3 e L i) u) 0 (1 x - 3 e L i) (1 x - 3 e L i) u) 0 (1 x - 3 e L i) (1$

ω

 $^{205}_{85}{\rm At}_{120}$ -3

					19	⁹⁷ Au(¹³ C,5n)	γ) 198 4	Da19 (continued	1)
						$\gamma(^2$	⁰⁵ At) (con	tinued)	
E_{γ}^{\dagger}	I_{γ}^{\dagger}	E _i (level)	J_i^π	E_f	\mathbf{J}_f^{π}	Mult. [‡]	α #	I γ (delayed) [†]	Comments
									$\frac{\text{ce}(M)/(\gamma+\text{ce})=0.00773 \ 11}{\text{ce}(N)/(\gamma+\text{ce})=0.00197 \ 3; \ \text{ce}(O)/(\gamma+\text{ce})=0.00404 \ 6; \ \text{ce}(P)/(\gamma+\text{ce})=4.94\times10^{-5} \ 8}{\alpha(K)=0.204 \ 3; \ \alpha(L)=0.0408 \ 6; \ \alpha(M)=0.00971 \ 14}{\alpha(N)=0.00248 \ 4; \ \alpha(O)=0.000508 \ 8; \ \alpha(P)=6.21\times10^{-5} \ 9}{\text{I}_{\gamma}: \ I_{\gamma} \ (\text{delayed})=542 \ 11 \ (\text{deduced from the decay of the 67.9 ns isomer).}}$
132.7 2 x^{1} 142.8 2	20 <i>1</i> 9 <i>3</i>	4150.4+x		4017.7+x		D			Mult.: $A_2 = -0.14 \ 8, \ A_4 = 0.10 \ 11.$
x149.2 2	61					D			Mult.: $A_2 = -0.06\ 26$, $A_4 = 0.10\ 40$.
^{*167.3} <i>I</i> 176.0 2	23 <i>I</i> 31 <i>I</i>	3700.7	$(33/2^+)$	3524.7	$31/2^{(+)}$	D (M1+E2)	2.43		Mult.: $A_2 = -0.26$ 9, $A_4 = -0.19$ 13. $\alpha(K) = 1.97$ 3: $\alpha(L) = 0.351$ 5: $\alpha(M) = 0.0831$ 12
17010 2	011	010011	(00/2)	00211	0 1/2	(2110		$\alpha(N) = 0.0215 \ 3; \ \alpha(O) = 0.00461 \ 7; \ \alpha(P) = 0.000636 \ 10$ Mult: $\alpha(exp) = 20 \ 10^{\circ} \ A_2 = -0.16 \ 8 \ A_4 = 0.00 \ 12$
176.5 <i>1</i>	63 1	2054.32	21/2+	1877.74	17/2+	E2	0.781	42 6	Mult.: $\alpha(exp)=2.0$ 10, $A_2=-0.16$ 3, $A_4=0.00$ 12. $ce(K)/(\gamma+ce)=0.1205$ 17; $ce(L)/(\gamma+ce)=0.235$ 3; $ce(M)/(\gamma+ce)=0.0628$ 10 $ce(N)/(\gamma+ce)=0.01622$ 25; $ce(O)/(\gamma+ce)=0.00320$ 5; $ce(P)/(\gamma+ce)=0.000333$ 6 $\alpha(K)=0.215$ 3; $\alpha(L)=0.419$ 6; $\alpha(M)=0.1118$ 16 $\alpha(N)=0.0289$ 5; $\alpha(O)=0.00571$ 9; $\alpha(P)=0.000594$ 9 I_{γ} : I_{γ} (delayed)=226 10 (deduced from the decay of the 67.9 ns isomer). Mult: $A_2=0.14$ 4, $A_4==0.01$ 6
^x 181.8 <i>I</i> 192.1 <i>I</i>	21 <i>I</i> 171 2	2054.32	21/2+	1862.29	19/2-	D E1	0.0927	143 11	Mult.: $A_2 = -0.29 \ I0, \ A_4 = -0.05 \ I5.$ ce(K)/(γ +ce)=0.0682 9; ce(L)/(γ +ce)=0.01268 I8; ce(M)/(γ +ce)=0.000770 I1; ce(O)/(γ +ce)=0.0001596 23; ce(P)/(γ +ce)=2.01×10 ⁻⁵ 3 α (K)=0.0745 I1; α (L)=0.01385 20; α (M)=0.00328 5 α (N)=0.000841 I2; α (O)=0.0001744 25; α (P)=2.20×10 ⁻⁵ 3 I $_{\gamma}$: I γ (delayed)=597 I4 (deduced from the decay of the 67.9 ns isomer). Mult: α (exp)<0.18; A_2 =-0.04 2, A_4 =0.01 4
^x 193.1 <i>3</i> 197.0 <i>1</i> ^x 215.6 2	17 5 37 1 15 10	2696.24+x		2499.24+x		D			Mult.: $A_2 = -0.38 \ I0, \ A_4 = -0.21 \ I6.$
x220.6 2	35 5	4297 4		4150 4					
253.7 2	67 2	4387.4+x 3954.4	(37/2 ⁺)	4150.4+x 3700.7	(33/2+)	(E2)	0.222		$ \begin{aligned} &\alpha(\mathrm{K}) = 0.0986 \ 14; \ \alpha(\mathrm{L}) = 0.0917 \ 14; \ \alpha(\mathrm{M}) = 0.0241 \ 4 \\ &\alpha(\mathrm{N}) = 0.00624 \ 9; \ \alpha(\mathrm{O}) = 0.001244 \ 18; \ \alpha(\mathrm{P}) = 0.0001344 \\ &20 \\ &\mathrm{Mult.:} \ \mathrm{A}_2 = 0.10 \ 11, \ \mathrm{A}_4 = 0.23 \ 12. \end{aligned} $

 $^{205}_{85}{\rm At}_{120}\text{-}4$

					1	¹⁹⁷ Au(¹³ C,	5nγ) <mark>1</mark> 9	984Da19 (contin	ued)
						,	$\gamma(^{205}\text{At})$ (c	continued)	
${\rm E_{\gamma}}^{\dagger}$	I_{γ}^{\dagger}	E _i (level)	\mathbf{J}_i^{π}	E_f	\mathbf{J}_{f}^{π}	Mult. [‡]	α #	Ιγ (delayed) [†]	Comments
^x 255.0 10 259.2 1	<30 48 2	3480.9		3221.7	29/2-	(E1)	0.0453		α (K)=0.0367 6; α (L)=0.00656 10; α (M)=0.001549 22 α (N)=0.000398 6; α (O)=8.30×10 ⁻⁵ 12; α (P)=1.069×10 ⁻⁵ 15
277.1 <i>I</i>	62 2	2339.60	29/2+	2062.57	25/2+	E2	0.1679	416 <i>17</i>	Mult.: $\alpha(\exp)=0.00\ 20$; $A_2=-0.24\ 13$, $A_4=-0.13\ 20$. $\operatorname{ce}(K)/(\gamma+\operatorname{ce})=0.0694\ 10$; $\operatorname{ce}(L)/(\gamma+\operatorname{ce})=0.0553\ 8$; $\operatorname{ce}(M)/(\gamma+\operatorname{ce})=0.01451\ 21$ $\operatorname{ce}(N)/(\gamma+\operatorname{ce})=0.00375\ 6$; $\operatorname{ce}(O)/(\gamma+\operatorname{ce})=0.000750\ 11$; $\operatorname{ce}(P)/(\gamma+\operatorname{ce})=8.20\times10^{-5}\ 12$ $\alpha(K)=0.0810\ 12$; $\alpha(L)=0.0646\ 9$; $\alpha(M)=0.01695\ 24$ $\alpha(N)=0.00438\ 7$; $\alpha(O)=0.000876\ 13$; $\alpha(P)=9.57\times10^{-5}\ 14$ Mult.: $\alpha(L)\exp=0.064\ 8$; $A_2=0.10\ 7$, $A_4=0.01\ 10$.
290.1 <i>I</i> 294.8 <i>I</i> 298.3 <i>3</i>	41 2 68 2	3795.2+x 3335.24+x 2054.32	21/2+	3505.1+x 3040.44+x 1756.10	17/2+	D D [E2]	0.1341	30 7	Mult.: $A_2=-0.22 \ 11$, $A_4=0.20 \ 14$. Mult.: $A_2=-0.26 \ 10$, $A_4=0.14 \ 12$. $ce(K)/(\gamma+ce)=0.0607 \ 9$; $ce(L)/(\gamma+ce)=0.0428 \ 6$; $ce(M)/(\gamma+ce)=0.01119 \ 17$ $ce(N)/(\gamma+ce)=0.00289 \ 5$; $ce(O)/(\gamma+ce)=0.000580 \ 9$; $ce(P)/(\gamma+ce)=6.40\times10^{-5} \ 10$ $\alpha(K)=0.0688 \ 10$; $\alpha(L)=0.0486 \ 7$; $\alpha(M)=0.01269 \ 19$ $\alpha(N)=0.00328 \ 5$; $\alpha(O)=0.000658 \ 10$; $\alpha(P)=7.26\times10^{-5} \ 11$ I_{γ} , Mult.: Unresolved from 299 γ in 204 At. I_{γ} : I γ (delayed)=111 \ 19 (deduced from the decay of the 67.9 ns isomer).
303.0 1	61 2	3524.7	31/2 ⁽⁺⁾	3221.7	29/2-	(E1)	0.0316		$\alpha(K)=0.0257 4; \alpha(L)=0.00450 7; \alpha(M)=0.001061 15$ $\alpha(N)=0.000273 4; \alpha(O)=5.71\times10^{-5} 8; \alpha(P)=7.42\times10^{-6} 11$ Mult: $\alpha(xp)=0.00, 20; A_2=-0.22, 10, A_4=0.09, 15$
314.9 2	119 2	1756.10	17/2+	1441.36	15/2+	M1+E2	0.482	77 12	ce(K)/(γ+ce)=0.264 3; ce(L)/(γ+ce)=0.0466 7; ce(M)/(γ+ce)=0.01103 17 ce(N)/(γ+ce)=0.00286 5; ce(O)/(γ+ce)=0.000612 9; ce(P)/(γ+ce)=8.45×10 ⁻⁵ 13 α (K)=0.391 6; α (L)=0.0691 10; α (M)=0.01634 23 α (N)=0.00423 6; α (O)=0.000906 13; α (P)=0.0001252 18 I _γ : I _γ (delayed)=198 21 (deduced from the decay of the 67.9 ns isomer).
331.6 <i>1</i>	239 8	969.81	13/2+	638.20	11/2-	E1	0.0257	100 23	Mult.: $\alpha(L)\exp=0.057$ 11, $A_2=-0.16$ 4, $A_4=0.04$ 7. $ce(K)/(\gamma+ce)=0.0204$ 3; $ce(L)/(\gamma+ce)=0.00355$ 5; $ce(M)/(\gamma+ce)=0.000836$ 12 $ce(N)/(\gamma+ce)=0.000215$ 3; $ce(O)/(\gamma+ce)=4.51\times10^{-5}$ 7; $ce(P)/(\gamma+ce)=5.88\times10^{-6}$ 9 $\alpha(K)=0.0210$ 3; $\alpha(L)=0.00364$ 5; $\alpha(M)=0.000857$ 12 $\alpha(N)=0.000220$ 3; $\alpha(O)=4.62\times10^{-5}$ 7; $\alpha(P)=6.03\times10^{-6}$ 9 I_{γ} : $I\gamma$ (delayed)=427 36 (deduced from the decay of the

S

 $^{205}_{85}\mathrm{At}_{120}\text{-}5$

						¹⁹⁷ Au(¹³	³ C,5n γ)	1984Da19	(continued)	
							$\gamma(^{205}\text{At})$) (continue	d)	
E_{γ}^{\dagger}	I_{γ}^{\dagger}	E _i (level)	\mathbf{J}_i^π	E_f	\mathbf{J}_f^{π}	Mult. [‡]	δ^{\dagger}	α [#]	I γ (delayed) [†]	Comments
332.9 2	708 <i>5</i>	1563.53	21/2-	1230.58	17/2-	E2		0.0972	1073 33	 67.9 ns isomer). Mult.: A₂=-0.05 4, A₄=-0.08 6. Contaminated by the 332.9γ. ce(K)/(γ+ce)=0.0493 7; ce(L)/(γ+ce)=0.0293 4; ce(M)/(γ+ce)=0.00761 11 ce(N)/(γ+ce)=0.00197 3; ce(O)/(γ+ce)=0.000396
										6; ce(P)/(γ +ce)=4.44×10 ⁻⁵ 7 α (K)=0.0540 8; α (L)=0.0322 5; α (M)=0.00835 12 α (N)=0.00216 3; α (O)=0.000435 7; α (P)=4.87×10 ⁻⁵ 7 I _{γ} : I γ (delayed)=600 36 (deduced from the decay of the 67.9 ns isomer). Mult.: α (K)exp=0.052 5, α (L)exp=0.025 5 (deduced by assuming that 331.6 γ is E1), $A_{2}=0.19$ 2, $A_{4}=-0.04$ 3
335.2 1	53 4 32 2	4150.1	37/2	3814.9	35/2+	D D				Mult: $A_2 = -0.43$ 25 $A_4 = -0.10$ 28. Mult: $A_2 = -0.43$ 25 $A_4 = -0.04$ 18
342.4 2	54 2 82 2	3382.8+x 3040.44+x		3040.44+x 2696.24+x		D				Mult: $A_2 = -0.64$ 9, $A_4 = 0.02$ 13. Mult: $A_2 = -0.37$ 6, $A_4 = 0.07$ 8
372.4 1	478 3	1935.94	23/2-	1563.53	21/2-	M1+E2	-0.05 2	0.305	942 22	right: $R_2 = 0.19 + 0.184 + 0.01 + 0.100 + $
x390.6 3	40 6	4546.0	20/2	4150 1	27/2	D				$A_2 = -0.192$, $A_4 = 0.052$. Mult.: $A_2 = -0.1423$, $A_4 = -0.0532$.
403.6 1	158 <i>4</i>	2339.60	39/2 29/2+	4100.1 1935.94	23/2-	E3		0.240	756 29	whith: $A_2 = -0.37$ 12, $A_4 = -0.27$ 21, $ce(K)/(\gamma+ce) = 0.0744$ 10; $ce(L)/(\gamma+ce) = 0.0881$ 12; $ce(M)/(\gamma+ce) = 0.0037$ 4 $ce(N)/(\gamma+ce) = 0.00016$ 9; $ce(O)/(\gamma+ce) = 0.001238$ 18; $ce(P)/(\gamma+ce) = 0.0001375$ 20 $\alpha(K) = 0.0923$ 13; $\alpha(L) = 0.1093$ 16; $\alpha(M) = 0.0294$ 5 $\alpha(N) = 0.00764$ 11; $\alpha(O) = 0.001536$ 22; $\alpha(P) = 0.0001705$ 24 Mult.: $\alpha(K) exp = 0.092$ 5, $\alpha(L) exp = 0.12$ 1, $\alpha(M) exp = 0.044$ 11 (assuming that 494.1γ is E2); $A_2 = 0.03$ 6, $A_4 = 0.01$ 8. The isotropic angular distributions are attributed to relaxation of the alignment during the long lifetime of the isomer.

From ENSDF

Т

					¹⁹⁷ Au(¹	³ C,5nγ)	1984Da19	(continued)	
						γ (²⁰⁵ At) (continued	d)	
E_{γ}^{\dagger}	I_{γ}^{\dagger}	E _i (level)	\mathbf{J}_i^{π}	$\mathbf{E}_f \qquad \mathbf{J}_f^{\pi}$	Mult. [‡]	δ^{\dagger}	α #	I γ (delayed) [†]	Comments
436.3 1	53 2	1877.74	17/2+	1441.36 15/2+	M1+E2		0.199	30 14	ce(K)/(γ +ce)=0.1351 17; ce(L)/(γ +ce)=0.0237 4; ce(M)/(γ +ce)=0.00559 8 ce(N)/(γ +ce)=0.001449 21; ce(O)/(γ +ce)=0.000310 5; ce(P)/(γ +ce)=4.29×10 ⁻⁵ 6 α (K)=0.1621 23; α (L)=0.0284 4; α (M)=0.00671 10 α (N)=0.001738 25; α (O)=0.000372 6; α (P)=5.14×10 ⁻⁵ 8 I $_{\gamma}$: I γ (delayed)=129 10 (deduced from the decay of the 67.9 ns isomer).
451.3 <i>3</i>	72 2	4405.7	(39/2+)	3954.4 (37/2 ⁺)	M1+E2		0.182		Mult.: $A_2 = -0.22$ 8, $A_4 = -0.10$ 12. $\alpha(K) = 0.1481$ 21; $\alpha(L) = 0.0259$ 4; $\alpha(M) = 0.00612$ 9 $\alpha(N) = 0.001586$ 23; $\alpha(O) = 0.000340$ 5; $\alpha(P) = 4.69 \times 10^{-5}$ 7
468.0 <i>1</i>	339 2	1132.28	15/2-	664.25 13/2-	M1+E2	-0.30 3	0.155 3	345 23	Mult.: $\alpha(K)\exp=0.10 \ 6, \ A_2=-0.46 \ 7, \ A_4=0.14 \ 11.$ $ce(K)/(\gamma+ce)=0.1086 \ 19; \ ce(L)/(\gamma+ce)=0.0194 \ 4;$ $ce(M)/(\gamma+ce)=0.00459 \ 8$ $ce(N)/(\gamma+ce)=0.001189 \ 20;$ $ce(O)/(\gamma+ce)=0.000254 \ 5;$ $ce(P)/(\gamma+ce)=3.49\times10^{-5} \ 7$ $\alpha(K)=0.1254 \ 25; \ \alpha(L)=0.0224 \ 4; \ \alpha(M)=0.00530 \ 9$ $\alpha(N)=0.001373 \ 23; \ \alpha(O)=0.000293 \ 5;$ $\alpha(P)=4.03\times10^{-5} \ 7$ $I_{\gamma}: \ I_{\gamma} \ (delayed)=457 \ 12 \ (deduced \ from \ the \ decay \ of \ the \ 67.9 \ ns \ isomer).$ Mult.: $\alpha(K)\exp=0.12, \ \alpha(L)\exp=0.027; \ A_2=-0.42 \ 1, \ A_4=0.05 \ 2. \ Partially \ overlap \ with \ 471.5\gamma \ (A_2=-0.35 \ 3, \ A_4=-0.02 \ 4) \ (1984Da19).$
406.3 2 471.5 <i>I</i>	143 3	1441.36	15/2+	969.81 13/2+	M1+E2	-0.21 5	0.157 4	98 15	ce(K)/(γ+ce)=0.1100 22; ce(L)/(γ+ce)=0.0194 4; ce(M)/(γ+ce)=0.00459 9 ce(N)/(γ+ce)=0.001190 22; ce(O)/(γ+ce)=0.000255 5; ce(P)/(γ+ce)=3.51×10 ⁻⁵ 7 α (K)=0.127 3; α (L)=0.0225 5; α (M)=0.00531 10 α (N)=0.00138 3; α (O)=0.000295 6; α (P)=4.06×10 ⁻⁵ 8 I _γ : I _γ (delayed)=309 11 (deduced from the decay of the 67.9 ns isomer). Mult.: α (exp) values unresolved from that for 468.0γ, A ₂ =-0.35 3, A ₄ =-0.02 4.

 $^{205}_{85}\mathrm{At}_{120}$ -7

							¹⁹⁷ A	u(¹³ C,5nγ)	1984Da1	9 (continued)	
								γ ⁽²⁰⁵	⁵ At) (continue	ed)	
	${\rm E_{\gamma}}^{\dagger}$	I_{γ}^{\dagger}	E _i (level)	\mathbf{J}_i^{π}	E_f	\mathbf{J}_f^{π}	Mult. [‡]	δ^{\dagger}	α #	I γ (delayed) [†]	Comments
	494.1 <i>I</i>	26.9	1132.28	15/2-	638.20	11/2-	E2		0.0346	192 19	ce(K)/(γ +ce)=0.0227 4; ce(L)/(γ +ce)=0.00807 <i>12</i> ; ce(M)/(γ +ce)=0.00204 3 ce(N)/(γ +ce)=0.000528 8; ce(O)/(γ +ce)=0.0001080 <i>16</i> ; ce(P)/(γ +ce)=1.289×10 ⁻⁵ <i>18</i> α (K)=0.0234 4; α (L)=0.00835 <i>12</i> ; α (M)=0.00211 3 α (N)=0.000546 8; α (O)=0.0001117 <i>16</i> ; α (P)=1.334×10 ⁻⁵ <i>19</i> I $_{\gamma}$: I γ (delayed)=227 <i>10</i> (deduced from the decay of the 67.9 ns isomer). Mult.: A ₂ =0.25 3, A ₄ =0.03 4. Conversion coefficient values are contaminated by these for the 403.6 γ .
	526.6 <i>1</i>	47 2	4341.5	37/2 ⁽⁺⁾	3814.9	35/2+	M1+E2	-0.23 8	0.116 4		α (K)=0.094 4; α (L)=0.0166 5; α (M)=0.00393 11 α (N)=0.00102 3; α (O)=0.000218 6; α (P)=3.00×10 ⁻⁵ 9 Multic α (C)=0.05 11 A = 0.45 15
0	540.3 1	116 4	3814.9	35/2+	3274.6	33/2+	M1+E2	-0.07 5	0.1123 18		Mult.: $\alpha(K)\exp(0.20; A_2=-0.65 11, A_4=0.45 15)$ $\alpha(K)=0.0914 15; \alpha(L)=0.01594 24;$ $\alpha(M)=0.00376 6$ $\alpha(N)=0.000974 15; \alpha(O)=0.000209 4;$ $\alpha(P)=2.89\times10^{-5} 5$ Mult.: $\alpha(K)\exp=0.12 2; A_2=-0.38 9, A_4=-0.04 14.$
	x550.7 5 553.0 1	46 5 272 <i>3</i>	3274.6	33/2+	2721.6	29/2+	E2		0.0266		$\alpha(K)=0.0187 \ 3; \ \alpha(L)=0.00591 \ 9; \ \alpha(M)=0.001484$ 21 $\alpha(N)=0.000384 \ 6; \ \alpha(O)=7.89\times10^{-5} \ 11;$ $\alpha(P)=9.59\times10^{-6} \ 14$ Multi- $\alpha(K)=0.024 \ 4$, $\alpha=0.044$
	563.3 1	202 3	2499.24	27/2-	1935.94	23/2-	E2		0.0255		Mult.: $\alpha(\mathbf{K}) \exp[-0.05\ I]$, $A_2 = 0.36\ S$, $A_4 = -0.04\ 4$. $\alpha(\mathbf{K}) = 0.0180\ 3$; $\alpha(\mathbf{L}) = 0.00560\ 8$; $\alpha(\mathbf{M}) = 0.001403$ 20 $\alpha(\mathbf{N}) = 0.000363\ 5$; $\alpha(\mathbf{O}) = 7.47 \times 10^{-5}\ 11$; $\alpha(\mathbf{P}) = 9.10 \times 10^{-6}\ 13$ Mult: $\alpha(\mathbf{K}) \exp[-0.028\ 4$; $A_2 = 0.30\ 4$, $A_4 = -0.08\ 6$
	566.4 1	605 4	1230.58	17/2-	664.25	13/2-	E2		0.0251	707 36	$ce(K)/(\gamma+ce)=0.01738\ 24;\ ce(L)/(\gamma+ce)=0.00537 8;\ ce(M)/(\gamma+ce)=0.001346\ 19 ce(N)/(\gamma+ce)=0.000348\ 5; ce(O)/(\gamma+ce)=7.17\times10^{-5}\ 10; ce(P)/(\gamma+ce)=8.74\times10^{-6}\ 13 \alpha(K)=0.01782\ 25;\ \alpha(L)=0.00551\ 8; \alpha(M)=0.000357\ 5;\ \alpha(O)=7.35\times10^{-5}\ 11;$

 ∞

From ENSDF

 $^{205}_{85}\mathrm{At}_{120}\text{--}8$

Т

						¹⁹⁷ A	$\mathbf{u}(^{13}\mathbf{C},\mathbf{5n}\gamma)$	1984Da1	9 (continued)	
							γ ⁽²⁰⁵	At) (continue	ed)	
${\rm E_{\gamma}}^{\dagger}$	I_{γ}^{\dagger}	E _i (level)	\mathbf{J}_i^{π}	E_f	\mathbf{J}_f^{π}	Mult. [‡]	δ^{\dagger}	α #	I γ (delayed) [†]	Comments
^x 605.5 2	70 20									 α(P)=8.96×10⁻⁶ 13 I_γ: I_γ (delayed)=546 13 (deduced from the decay of the 67.9 ns isomer). Mult.: α(K)exp=0.020 2, α(L)exp=0.0060 15, A₂=0.21 2, A₄=0.02 2.
x612.7 5 620.3 1	70 <i>50</i> 43 <i>3</i>	3894.9	35/2	3274.6	33/2+	D				Mult.: A ₂ =-0.42 20, A ₄ =0.30 35.
^x 625.9 <i>1</i> 631.8 <i>1</i>	28 <i>4</i> 39 <i>4</i>	1862.29	19/2-	1230.58	17/2-	D M1+E2		0.0746	19 <i>4</i>	Mult.: $A_2 = -0.81$ 37, $A_4 = -0.09$ 57. $ce(K)/(\gamma+ce)=0.0565$ 8; $ce(L)/(\gamma+ce)=0.00981$ 14; $ce(M)/(\gamma+ce)=0.00231$ 4 $ce(N)/(\gamma+ce)=0.000599$ 9; $ce(O)/(\gamma+ce)=0.0001283$ 18; $ce(P)/(\gamma+ce)=1.775\times10^{-5}$ 25 $\alpha(K)=0.0607$ 9; $\alpha(L)=0.01054$ 15; $\alpha(M)=0.00249$ 4 $\alpha(N)=0.000644$ 9; $\alpha(O)=0.0001379$ 20; $\alpha(P)=1.91\times10^{-5}$ 3 I _{\gamma} : I _Y (delayed)=69 11 (deduced from the decay of the 67.9 ns isomer).
										Mult.: $A_2=0.04$ 26, $A_4=-0.06$ 42. I γ (delayed): Value inferred from the ns
^x 637.2 3	129 5					M1+E2		0.0729		somer decay intensity. $\alpha(K)=0.0594 \ 9; \ \alpha(L)=0.01030 \ 15; \ \alpha(M)=0.00243 \ 4$
638.2 1	475 5	638.20	11/2-	0.0	9/2-	M1+E2	+0.20 5	0.0706 15	291 <i>23</i>	$\begin{aligned} \alpha(N) = 0.000629 \ 9; \ \alpha(O) = 0.0001348 \ 19; \\ \alpha(P) = 1.86 \times 10^{-5} \ 3 \\ \text{Mult.:} \ \alpha(K) \exp = 0.02 \ 2; \ A_2 = -0.26 \ 9, \ A_4 = -0.03 \ 14. \\ \text{ce}(K)/(\gamma + \text{ce}) = 0.0536 \ 11; \ \text{ce}(L)/(\gamma + \text{ce}) = 0.00936 \\ 18; \ \text{ce}(M)/(\gamma + \text{ce}) = 0.00221 \ 5 \\ \text{ce}(N)/(\gamma + \text{ce}) = 0.000572 \ 11; \\ \text{ce}(O)/(\gamma + \text{ce}) = 0.000572 \ 12; \\ \text{ce}(P)/(\gamma + \text{ce}) = 1.69 \times 10^{-5} \ 4 \\ \alpha(K) = 0.0574 \ 13; \ \alpha(L) = 0.01002 \ 19; \\ \alpha(M) = 0.000612 \ 12; \ \alpha(O) = 0.0001310 \ 25; \\ \alpha(P) = 1.81 \times 10^{-5} \ 4 \\ \text{I}_{\gamma}: \ \text{I}_{\gamma} \ (\text{delayed}) = 644 \ 14 \ (\text{deduced from the decay} \\ \text{of the } (7.0 \ \text{ms} \ \text{orgment}) \end{aligned}$
659.0 <i>1</i>	354 <i>4</i>	2721.6	29/2+	2062.57	25/2+	E2		0.0180		Mult.: $\alpha(K) \exp = 0.023 \ 4$, $A_2 = -0.35 \ 3$, $A_4 = -0.06 \ 4$. $\alpha(K) = 0.01326 \ 19; \ \alpha(L) = 0.00358 \ 5; \ \alpha(M) = 0.000887 \ 13 \ \alpha(N) = 0.000229 \ 4; \ \alpha(O) = 4.75 \times 10^{-5} \ 7;$

 $^{205}_{85}\mathrm{At}_{120}\text{-}9$

						197	Au (¹³ C ,5nγ	⁽) 1984D a	a19 (continued)	
							γ ⁽²⁰	⁰⁵ At) (contin	ued)	
E_{γ}^{\dagger}	I_{γ}^{\dagger}	E _i (level)	\mathbf{J}_i^{π}	E_f	\mathbf{J}_{f}^{π}	Mult. [‡]	δ^{\dagger}	α #	$I\gamma$ (delayed) [†]	Comments
664.3 1	1000 6	664.25	13/2-	0.0	9/2-	E2		0.01770	1000 25	$\begin{aligned} \alpha(P) &= 5.93 \times 10^{-6} \ 9 \\ \text{Mult.:} \ \alpha(K) &= p = 0.017 \ 3; \ A_2 &= 0.41 \ 3, \ A_4 &= -0.12 \ 5. \\ &\text{ce}(K) / (\gamma + \text{ce}) &= 0.01283 \ 18; \ \text{ce}(L) / (\gamma + \text{ce}) &= 0.00344 \ 5; \\ &\text{ce}(M) / (\gamma + \text{ce}) &= 0.000852 \ 12 \\ &\text{ce}(N) / (\gamma + \text{ce}) &= 0.000220 \ 3; \ \text{ce}(O) / (\gamma + \text{ce}) &= 4.57 \times 10^{-5} \\ &7; \ \text{ce}(P) / (\gamma + \text{ce}) &= 5.71 \times 10^{-6} \ 8 \\ &\alpha(K) &= 0.01305 \ 19; \ \alpha(L) &= 0.00350 \ 5; \ \alpha(M) &= 0.000868 \end{aligned}$
										13 α (N)=0.000224 4; α (O)=4.65×10 ⁻⁵ 7; α (P)=5.81×10 ⁻⁶ 9 Mult.: α (K)exp=0.013 2, A ₂ =0.21 2, A ₄ =0.04 2. I _γ : I _γ (delayed)=1000 17 (deduced from the decay of the G2 0 rs interval)
722.5 1	119 4	3221.7	29/2-	2499.24	27/2-	M1+E2	-0.10 5	0.0521 9		$\alpha(K)=0.0424\ 7;\ \alpha(L)=0.00734\ 12;\ \alpha(M)=0.00173\ 3$ $\alpha(N)=0.000448\ 7;\ \alpha(O)=9.60\times10^{-5}\ 16;$ $\alpha(P)=1.328\times10^{-5}\ 22$
730.0 1	181 <i>3</i>	1862.29	19/2-	1132.28	15/2-	E2		0.01451	116 25	Mult.: $\alpha(K)\exp=0.025\ 6;\ A_2=-0.43\ 8,\ A_4=-0.02\ 12.$ $ce(K)/(\gamma+ce)=0.01075\ 15;\ ce(L)/(\gamma+ce)=0.00268\ 4;$ $ce(M)/(\gamma+ce)=0.000660\ 10$ $ce(N)/(\gamma+ce)=0.000170\ 24;$ $ce(O)/(\gamma+ce)=3.55\times10^{-5}\ 5;$ $ce(P)/(\gamma+ce)=4.49\times10^{-6}\ 7$ $\alpha(K)=0.01090\ 16;\ \alpha(L)=0.00272\ 4;\ \alpha(M)=0.000670\ 10$
										$\begin{array}{l} \alpha({\rm N}) {=} 0.0001732 \ 25; \ \alpha({\rm O}) {=} 3.60 {\times} 10^{-5} \ 5; \\ \alpha({\rm P}) {=} 4.56 {\times} 10^{-6} \ 7 \\ {\rm I}_{\gamma}: \ {\rm I}_{\gamma} \ ({\rm delayed}) {=} 380 \ 13 \ ({\rm deduced from the decay of the 67.9 ns isomer).} \end{array}$
786.2 2	37 3	1756.10	17/2+	969.81	13/2+	E2		0.01246	23 4	Mult.: $\alpha(K)\exp=0.013 2$, $A_2=0.19 5$, $A_4=0.01 7$. $ce(K)/(\gamma+ce)=0.00936 13$; $ce(L)/(\gamma+ce)=0.00222 4$; $ce(M)/(\gamma+ce)=0.000544 8$ $ce(N)/(\gamma+ce)=0.0001406 20$; $ce(O)/(\gamma+ce)=2.93\times10^{-5} 5$; $ce(P)/(\gamma+ce)=3.74\times10^{-6} 6$ $\alpha(K)=0.00948 14$; $\alpha(L)=0.00225 4$; $\alpha(M)=0.000550 8$ $\alpha(N)=0.0001423 20$; $\alpha(O)=2.97\times10^{-5} 5$; $\alpha(P)=3.79\times10^{-6} 6$ I_{γ} : I_{γ} (delayed)=83 10 (deduced from the decay of the 67.9 ns isomer). Mult.: $A_2=0.47 21$, $A_4=-0.60 40$. I_{γ} (delayed): Value inferred from the ns isomer decay intensity.

From ENSDF

Т

197								⁹⁷ Au(¹³ C,5nγ) 1984Da19 (continued)		
								γ ⁽²⁰⁵ At) (co	ntinued)	
E_{γ}^{\dagger}	I_{γ}^{\dagger}	E _i (level)	\mathbf{J}_i^{π}	E_f	J_f^π	Mult. [‡]	α #	I γ (delayed) [†]	Comments	
x794.2 3	47 3				_	(E3)	0.0317		$\alpha(K)=0.0211 \ 3; \ \alpha(L)=0.00793 \ 12; \ \alpha(M)=0.00202 \ 3$ $\alpha(N)=0.000525 \ 8; \ \alpha(O)=0.0001083 \ 16; \ \alpha(P)=1.325\times10^{-5} \ 19$ Mult.: $\alpha(K)\exp=0.021 \ 3, \ \alpha(L)\exp=0.0072 \ 2, \ \alpha(M)\exp=0.004 \ 2$ (urresolved from 797 4y): $A_{2}=0.50 \ 17 \ A_{4}=-0.02 \ 25$	
^x 797.4 3	79 4					(E3)	0.0314		$\alpha(K)=0.0210 \ 3; \ \alpha(L)=0.00782 \ 11; \ \alpha(M)=0.00199 \ 3 \\ \alpha(N)=0.000518 \ 8; \ \alpha(O)=0.0001068 \ 15; \ \alpha(P)=1.308\times10^{-5} \ 19 \\ \text{Mult.:} \ \alpha(K)\exp=0.021 \ 3, \ \alpha(L)\exp=0.0072 \ 2, \ \alpha(M)\exp=0.004 \ 2 \\ (urresolved from 794 \ 2\gamma): \ \Lambda_2=0 \ 28 \ 10 \ \Lambda_4=0 \ 03 \ 20 \\ \ \beta(M)=0.0012 \ \beta(M) \ $	
*822.0 <i>10</i> 969.6 <i>2</i>	50 <i>3</i> 42 2	969.81	13/2+	0.0	9/2-	M2	0.0588	27 4	Mult.: $\alpha(K)\exp=0.030\ 5;\ A_2=0.12\ 17,\ A_4=0.09\ 26.$ ce(K)/(γ +ce)=0.0442\ 6; ce(L)/(γ +ce)=0.00860\ 12; ce(M)/(γ +ce)=0.000536\ 8; ce(O)/(γ +ce)=0.0001146\ 16; ce(P)/(γ +ce)=1.574×10 ⁻⁵ 22 $\alpha(K)=0.0468\ 7;\ \alpha(L)=0.00911\ 13;\ \alpha(M)=0.00219\ 3$ $\alpha(N)=0.000568\ 8;\ \alpha(O)=0.0001214\ 17;\ \alpha(P)=1.666×10^{-5}\ 24$ I _{γ} : I γ (delayed)=98\ 6 (deduced from the decay of the 67.9 ns isomer). Mult.: $\alpha(K)\exp=0.06\ 4,\ \alpha(L)\exp=0.010\ 7,\ A_2=0.10\ 12,\ A_4=0.05\ 20.$ I γ (delayed): Value inferred from the ns isomer decay intensity.	

[†] From 1984Da19. I γ correspond to in-beam values, while I γ (delayed) is for transitions following the decay of the 7.76 μ s isomer. [‡] From 1984Da19, based on $\gamma(\theta)$, conversion electron coefficients, and multiple decay branches, unless otherwise stated. [#] Additional information 2. ^x γ ray not placed in level scheme.

 $^{205}_{85}{\rm At}_{120}\text{--}11$

From ENSDF

 $^{205}_{85}{\rm At}_{120}$

