¹⁹⁷Au(¹²C,4n γ) 1982Sj01

History							
Туре	Author	Citation	Literature Cutoff Date				
Full Evaluation	F. G. Kondev	NDS 166, 1 (2020)	20-Apr-2020				

1982Sj01: Reaction: 197 Au(12 C,4n γ); Beam: 12 C, E=77 MeV; Target: 197 Au, 5 mg/cm² thick; Experiments: $\gamma\gamma$ (t) using two large volume Ge(Li) detectors, $\gamma(\theta)$ using a single Ge(Li) detector located at five angles between 90° and 160° and $\gamma(t)$ using a pulsed beam with a repetition rate of 1 and 4 μ s, and pulse FWHM of about 40 ns; Measured: E γ , I γ , $\gamma(\theta)$ and T_{1/2}. Deduced: levels, J^{π} , transition multipolarities and strengths, and configurations.

Other: 1972Ha13: Au($^{12}C, 4n\gamma$); E=62-81 MeV; measured γ , σ (E), γ (t).

205	At	Lev	els
205	At	Lev	els

E(level) [†]	$J^{\pi \ddagger}$	T _{1/2}	Comments				
0.0#	9/2-	26.9 min 8	$J^{\pi}, T_{1/2}$: From Adopted Levels.				
637.97 [@] 18	11/2-						
664.03 [@] 18	$13/2^{-}$						
969.4 ^{&} 4	$(13/2^+)$						
1131.87 ^a 22	$15/2^{-}$						
1230.2 ^{<i>a</i>} 3	$17/2^{-}$						
1440.8 ^b 4	$(15/2^+)$						
1563.0 ^c 5	$21/2^{-}$						
1755.7 <mark>0</mark> 5	$(17/2^+)$						
1861.6 4	$(19/2^{-})$						
18/7.04	$(17/2^{+})$						
1935.3 ^{<i>a</i>} 6	$23/2^{(-)}$						
2053.1 4	$(21/2^{+})$	(2.0					
2061.7° 6	25/2(+)	63.8 ns 21	$T_{1/2}$: From $\gamma(t)$ in 1982Sj01. The quoted uncertainty includes systematics one due to background subtraction. Other: 110 ns 25 from $\gamma(t)$ in 1972Ha13.				
2338.7 6	25/2 ⁽⁻⁾		J^{π} : Values quoted by the authors. See Adopted Levels and ¹⁹⁷ Au(¹³ C,5n γ) for additional details.				
2338.7+x f	$(29/2^+)$	≈2.1 µs	Additional information 1.				
			E(level): The introduction of this level in 1982Sj01 is based on the observed prompt components in the γ (t) spectrum produced by gating on 403.4 γ .				
			T _{1/2} : From $\gamma(t)$ during the 4 μ s beam pulsing experiment.				
2783.8 8	27/2 ⁽⁺⁾		E(level): This level is not adopted, due to a different placement of the depopulating 722.1 keV transition in the Adopted Levels				

[†] From a least-squares fit to $E\gamma$.

[‡] From 1982Sj01, based on determined γ -ray transition multipolarity.

configuration= $\pi(h_{9/2}^{+1})$.

^(a) configuration= $\pi(h_{9/2}^{+1}) \otimes \nu(f_{5/2}^{-2})_{2^+}$.

^{*a*} configuration= $\pi(i_{13/2}^{+1})$. ^{*a*} configuration= $\pi(h_{9/2}^{+1}) \otimes \nu(f_{5/2}^{-2})_{4^+}$. ^{*b*} configuration= $\pi(i_{13/2}^{+1}) \otimes \nu(f_{5/2}^{-2})_{2^+}$.

^{*c*} configuration= $\pi(h_{9/2}^{+3})$.

 $\substack{d \text{ configuration} = \pi((h_{9/2}^{+2})_{8^+}, f_{7/2}^{+1}). \\ e \text{ configuration} = \pi(h_{9/2}^{+1}) \otimes \nu(i_{13/2}^{-1}, f_{5/2}^{-1})_{9^-}. \\ f \text{ configuration} = \pi((h_{9/2}^{+2})_{8^+}, i_{13/2}^{+1}).$

				¹⁹⁷ Au(12 C,4n γ) 1982Sj01 (continued)		(continued)		
$\gamma(^{205}\mathrm{At})$								
E_{γ}^{\dagger}	I_{γ}^{\dagger}	E _i (level)	\mathbf{J}_i^{π}	E_f	\mathbf{J}_{f}^{π}	Mult. [‡]	α #	Comments
(8.6 7)	≈6.3×10 ⁻⁵	2061.7	25/2 ⁽⁺⁾	2053.1	(21/2+)	[E2]	3.2×10 ⁵ 17	$\begin{aligned} &\alpha(M) = 2.4 \times 10^5 \ I3 \\ &\alpha(N) = 6.E4 \ 4; \ \alpha(O) = 1.2 \times 10^4 \ 7; \\ &\alpha(P) = 1.2 \times 10^3 \ 7 \end{aligned}$ E _y : From level energy differences. Not observed directly, but required in the out-of-beam coincidence datam since 176.1 _y and 191.6 _y have delayed components with T _{1/2} =63.8 ns 21.
(98.3 4)		1230.2	17/2-	1131.87	15/2-			 I_γ: From Ti(126.4)/Ti(9)≈0.7, estimated from delayed γ-ray spectrum (1982Sj01). E_γ: From level energy differences. Not observed directly, but required in the out-of-beam coincidence relationship between 467.9γ and 493.8γ (below the 17/2⁻ level) and 332.8γ and
126.4 <i>3</i>	16.0 <i>16</i>	2061.7	25/2(+)	1935.3	23/2 ⁽⁻⁾	E1	0.259	372.3 γ (above the 17/2 ⁻ level). α (K)=0.205 3; α (L)=0.0411 7; α (M)=0.00977 15 α (N)=0.00250 4; α (O)=0.000511 8; α (P)=6.24×10 ⁻⁵ 10 E $_{\gamma}$: The absence of a prompt component in the 126.4 γ (t) spectrum suggests that this γ ray
176.1 2	11.0 <i>11</i>	2053.1	(21/2+)	1877.0	(17/2+)	E2	0.787	directly depopulates an isomer. Mult.: A ₂ =-0.05 5 and $\alpha(exp)$ from intensity balance considerations (1982Sj01). $\alpha(K)$ =0.216 3; $\alpha(L)$ =0.423 7; $\alpha(M)$ =0.1129 17 $\alpha(N)$ =0.0292 5; $\alpha(O)$ =0.00576 9; $\alpha(P)$ =0.000600 9
191.6 4	16 4	2053.1	(21/2 ⁺)	1861.6	(19/2 ⁻)			Mult.: $A_2=0.12$ 6. E_{γ}, I_{γ} : Contaminated by transition in ¹⁹⁷ Au. I γ is estimate from
x253.4 3 315.0 3	10.0 <i>10</i> 10.0 <i>10</i>	1755.7	(17/2+)	1440.8	(15/2 ⁺)	M1+E2	0.482	Mult: A_2 =0.46 7, A_4 =0.15 11. $\alpha(K)$ =0.391 6; $\alpha(L)$ =0.0691 10; $\alpha(M)$ =0.01633 24 $\alpha(N)$ =0.00423 6; $\alpha(O)$ =0.000906 J_3 ; $\alpha(P)$ =0.0001251 J8
331.4 <i>3</i>	≈32	969.4	(13/2+)	637.97	11/2-	[E1]	0.0258	Mult.: $A_2 = -0.24 \ 6$, $A_4 = 0.12 \ 10$. $\alpha(K) = 0.0210 \ 3$; $\alpha(L) = 0.00364 \ 6$; $\alpha(M) = 0.000858 \ 13$ $\alpha(N) = 0.000221 \ 4$; $\alpha(O) = 4.63 \times 10^{-5}$
332.8 4	77 8	1563.0	21/2-	1230.2	17/2-	E2	0.0973	7; $\alpha(P)=6.04 \times 10^{-6} \ 9$ $\alpha(K)=0.0541 \ 8; \ \alpha(L)=0.0322 \ 5;$ $\alpha(M)=0.00836 \ 13$ $\alpha(N)=0.00216 \ 4; \ \alpha(O)=0.000435$ 7; $\alpha(P)=4.88 \times 10^{-5} \ 8$
372.3 2	52 5	1935.3	23/2 ⁽⁻⁾	1563.0	21/2-	M1+E2	0.306	Mult.: $A_2=0.29$ 5. $\alpha(K)=0.248$ 4; $\alpha(L)=0.0437$ 7;

Continued on next page (footnotes at end of table)

¹⁹⁷Au(12 C,4n γ) **1982Sj01** (continued)

$\gamma(^{205}\text{At})$ (continued)

E_{γ}^{\dagger}	I_{γ}^{\dagger}	E _i (level)	\mathbf{J}_i^π	E_f	\mathbf{J}_{f}^{π}	Mult. [‡]	α #	Comments
								$\alpha(M)=0.01033 \ 15$ $\alpha(N)=0.00267 \ 4; \ \alpha(O)=0.000573 \ 8;$ $\alpha(P)=7.91\times10^{-5} \ 12$ Mult : $A_2=-0.18 \ 4.$
403.4 2 436.2 2	20.0 20 ≈12	2338.7 1877.0	25/2 ⁽⁻⁾ (17/2 ⁺)	1935.3 1440.8	23/2 ⁽⁻⁾ (15/2 ⁺)			A ₂ =-0.13 3. I _{γ} : Estimate from a delayed γ -ray
467.9 2	37 4	1131.87	15/2-	664.03	13/2-	M1+E2	0.1653	spectrum. $\alpha(K)=0.1344 \ 19; \ \alpha(L)=0.0235 \ 4; \ \alpha(M)=0.00555 \ 8 \ \alpha(N)=0.001438 \ 21; \ \alpha(O)=0.000308 \ 5; \ \alpha(P)=4.26 \times 10^{-5} \ 6$
471.4 <i>4</i>	16 <i>16</i>	1440.8	(15/2+)	969.4	(13/2+)	(M1+E2)	0.1620	Mult.: $A_2 = -0.35 \ 4.$ $\alpha(K) = 0.1318 \ 19; \ \alpha(L) = 0.0231 \ 4;$ $\alpha(M) = 0.00544 \ 8$ $\alpha(N) = 0.001410 \ 20; \ \alpha(O) = 0.000302 \ 5;$ $\alpha(P) = 4.17 \times 10^{-5} \ 6$
493.8 <i>3</i>	16.0 <i>16</i>	1131.87	15/2-	637.97	11/2-	E2	0.0346	Mult.: $A_2 = -0.32 \ 4$. $\alpha(K) = 0.0235 \ 4$; $\alpha(L) = 0.00836 \ 12$; $\alpha(M) = 0.00211 \ 3$ $\alpha(N) = 0.000547 \ 8$; $\alpha(O) = 0.0001119 \ 16$; $\alpha(P) = 1.336 \times 10^{-5} \ 19$
^x 563.6 4 566.2 2	21.0 <i>21</i> 66 7	1230.2	17/2-	664.03	13/2-	E2	0.0252	Mult.: $A_2=0.31$ 6. Mult.: $A_2=0.26$ 8. $\alpha(K)=0.01783$ 25; $\alpha(L)=0.00552$ 8; $\alpha(M)=0.001381$ 20 $\alpha(N)=0.000357$ 5; $\alpha(O)=7.35\times10^{-5}$ 11; $\alpha(P)=8.97\times10^{-6}$ 13
637.9 2	54 5	637.97	11/2-	0.0	9/2-	M1+E2	0.0727	Mult.: A ₂ =0.28 4. α (K)=0.0592 9; α (L)=0.01027 15; α (M)=0.000242 4 α (N)=0.000627 9; α (O)=0.0001344 19; α (P)=1.86×10 ⁻⁵ 3
664.1 2	100 <i>10</i>	664.03	13/2-	0.0	9/2-	E2	0.01771	Mult.: $A_2 = -0.36 \ 4.$ $\alpha(K) = 0.01306 \ 19; \ \alpha(L) = 0.00351 \ 5;$ $\alpha(M) = 0.000868 \ 13$ $\alpha(N) = 0.000225 \ 4; \ \alpha(O) = 4.65 \times 10^{-5} \ 7;$ $\alpha(P) = 5.81 \times 10^{-6} \ 9$
722.1 4	10.0 10	2783.8	27/2 ⁽⁺⁾	2061.7	25/2 ⁽⁺⁾	M1+E2	0.0525	Mult.: A ₂ =0.25 4. $\alpha(K)=0.0428$ 6; $\alpha(L)=0.00740$ 11; $\alpha(M)=0.001744$ 25 $\alpha(N)=0.000452$ 7; $\alpha(O)=9.67\times10^{-5}$ 14; $\alpha(P)=1.339\times10^{-5}$ 19
729.8 <i>3</i>	19.0 <i>19</i>	1861.6	(19/2-)	1131.87	15/2-	E2	0.01452	Mult.: $A_2 = -0.68 \ 6.$ $\alpha(K) = 0.01091 \ 16; \ \alpha(L) = 0.00272 \ 4;$ $\alpha(M) = 0.000670 \ 10$ $\alpha(N) = 0.0001733 \ 25; \ \alpha(O) = 3.61 \times 10^{-5} \ 5;$ $\alpha(P) = 4.56 \times 10^{-6} \ 7$
786.2 4	6.0 <i>6</i>	1755.7	(17/2+)	969.4	(13/2+)	E2	0.01246	Mult.: A ₂ =0.25 5. $\alpha(K)=0.00948 \ 14; \ \alpha(L)=0.00225 \ 4; \ \alpha(M)=0.000550 \ 8 \ \alpha(N)=0.0001423 \ 20; \ \alpha(O)=2.97\times10^{-5} \ 5; \ \alpha(P)=3.79\times10^{-6} \ 6$
^x 822.1 4	4.0 4							Mult.: $A_2=0.25$ 6. Mult.: $A_2=-0.37$ 6.

¹⁹⁷Au(¹²C,4n γ) 1982Sj01 (continued)

 $\gamma(^{205}\text{At})$ (continued)

[†] From 1982Sj01.

[±] From $\gamma(\theta)$, $\alpha(\exp)$ from intensity balance considerations, and multiple decay branches in 1982Sj01.

[#] Additional information 2. ^x γ ray not placed in level scheme.

 $^{205}_{\ 85} At_{120}$