²⁰⁵Tl(p,d) 1980Sm02 #### History | Type | Author | Citation | Literature Cutoff Date | | |-----------------|-------------------------------|--------------------|------------------------|--| | Full Evaluation | C. J. Chiara and F. G. Kondev | NDS 111,141 (2010) | 1-Oct-2009 | | $J^{\pi}(\text{target})=1/2^+$. 1980Sm02: 130– μ g/cm² Tl target, enriched to 99.5% ²⁰⁵Tl, on 20⁻ μ g/cm² C backing; E(p)=26.1 MeV; magnetic spectrometer, position-sensitive proportional counter at focal plane, d's identified by energy loss in plastic scin and by time-of-flight; FWHM=7-10 keV; measured $\sigma(\theta)$ compared with DWBA calculations. ## ²⁰⁴Tl Levels The strongly-excited levels are expected to involve a proton hole in the $3s_{1/2}$ orbital (^{205}Tl g.s.) and a neutron hole in one of the low-lying orbitals: $3p_{1/2}$, $2f_{5/2}$, $3p_{3/2}$, $1i_{13/2}$, $1h_{9/2}$, and $2f_{7/2}$. For L=1 transfer, the J^{π} are 0^- , 1^- or 2^- ; these levels are also expected to be seen in $^{203}\text{Tl}(n,\gamma)$. Up to ≈ 1400 keV there is good correspondence between the two reactions. At higher energies, it is difficult to be sure of the correlation because of increasing energy uncertainties and higher level densities. | E(level) | $J^{\pi \dagger}$ | L | $C^2S^{\#}$ | Comments | |---------------|----------------------|-------|-------------|--| | 0 | 2-‡ | 1+3 | | C ² S: for the L=1 and L=3 components, C ² S=0.51 and 1.46, respectively. | | 142 2 | $0^-,1^-,2^-$ | 1 | 0.36 | E(level): possibly a doublet of 139.97 and 145.89 (see Adopted Levels). | | 300 <i>1</i> | 0-,1-,2- | 1 | 0.81 | (, , , , , | | 320 <i>I</i> | $0^{-},1^{-},2^{-}$ | 1 | 1.39 | | | 349 <i>1</i> | 2-,3-,4- | 3 | 3.09 | | | 428 2 | 2-,3-,4- | 3 | 0.17 | J^{π} : 1980Sm02 assign J^{π} =4 ⁻ to this level based on measured L value; evaluators have made the J^{π} assignment less restrictive. | | 428 2 | $0^{-},1^{-},2^{-}$ | 1 | 0.058 | Additional information 1. | | 473 <i>1</i> | $0^-, 1^-, 2^-$ | 1 | 0.65 | | | 489 <i>1</i> | $0^-, 1^-, 2^-$ | 1 | 0.32 | | | 535 2 | $0^-, 1^-, 2^-$ | 1 | 0.038 | | | 628 1 | 0-,1-,2- | 1 | 0.65 | E(level): possibly a doublet of 626.31 and 629.40 (see Adopted Levels). C^2S : quoted as 0.065 by 1980Sm02, which may be an error. Changed by evaluators to 0.65 based on similar quoted $d\sigma/d\Omega$ values for this and the 473-keV levels. Additional information 2. | | 675 <i>1</i> | 2-,3-,4- | 3 | 0.10 | | | 735 2 | $0^-, 1^-, 2^-$ | 1 | 0.13 | | | 762 2 | $0^-, 1^-, 2^-$ | 1 | 0.15 | | | 859 <i>3</i> | $(2^{-})^{\ddagger}$ | (1+3) | | C^2S : for the L=1 and L=3 components, $C^2S=(0.010)$ and (0.034) , respectively. | | 870 2 | 2-,3-,4- | 3 | 0.18 | | | 904 2 | 2-‡ | 1+3 | | C ² S: for the L=1 and L=3 components, C ² S=0.076 and 0.22, respectively. | | 966 <i>3</i> | 2-,3-,4- | 3 | 0.23 | 1 | | 1012 2 | $0^{-},1^{-},2^{-}$ | 1 | 0.017 | | | 1046 <i>3</i> | 2-,3-,4- | 3 | 0.32 | E(level): doublet. | | 1103 4 | (7^{+}) | 6 | 4.61 | J^{π} : Assignment by 1980Sm02 made tentative by evaluators. | | | | | | Possible configuration: $\pi[(s_{1/2})^{-1}]\nu[(i_{13/2})^{-1}]$; coupling to 7 ⁺ expected to be favored over 6 ⁺ coupling (1289-keV level). Additional information 3. | | 1118 <i>4</i> | $0^-, 1^-, 2^-$ | 1 | 0.150 | | | 1133 4 | $0^{-},1^{-},2^{-}$ | 1 | 0.096 | | | 1176 <i>4</i> | 2-,3-,4- | 3 | 0.037 | | | 1204 4 | $0^{-},1^{-},2^{-}$ | 1 | 0.11 | | | 1250 5 | $0^{-},1^{-},2^{-}$ | 1 | 0.12 | | | 1289 6 | (6 ⁺) | 6 | 4.36 | J^{π} : Assignment by 1980Sm02 made tentative by evaluators. | | | | | | Possible configuration: $\pi[(s_{1/2})^{-1}]\nu[(i_{13/2})^{-1}]$; coupling to 6^+ expected to be unfavored compared to 7^+ coupling (1103-keV level). Additional information 4. | # ²⁰⁵Tl(p,d) **1980Sm02** (continued) # ²⁰⁴Tl Levels (continued) | E(level) | $J^{\pi \dagger}$ | L | $C^2S^{\#}$ | Comments | |----------------------------------|--|---------------|-------------------|---| | 1388 6 | 2-,3-,4- | 3(+1) | 0.31
0.015 | C ² S: for L=3; a possible L=1 component adds 0.084. | | 1405 <i>6</i>
1424 <i>8</i> | $0^-, 1^-, 2^ (2)^{-\ddagger}$ | 1
1(+3) | 0.013 | L: 1980Sm02 give L=1 in Fig.4, but have L=1+3 tabulated. | | | , | , | | C^2S : for the L=1 and L=3 components, C^2S =0.004 and 0.016, respectively. | | 1463 <i>8</i>
1489 <i>8</i> | (2-,3-,4-) | (3) | (0.037) | | | 1516 8 | $0^-, 1^-, 2^-$ | 1 | 0.008 | | | 1545 <i>6</i>
1584 <i>5</i> | 0-,1-,2- | 1
5,(6) | 0.022
1.03 | J^{π} : 1980Sm02 make the restrictive assignment of J^{π} =(4 ⁻) without offering justification; evaluators leave J^{π} unassigned. C ² S: for L=5; 0.93 if L=6. | | 1652 5 | 0-,1-,2- | 1 | 0.024 | C 3. 101 L=3, 0.73 II L=0. | | 1683 <i>5</i>
1709 <i>5</i> | 0-,1-,2- | 1
5,(6) | 0.036
1.54 | J^{π} : 1980Sm02 make the restrictive assignment of $J^{\pi}=(5^{-})$ without offering justification; | | | | 3,(0) | 1.54 | evaluators leave J^{π} unassigned.
C^2S : for L=5; 1.56 if L=6. | | 1753 <i>10</i>
1810 <i>10</i> | | | | | | 1834 5 | 2-,3-,4- | 3 | 1.32 | | | 1908 5 | $(2^{-})^{\ddagger}$ | (1+3) | | C^2S : for the L=1 and L=3 components, C^2S =(0.059) and (0.20), respectively. | | 1933 <i>5</i>
1951 <i>5</i> | 2 ⁻ ,3 ⁻ ,4 ⁻
2 ⁻ ,3 ⁻ ,4 ⁻ | 3 | 0.35
0.29 | | | 1969 <i>5</i> | (≤4) | 3(+1) | 0.29 | L,C 2 S: Can be L=1+3, with C 2 S<0.017 and 0.073 for the two components, respectively, or L=3 alone, with C 2 S=0.11. | | 1997 5 | 2-,3-,4- | 3 | 0.62 | | | 2049 <i>5</i>
2084 <i>10</i> | 2 ,3 ,4 | 3 | 0.02 | | | 2116 5 | 2-,3-,4- | 3 | 0.15 | | | 2146 <i>5</i> 2166 <i>5</i> | (2^{-})
$(\leq 4)^{-}$ | (1+3) $1(+3)$ | < 0.018 | C^2S : for the L=1 and L=3 components, C^2S =(0.017) and (0.063), respectively. C^2S : for L=1; a possible L=3 component adds 0.045. | | 2191 5 | (54) | 1(±3) | <0.016 | C 3. for L=1, a possible L=3 component adds 0.043. | | 2228 5 | 2-,3-,4- | 3 | 0.76 | | | 2243 <i>8</i>
2271 <i>9</i> | $(2^-,3^-,4^-)$
$2^-,3^-,4^-$ | (3) | (0.30)
0.18 | | | 2320 9 | $(2^-,3^-,4^-)$ | (3) | (0.026) | | | 2374 <i>6</i>
2397 <i>6</i> | 2-,3-,4- | 3 | 0.31
0.15 | | | 2420 9 | 2 ⁻ ,3 ⁻ ,4 ⁻
2 ⁻ ,3 ⁻ ,4 ⁻ | 3 | 0.13 | | | 2475 9 | 2-,3-,4- | 3 | 0.20 | | | 2492 8
2570 6 | 2 ⁻ ,3 ⁻ ,4 ⁻
2 ⁻ ,3 ⁻ ,4 ⁻ | 3 | 0.11
0.19 | | | 2642 8 | 2-,3-,4- | 3 | 0.076 | | | 2673 6 | 2-,3-,4- | 3 | 0.14 | | | 2705 <i>8</i>
2728 <i>8</i> | 2 ⁻ ,3 ⁻ ,4 ⁻
2 ⁻ ,3 ⁻ ,4 ⁻ | 3 | 0.11
0.54 | | | 2796 10 | 2-,3-,4- | 3 | < 0.039 | | | 2807 <i>10</i>
2831 <i>10</i> | $2^-,3^-,4^-$
$(0^-,1^-,2^-)$ | 3(+1)
(1) | <0.068
(0.017) | C ² S: for L=3; a possible L=1 component adds 0.009. | | 2934 10 | (0 ,1 ,2) | (1) | (0.017) | | | 2968 10 | | | | | | 2986 <i>15</i>
3002 <i>15</i> | | | | | | 3045 10 | $(2^-,3^-,4^-)$ | (3) | (0.055) | | | 3067 <i>10</i>
3093 <i>10</i> | | | | | | 3073 10 | | | | | ### ²⁰⁵Tl(p,d) **1980Sm02** (continued) ²⁰⁴Tl Levels (continued) E(level) 3117 *15* 3142 *20* [†] From 1980Sm02, based on measured L values, except as noted. $^{^{\}ddagger}$ For cases where a level is populated by both L=1 and L=3 transfer and a doublet peak could be ruled out, J^{π} must be 2^{-} . [#] For L=1, the $3p_{1/2}$ configuration was assumed; multiply by 0.94 to convert to $3p_{3/2}$. For L=3, the $2f_{5/2}$ configuration was assumed; multiply by 0.85 to convert to $2f_{7/2}$. For L=5 and L=6, the respective configurations $1h_{9/2}$ and $1i_{13/2}$ were assumed. 1980Sm02 use $C^2S=N(2j+1)(d\sigma/d\Omega)_{exp}/(d\sigma/d\Omega)_{DWBA}$, with N=1/2.29.