Adopted Levels:tentative

Type Author Citation Literature Cutoff Date

Full Evaluation F. G. Kondev NDS 166, 1 (2020) 20-Apr-2020

 $S(p) = -760 \ 50; \ Q(\alpha) = 8090 \ 50$ 2017Wa10

2014Zh03: 205 Ac produced and identified in 169 Tm(40 Ca,4n) reaction, E(40 Ca)=196 MeV at HIRFL, Lanzhou. The target was 400 μ g/cm² thick and covered with a thin 10 μ g/cm² carbon layer. Evaporation residues were separated in flight using the gas-filled recoil separator SHANS and implanted into a position sensitive silicon detector (150×50 mm² with 48 vertical strips, 3 mm width, FWHM=70 keV for E α =6-7 MeV). Eight non-position sensitive Si detectors (50×50 mm²) were located perpendicular to the face of the implantation detector to detect escape E α 's. The nuclei of interest were identified by energy, time, and position correlations of implanted evaporation residues and their subsequent α decays with the observation of α_1 - α_2 - α_3 correlated events. Calibration of the Si detectors was completed using internal decays of 200 Po (5863 keV 2), 201 At (6344 keV 2), 204 Rn (6418.9 keV 25), 206 Fr (6790 keV 4), 205 Fr (6915 keV 4), and 204 Fr (7031 keV 5).

²⁰⁵Ac Levels

E(level) J^{π} $T_{1/2}$ 0.0 $(9/2^{-})$ 20 ms +97-9

Comments

 $\%\alpha$: Only α decay mode was observed.

J^{π}: Assuming favored α decay to the ²⁰¹Fr g.s. (J^{π}=(9/2⁻)) and systematics of single-particle proton structures above Z=82. The assignment is tentative.

 $T_{1/2}$: From 7935 α (t) in 2014Zh03.

 $\%\alpha \approx 100$

configuration: $\pi(h_{9/2}^{+1})$ and spherical shape. The assignment is tentative.

Only one correlated decay-chain event was observed with $E\alpha(1)$ =7935 30 keV, $\Delta t(1)$ =29.1 ms; $E\alpha(2)$ =7406 keV, $\Delta t(2)$ =85 ms and $E\alpha(3)$ =6997 keV, $\Delta t(3)$ =2.08 s. Definite assignment is ambiguous, since: $E\alpha(2)$ is consistent with $E\alpha'$ s of both, the 201 Fr g.s. $(J^{\pi}$ =9/2 $^{-})$ [$E\alpha$ =7369 keV 3 (2005Uu02,2007Ko06)] and the 201 mFr isomer (J^{π} =1/2 $^{+}$) [$E\alpha$ =7454 keV 8 (2005Uu02,2007Ko06)], but $\Delta t(2)$ is consistent only with $T_{1/2}$ for the 201 Fr g.s. (J^{π} =9/2 $^{-}$) [$T_{1/2}$ =62 ms 5 (2007Ko06)] (201 mFr isomer (J^{π} =1/2 $^{+}$) [$T_{1/2}$ =19 ms $^{+}$ 19 $^{-}$ 6 (2007Ko06)]; $E\alpha(3)$ is only consistent with $E\alpha$ of 197 At g.s. (J^{π} =9/2 $^{-}$) [$E\alpha$ =6959 keV 6 (2005Uu02)] (197 mAt isomer (J^{π} =1/2 $^{+}$) [$E\alpha$ =6706 keV 6 (2005Uu02)], but $\Delta t(3)$ is close to $T_{1/2}$ of the 197 mAt isomer (J^{π} =1/2 $^{+}$) [$T_{1/2}$ =1.1 s $^{+}$ 11 $^{-}$ 4 (2005Uu02)] (197 At g.s. (J^{π} =9/2 $^{-}$) [$T_{1/2}$ =340 ms 20 (2005Uu02)]).

Measured cross section ≈70 pb at E(⁴⁰Ca=196 MeV), assuming 14% efficiency of the SHANS separator.