²⁰⁵Tl(n,2nγ) **2008Fo03**

History									
Туре	Author	Citation	Literature Cutoff Date						
Full Evaluation	C. J. Chiara and F. G. Kondev	NDS 111,141 (2010)	1-Oct-2009						

2008Fo03: Target consisted of 2.2 g of Tl oxide powder enriched to 97.0% ²⁰⁵Tl, encased in polystyrene disk; E(n) = 1 to 25 MeV, established by N ToF; pulsed beam with beam on for 775– μ s bursts every 16.7 ms, with each beam burst comprised of sub-ns pulses every 1.8 μ s; GEANIE array of 11 Compton-suppressed Ge LEPS, nine Compton-suppressed coaxial Ge, and six unsuppressed coaxial Ge detectors; measured E γ , $\gamma\gamma$ -coin, γ excitation functions, $\gamma(t)$ for isomer half-life in beam-off mode. The high-spin structure shows similarities to that of ²⁰²Tl.

²⁰⁴Tl Levels

Additional information 1.

nred to be 61.4 not be

 $\gamma(^{204}\text{Tl})$

 † From a least-squares fit to Ey.

[‡] From 2008Fo03 based on excitation functions and comparison with ²⁰²Tl level scheme.

E_{γ}^{\dagger}	E _i (level)	J_i^π	$\mathbf{E}_f \mathbf{J}_f^{\pi}$	E_{γ}^{\dagger}	E _i (level)	J_i^π	$E_f \qquad J_f^{\pi}$	
139.9 5	139.9	(1)-	0.0 2-	546.0 5	1650.0	(8+,9+)	1104.0 (7) ⁺	
146.0 5	146.0	(0^{-})	$0.0 \ 2^{-}$	644.7 5	1058.8		414.1 (4 ⁻)	
168.1 5	1453.9	(8^{+})	1285.8 (6)+	663.5 5	2117.4		1453.9 (8+)	
181.8 5	1285.8	$(6)^{+}$	$1104.0 (7)^+$	668.9 <i>5</i>	2318.9		1650.0 (8 ⁺ ,9 ⁺	-)
196.0 5	1650.0	$(8^+, 9^+)$	1453.9 (8 ⁺)	686.1 5	1100.2		414.1 (4 ⁻)	
269.6 5	415.6	$(1^{-},2^{-})$	146.0 (0 ⁻)	689.9 <i>5</i>	1104.0	$(7)^{+}$	414.1 (4 ⁻)	
275.6 5	415.6	$(1^{-},2^{-})$	139.9 (1)-	766.7 5	1180.8		414.1 (4 ⁻)	
277.3 5	1731.2	$(8^+, 9^+)$	1453.9 (8+)	961.0 5	1375.1		414.1 (4-)	
349.9 5	1453.9	(8^{+})	$1104.0 (7)^+$	985.4 5	1399.5		414.1 (4 ⁻)	
414.1 5	414.1	(4 ⁻)	0.0 2					

[†] Uncertainty is stated by 2008Fo03 as 0.2 to 0.5 keV; evaluators assign 0.5 keV for each γ ray.

 $^{204}_{81}\text{Tl}_{123}$