Adopted Levels, Gammas

	Histo	ory	
Туре	Author	Citation	Literature Cutoff Date
Full Evaluation	C. J. Chiara and F. G. Kondev	NDS 111,141 (2010)	1-Oct-2009

 $Q(\beta^{-}) = -8.59 \times 10^{3} 3$; $S(n) = 9.90 \times 10^{3} 3$; S(p) = 3109 18; $Q(\alpha) = 6546.4 19 2012$ Was Note: Current evaluation has used the following Q record -8590 30 9900 30 3110 19 6545.5 19 2003 Au03. Additional information 1.

²⁰⁴Rn Levels

Cross Reference (XREF) Flags

 208 Ra α decay 192 Pt(16 O,4n γ) 168 Er(40 Ar,4n γ) A

В

С

E(level) [†]	$J^{\pi \ddagger}$	T _{1/2}	XREF	Comments
0	0+	74.5 s 14	ABC	$\%\alpha = 72.4 \ 9; \ \%\varepsilon + \%\beta^+ = 27.6 \ 9$
				$\%\alpha$ is weighted average of 70% 2 (1971Ho01) and 73% 1 (1993Wa04). Other:
				42% 10 (1967Va17).
				$T_{1/2}$: Weighted average of 75 s 2 (1967Va17) and 74 s 2 (1971Ho01). Other: 70
543 00 10	2+			s 11 (1996Ta18).
542.90 10	2		BC	J^{*} : 542.9 γ E2 to 0 ⁺ .
1131.50 13	$(2, 2, 4^+)$		BC	J^{-1} : 588.07 E2 to 2 ⁺ .
1027.8 13	(2,3,4) 6 ⁺			J = 1004.99 to 2. $I^{\pi} = 641.327 \text{ E2 to } 4^{+}$
1806 20 17	0 6 ⁺		BC	$J = 674.57 E^2 \text{ to } 4^+$
1000.20 17	0		DC	Possible configuration $-(\pi f_{\pi/2})^{+2}$
1911 9 5	(5.6^+)		C	I^{π} : 779 9 $_{V}$ to 4 ⁺
2032.72 19	8+	<5 ns	BC	J^{π} : 259.9 γ E2 to 6 ⁺ .
				$T_{1/2}$: From ¹⁹² Pt(¹⁶ O, 4ny) (1981Ho ² 9).
				Possible configuration= $(\pi h_{0/2})^{+2}$.
2105.11 19	8+		BC	J^{π} : 298.9 γ E2 to 6 ⁺ .
2182.7 6	(6,7)		C	J^{π} : 376.5 γ to 6 ⁺ ; population of this state in ¹⁶⁸ Er(⁴⁰ Ar.4n γ).
2218.81 19	9-		BC	J^{π} : 113.7 γ E1 to 8 ⁺ ; 186.1 γ E1 to 8 ⁺ .
2239.2 <i>3</i>	$(7,8^{+})$		С	J^{π} : 327.0 γ to (5,6 ⁺); 433.2 γ and 466.4 γ to 6 ⁺ .
2248.13 24	8+		С	J^{π} : 215.3 γ M1 to 8 ⁺ ; 475.6 γ E2 to 6 ⁺ .
2365.5 5	(8,9)		С	J ^{π} : 332.8 γ to 8 ⁺ ; population of this state in ¹⁶⁸ Er(⁴⁰ Ar,4n γ).
2371.2 4	(8,9)		С	J ^{π} : 266.1 γ to 8 ⁺ ; population of this state in ¹⁶⁸ Er(⁴⁰ Ar,4n γ).
2452.8 <i>3</i>	10^{+}		BC	J^{π} : 234.0 γ E1 to 9 ⁻ .
2461.9 4	10-	33.4 ns 24	BC	J^{π} : 242.8 γ M1 to 9 ⁻ .
				$T_{1/2}$: Weighted average of 34 ns 4 in ¹⁶⁸ Er(⁴⁰ Ar,4n γ) (2002Do19) and 33 ns 3
				in ¹⁹² Pt(¹⁶ O,4n γ) (1981Ho29). Both values were deduced from 242 γ (t). In
				1981Ho29 it is concluded that 242γ directly depopulates the isomer.
				Possible configuration= $((\pi f_{7/2})^{+1}(\pi i_{13/2})^{+1})_{10-}$.
2540.0 7	(8^{+})		С	J ^{π} : 767.2 γ to 6 ⁺ ; population of this state in ¹⁶⁸ Er(⁴⁰ Ar,4n γ).
2597.2 4	11-		BC	J^{π} : 135.2 γ M1 to 10 ⁻ .
				Possible configuration= $((\pi h_{9/2})^{+1}(\pi i_{13/2})^{+1})_{11-}$.
2636.61 21	10+		BC	J^{π} : 603.9 γ E2 to 8 ⁺ .
2681.1 3	10+		C	J^{n} : 576.0 γ E2 to 8 ⁺ .
2688.1 3	10		C	J^{*} : 583.07 E2 to 8 ⁺ .
2194.3 /	9' (11.12=)			J [*] : $/01.0\gamma$ IVII 10 8 ⁺ .
2004.0 0 2801 0 1	(11,12) (10^+)		ь С	J. 2007 10 11 , 422.37 10 10 . I^{π} : 646 82 (E2) to 8^+
2074.7 4	(10^{+})		c	I. 070.07 (12) 10 0 . I^{π} , 828 On to 8^{\pm} , nonvertices of this state in $168 \text{Er}(40 \text{ Ar}(4m))$
2933.11 21	(10°)		C	$J : \delta = \delta \cdot \delta$; population of this state in $T = Er(T - Ar, 4n\gamma)$.

²⁰⁴Rn Levels (continued)

E(level) [†]	Jπ‡	T _{1/2}	XREF	Comments
3035.3 <i>3</i>	12+	14 ns 4	BC	J^{π} : 438.0y E1 to 11 ⁻ ; 582.6y E2 to 10 ⁺ .
				$T_{1/2}$: From 234 γ (t), 438 γ (t), and 583 γ (t) in ¹⁶⁸ Er(⁴⁰ Ar,4n γ) (2002Do19), but the lifetime assignment to this level is tentative. The authors argue about the presence of a low-energy transition (unobserved) that feeds this level. Other: \approx 10 ns in ¹⁹² Pt(¹⁶ O,4n γ) (1981Ho29), but the lifetime is tentatively associated
3151.0.4	(12^{+})		C	with the 4090-keV level. I^{π} : 460 02 (E2) to 10 ⁺
3165 5 4	(12)			J = 409.97 (E2) to 10 . $I^{\pi} = 568.2\alpha$ (M1) to 11^{-1}
3103.5 4	(11)		C	J = 508.57 (M1) to 11 . $I^{\pi} = 504.02$ D to 10^+
3778 5 1	$(11 \ 12^+)$		C C	I^{π} : 501.0 v to 10 ⁺ : population of this level in ¹⁶⁸ Fr(⁴⁰ Ar 4nv)
3226.5 4	(11,12) (10^+)		C C	I^{π} : 706 A ₂ to 8^+ : population of this level in $168 \text{ Er}(40 \text{ Ar Apa})$
3240.4 12	(10)		RC RC	J^{π} : 708 6y E2 to 11^{-1} : 270 5y to 12^{+1}
2208 7 11	$(11 \ 12^+)$		DC C	J^{π} : 465 for to (10 ⁺); population of this level in ¹⁶⁸ Er(40 Ar (nor))
3/10 5 /	(11,12) (12^+)		Ċ	J^{π} , 722 A_{22} (E2) to 10 ⁺
3468 2? 13	(12)		В	J . 722.47 (E2) 10 10 .
3473.6.5	(11.12^{+})		c	J^{π} : 578.7 γ to (10 ⁺).
3507.1 4	13-		Ċ	J^{π} : 471.8 γ E1 to 12 ⁺ .
3531.9 6	(13^{-})		В	J^{π} : 226 γ to 13 ⁻ : 366 γ to (11 ⁻): 497 γ to 12 ⁺ .
3677.2 4	12+		С	J^{π} : 511.6 γ E1 to (11 ⁻); 1040.6 γ E2 to 10 ⁺ .
3736.5 5	$(12, 13, 14^+)$		С	J^{π} : 262.9 γ to (11,12 ⁺); 508.0 γ to (11,12 ⁺).
3782.3 6	$(12, 13, 14^+)$		С	J^{π} : 371.8 γ to (12 ⁺).
3895.0 5	$(13, 14, 15^{-})$		С	J^{π} : 589.2 γ to 13 ⁻ .
3949.0 4	14+		С	J^{π} : 271.8 γ E2 to 12 ⁺ .
3980.2 13	$(12, 13, 14^+)$		С	J^{π} : 751.7 γ to (11,12 ⁺).
3983.8 8	$(14, 15^{-})$		В	J^{π} : 452 γ to (13 ⁻); 678 γ to 13 ⁻ .
4001.9 5	14+		С	J^{π} : 494.8 γ E1 to 13 ⁻ .
4087.4 5	$(14, 15, 16^+)$		С	J^{π} : 138.4 γ to 14 ⁺ .
4095.8 9	(15 ⁻)		В	J^{π} : 112 γ to (14,15 ⁻); 790 γ to 13 ⁻ .
				$T_{1/2}$: ≈ 10 ns in 192 Pt(16 O,4n γ) (1981Ho29), but the lifetime is tentatively associated with this level. See the comment to the 3035-keV level for details.
4120.7 8	$(13, 14^+)$		С	J^{π} : 710.2 γ to (12 ⁺).
4253.9 12	(14,15 ⁻)		В	J^{π} : 722 γ to (13 ⁻).
4413.9 7	$(15, 16, 17^{-})$		С	J^{π} : 518.9 γ to (14,15 ⁻).
4583.2 10	$(15, 16, 17^{-})$		С	J^{π} : 688.2 γ to (14,15 ⁻).

[†] From a least-squares fit to E γ . [‡] From deduced transition multipolarities using $\gamma(\theta)$ in ¹⁹²Pt(¹⁶O,4n γ) and DCO ratios in ¹⁶⁸Er(⁴⁰Ar,4n γ), including $\alpha(\exp)$ deduced from intensity-balance considerations.

E _i (level)	\mathbf{J}_i^{π}	E_{γ}^{\ddagger}	I_{γ}^{\ddagger}	E_f	\mathbf{J}_{f}^{π}	Mult. [‡]	α^{\dagger}	Comments
542.90	2+	542.9 1	100	0	0+	E2	0.0290	$ \frac{\alpha(K)=0.0201 \ 3; \ \alpha(L)=0.00671 \ 10; \ \alpha(M)=0.001695}{24; \ \alpha(N+)=0.000546 \ 8} \\ \alpha(N)=0.000441 \ 7; \ \alpha(O)=9.29\times10^{-5} \ 13; \\ \alpha(P)=1.207\times10^{-5} \ 17 $
1131.50	4+	588.6 1	100	542.90	2+	E2	0.0242	$\begin{aligned} &\alpha(\mathbf{K}) = 0.01712 \ 24; \ \alpha(\mathbf{L}) = 0.00529 \ 8; \ \alpha(\mathbf{M}) = 0.001327 \\ &19; \ \alpha(\mathbf{N}+) = 0.000428 \ 6 \\ &\alpha(\mathbf{N}) = 0.000345 \ 5; \ \alpha(\mathbf{O}) = 7.30 \times 10^{-5} \ 11; \\ &\alpha(\mathbf{P}) = 9.58 \times 10^{-6} \ 14 \end{aligned}$
1627.8 1772.79	(2,3,4 ⁺) 6 ⁺	1084.9 <i>13</i> 641.3 <i>1</i>	100 100	542.90 1131.50	2+ 4+	E2	0.0200	α (K)=0.01451 21; α (L)=0.00414 6; α (M)=0.001033

 $\gamma(^{204}\text{Rn})$

$\gamma(^{204}\text{Rn})$ (continued)

E _i (level)	\mathbf{J}_i^{π}	Eγ‡	I _γ ‡	\mathbf{E}_{f}	\mathbf{J}_{f}^{π}	Mult.‡	α^{\dagger}	Comments
1806.20	6+	674.7 1	100	1131.50	4+	E2	0.0180	<i>15</i> ; α (N+)=0.000333 5 α (N)=0.000269 4; α (O)=5.70×10 ⁻⁵ 8; α (P)=7.57×10 ⁻⁶ <i>11</i> α (K)=0.01317 <i>19</i> ; α (L)=0.00360 5; α (M)=0.000895
1011.0	(5 (+)	770.0 (100	1121 50	4+			13; α (N+)=0.000289 4 α (N)=0.000233 4; α (O)=4.95×10 ⁻⁵ 7; α (P)=6.61×10 ⁻⁶ 10
2032.72	(5,0°) 8 ⁺	259.9 1	100	1772.79	4* 6 ⁺	E2	0.215	$\alpha(K)=0.0941 \ 14; \ \alpha(L)=0.0900 \ 13; \ \alpha(M)=0.0238 \ 4; \ \alpha(N+)=0.00762 \ 11 \ \alpha(N)=0.00620 \ 9; \ \alpha(O)=0.001270 \ 18; \ \alpha(P)=0.0001499 \ 21 \ B(F2)(Wu) > 1 \ 1$
2105.11	8+	298.9 1	100	1806.20	6+	E2	0.1395	$\begin{aligned} \alpha(K) &= 0.0695 \ 10; \ \alpha(L) = 0.0520 \ 8; \ \alpha(M) = 0.01367 \\ 20; \ \alpha(N+) = 0.00438 \ 7 \\ \alpha(N) &= 0.00356 \ 5; \ \alpha(O) = 0.000733 \ 11; \\ \alpha(P) &= 8.79 \times 10^{-5} \ 13 \end{aligned}$
2182.7 2218.81	(6,7) 9 ⁻	376.5 5 113.7 <i>1</i>	100 81 <i>4</i>	1806.20 2105.11	6+ 8+	E1	0.341	$\alpha(K)=0.267 4; \alpha(L)=0.0561 8; \alpha(M)=0.01341 19; \alpha(N+)=0.00426 6 \alpha(N)=0.00344 5; \alpha(O)=0.000720 11; \alpha(P)=9.29\times10^{-5} 14$ Mult.: Other: $\alpha(exp)$ deduced from intensity-balance considerations favors E1 rather than M1
		186.1 <i>1</i>	100 4	2032.72	8+	E1	0.1024	assignment in ¹³² Pt(¹⁰ O,4n γ) (1981Ho29). α (K)=0.0820 <i>12</i> ; α (L)=0.01556 <i>22</i> ; α (M)=0.00370 <i>6</i> ; α (N+)=0.001183 <i>17</i> α (N)=0.000954 <i>14</i> ; α (O)=0.000202 <i>3</i> ; α (P)=2.71×10 ⁻⁵ <i>4</i>
2239.2	(7,8 ⁺)	327.0 <i>5</i> 433.2 <i>4</i> 466.4 <i>4</i>	40 <i>4</i> 96 8 100 8	1911.9 1806.20 1772.79	$(5,6^+)$ 6^+ 6^+			
2248.13	8+	215.3 2	36 7	2032.72	8+	M1	1.497	$\begin{array}{l} \alpha(\mathrm{K}) = 1.210 \ 18; \ \alpha(\mathrm{L}) = 0.218 \ 4; \ \alpha(\mathrm{M}) = 0.0518 \ 8; \\ \alpha(\mathrm{N}+) = 0.01687 \ 24 \\ \alpha(\mathrm{N}) = 0.01349 \ 20; \ \alpha(\mathrm{O}) = 0.00295 \ 5; \ \alpha(\mathrm{P}) = 0.000431 \\ 7 \end{array}$
		475.6 3	100 7	1772.79	6+	E2	0.0397	α (K)=0.0261 4; α (L)=0.01013 15; α (M)=0.00258 4; α (N+)=0.000831 12 α (N)=0.000672 10; α (O)=0.0001408 20; α (P)=1 80×10 ⁻⁵ 3
2365.5	(8,9)	332.8 4	100	2032.72	8+			u(1)=1.00×10 5
2371.2	(8,9)	266.1 3	100	2105.11	8+			
2452.8	10+	234.0 2	100	2218.81	9-	E1	0.0592	$\alpha(K)=0.0477 \ 7; \ \alpha(L)=0.00875 \ 13; \ \alpha(M)=0.00208$ $3; \ \alpha(N+)=0.000666 \ 10$ $\alpha(N)=0.000536 \ 8; \ \alpha(O)=0.0001143 \ 17;$ $\alpha(D)=1.554\times10^{-5} \ 22$
2461.9	10-	242.8 4	100 9	2218.81	9-	M1	1.071	$\alpha(\mathbf{N}) = 1.53 \times 10^{-222}$ $\alpha(\mathbf{K}) = 0.866 \ 13; \ \alpha(\mathbf{L}) = 0.1557 \ 23; \ \alpha(\mathbf{M}) = 0.0370 \ 6; \ \alpha(\mathbf{N}+) = 0.01205 \ 18 \ \alpha(\mathbf{N}) = 0.00963 \ 15; \ \alpha(\mathbf{O}) = 0.00211 \ 4; \ \alpha(\mathbf{P}) = 0.000308 \ 5 \ \mathbf{B}(\mathbf{M}1)(\mathbf{W},\mathbf{u}) = 2.22 \times 10^{-5} \ 17 \ \mathbf{M}^{-5}$
2540.0 2597.2	(8 ⁺) 11 ⁻	767.2 6 135.2 2	100 100	1772.79 2461.9	6+ 10 ⁻	M1	5.57	$\alpha(K)=4.49 \ 7; \ \alpha(L)=0.816 \ 12; \ \alpha(M)=0.194 \ 3; \\ \alpha(N+)=0.0632 \ 10 \\ \alpha(N)=0.0505 \ 8; \ \alpha(O)=0.01105 \ 17; \ \alpha(P)=0.001614$

$\gamma(^{204}\text{Rn})$ (continued)

E_i (level)	\mathbf{J}_i^{π}	E_{γ}^{\ddagger}	I_{γ} ‡	\mathbf{E}_{f}	${ m J}_f^\pi$	Mult.‡	α^{\dagger}	Comments
2636.61	10+	603.9 1	100	2032.72	8+	E2	0.0228	24 Mult.: Based on $\gamma(\theta)$ the E1 multipolarity is assigned in 1981Ho29, but the $\alpha(\exp)$ deduced from intensity balance considerations in 2002Do19 favors M1. $\alpha(K)=0.01629\ 23;\ \alpha(L)=0.00491\ 7;$
2691 1	10+	576.0.2	100	2105 11	o+	EO	0.0254	α (M)=0.001230 <i>18</i> ; α (N+)=0.000397 <i>6</i> α (N)=0.000320 <i>5</i> ; α (O)=6.77×10 ⁻⁵ <i>10</i> ; α (P)=8.92×10 ⁻⁶ <i>13</i> α (K)=0.0170 <i>2</i> ; α (L)=0.00563 <i>8</i> ;
2001.1	10	570.0 2	100	2103.11	0	E2	0.0234	$\begin{array}{l} \alpha(\mathbf{K})=0.0179 \ 5, \ \alpha(\mathbf{L})=0.00365 \ 8, \\ \alpha(\mathbf{M})=0.001415 \ 20; \ \alpha(\mathbf{N}+)=0.000456 \ 7 \\ \alpha(\mathbf{N})=0.000369 \ 6; \ \alpha(\mathbf{O})=7.78\times10^{-5} \ 11; \\ \alpha(\mathbf{P})=1.018\times10^{-5} \ 15 \end{array}$
2688.1	10+	583.0 2	100	2105.11	8+	E2	0.0247	$\alpha(K)=0.01744\ 25;\ \alpha(L)=0.00543\ 8;$ $\alpha(M)=0.001365\ 20;\ \alpha(N+)=0.000440\ 7$ $\alpha(N)=0.000355\ 5;\ \alpha(O)=7.50\times10^{-5}\ 11;$ $\alpha(P)=9\ 84\times10^{-6}\ 14$
2794.3	9+	761.6 6	100	2032.72	8+	M1	0.0494	$\alpha(\mathbf{K}) = 0.04\times10^{-14} \text{ a}(\mathbf{K}) = 0.04\times10^{-14} \text{ a}(\mathbf{K}) = 0.04\times10^{-14} \text{ a}(\mathbf{K}) = 0.001659 \ 24; \ \alpha(\mathbf{N}+) = 0.000540 \ 8 \text{ a}(\mathbf{N}) = 0.000432 \ 7; \ \alpha(\mathbf{O}) = 9.46\times10^{-5} \ 14; \text{ a}(\mathbf{P}) = 1.383\times10^{-5} \ 20$
2884.8	(11,12 ⁻)	288 [#]		2597.2	11-			
2894.9	(10 ⁺)	422.5" 646.8 <i>3</i>	100	2461.9 2248.13	10 8 ⁺	(E2)	0.0197	α (K)=0.01428 20; α (L)=0.00404 6; α (M)=0.001008 15; α (N+)=0.000325 5 α (N)=0.000262 4; α (O)=5.56×10 ⁻⁵ 8; α (P)=7.40×10 ⁻⁶ 11
2933.11 3035.3	(10 ⁺) 12 ⁺	828.0 <i>1</i> 438.0 <i>4</i>	100 59 5	2105.11 2597.2	8 ⁺ 11 ⁻	E1	0.01449	$\alpha(\mathbf{K})=0.01184 \ 17; \ \alpha(\mathbf{L})=0.00202 \ 3; \\ \alpha(\mathbf{M})=0.000475 \ 7; \ \alpha(\mathbf{N}+)=0.0001533 \ 22 \\ \alpha(\mathbf{N})=0.0001231 \ 18; \ \alpha(\mathbf{O})=2.65\times10^{-5} \ 4; \\ \alpha(\mathbf{P})=3.72\times10^{-6} \ 6 \\ \mathbf{D}(\mathbf{N})=0.0001231 \ \mathbf{D}_{\mathbf{S}} \ \mathbf{D}_{\mathbf$
		582.6 2	100 5	2452.8	10+	E2	0.0247	B(E1)(W.u.)=6.0×10 ° <i>19</i> α (K)=0.01747 25; α (L)=0.00545 8; α (M)=0.001368 20; α (N+)=0.000441 7 α (N)=0.000356 5; α (O)=7.52×10 ⁻⁵ 11; α (P)=9.86×10 ⁻⁶ 14 B(E2)(W.u.)=0.0052 16
3151.0	(12+)	469.9 2	100	2681.1	10+	(E2)	0.0408	$\begin{array}{l} \alpha(\text{K})=0.0268 \ 4; \ \alpha(\text{L})=0.01052 \ 15; \\ \alpha(\text{M})=0.00269 \ 4; \ \alpha(\text{N}+)=0.000865 \ 13 \\ \alpha(\text{N})=0.000700 \ 10; \ \alpha(\text{O})=0.0001464 \ 21; \\ \alpha(\text{P})=1 \ 86 \times 10^{-5} \ 3 \end{array}$
3165.5	(11 ⁻)	568.3 <i>3</i>	100	2597.2	11-	(M1)	0.1067	$\begin{array}{l} \alpha(\mathbf{K}) = 0.0866 \ 13; \ \alpha(\mathbf{L}) = 0.01527 \ 22; \\ \alpha(\mathbf{M}) = 0.00361 \ 5; \ \alpha(\mathbf{N}+) = 0.001178 \ 17 \\ \alpha(\mathbf{N}) = 0.000941 \ 14; \ \alpha(\mathbf{O}) = 0.000206 \ 3; \\ \alpha(\mathbf{P}) = 3.01 \times 10^{-5} \ 5 \end{array}$
3193.0 3228.5 3246.4 3305.8	11 (11,12 ⁺) (10 ⁺) 13 ⁻	504.9 <i>3</i> 591.9 <i>3</i> 706.4 <i>10</i> 140.3 <i>4</i> 270.5 [#]	100 100 100 7.1 <i>6</i>	2688.1 2636.61 2540.0 3165.5 3035.3	10 ⁺ 10 ⁺ (8 ⁺) (11 ⁻) 12 ⁺	D		
		708.6 2	100.0 6	2597.2	11-	E2	0.01619	α(K)=0.01200 17; α(L)=0.00316 5; α(M)=0.000781 11; α(N+)=0.000253 4

	$\gamma^{(204}$ Rn) (continued)										
E _i (level)	\mathbf{J}_i^π	${\rm E_{\gamma}}^{\ddagger}$	Ι _γ ‡	E_{f}	\mathbf{J}_f^{π}	Mult. [‡]	α^{\dagger}	Comments			
3398.7 3410.5	(11,12 ⁺) (12 ⁺)	465.6 <i>10</i> 722.4 <i>2</i>	100 100	2933.11 2688.1	(10 ⁺) 10 ⁺	(E2)	0.01555	$\alpha(N)=0.000203 \ 3; \ \alpha(O)=4.33\times10^{-5} \\ 6; \ \alpha(P)=5.82\times10^{-6} \ 9 \\ \alpha(K)=0.01158 \ 17; \ \alpha(L)=0.00300 \ 5; \\ \alpha(M)=0.000741 \ 11; \\ \alpha(N+)=0.000240 \ 4 \\ $			
3468.2? 3473.6 3507.1	(11,12 ⁺) 13 ⁻	583.4 [#] 578.7 <i>3</i> 471.8 2	100 100 100	2884.8 2894.9 3035.3	(11,12 ⁻) (10 ⁺) 12 ⁺	E1	0.01241	$\alpha(N)=0.000193 \ 3; \ \alpha(O)=4.11\times10^{-5} \\ 6; \ \alpha(P)=5.54\times10^{-6} \ 8 \\ I_{\gamma}: \ From \ ^{192}Pt(^{16}O,4n\gamma). \\ \alpha(K)=0.01016 \ 15; \ \alpha(L)=0.001716 \\ 24; \ \alpha(M)=0.000404 \ 6; \\ \alpha(N+)=0.0001304 \ 19 \\ (2D) \ 0.0001046 \ 15; \ \alpha(D)=0.0001304 \ 19 \\ (2D) \ 0.0001046 \ 15; \ \alpha(D)=0.0001304 \ 19 \\ (2D) \ 0.0001046 \ 15; \ \alpha(D)=0.0001304 \ 19 \\ (2D) \ 0.0001046 \ 15; \ \alpha(D)=0.0001304 \ 19 \\ (2D) \ 0.0001046 \ 15; \ \alpha(D)=0.0001304 \ 19 \\ (2D) \ 0.0001046 \ 15; \ \alpha(D)=0.0001304 \ 19 \\ (2D) \ 0.0001046 \ 15; \ \alpha(D)=0.0001304 \ 19 \\ (2D) \ 0.0001046 \ 15; \ \alpha(D)=0.0001304 \ 19 \\ (2D) \ 0.0001046 \ 15; \ \alpha(D)=0.0001304 \ 19 \\ (2D) \ 0.0001046 \ 15; \ \alpha(D)=0.0001304 \ 19 \\ (2D) \ 0.0001046 \ 15; \ \alpha(D)=0.0001304 \ 19 \\ (2D) \ 0.0001046 \ 15; \ \alpha(D)=0.0001304 \ 19 \\ (2D) \ 0.0001046 \ 15; \ \alpha(D)=0.0001304 \ 10 \\ (2D) \ 0.0001046 \ 15; \ \alpha(D)=0.0001304 \ 10 \\ (2D) \ 0.0001046 \ 15; \ \alpha(D)=0.0001304 \ 10 \\ (2D) \ 0.0001046 \ 15; \ \alpha(D)=0.0001304 \ 10 \\ (2D) \ 0.0001046 \ 15; \ \alpha(D)=0.0001304 \ 10 \\ (2D) \ 0.000104 \ 15; \ \alpha(D)=0.0001304 \ 10 \\ (2D) \ 0.000104 \ 15; \ \alpha(D)=0.0001304 \ 10 \\ (2D) \ 0.000104 \ 10 \ 10 \ 10 \ 10 \ 10 \ 10 \ 1$			
3531.9	(13 ⁻)	226 [#] 366.0 [#]		3305.8 3165.5	13 ⁻ (11 ⁻)			α (N)=0.0001046 <i>TS</i> ; α (O)=2.26×10 ⁻⁵ <i>4</i> ; α (P)=3.18×10 ⁻⁶ <i>5</i>			
3677.2	12+	497" 511.6 <i>3</i>	100 7	3035.3 3165.5	12 ⁺ (11 ⁻)	E1	0.01051	$\alpha(K)=0.00861 \ 13; \ \alpha(L)=0.001444 21; \ \alpha(M)=0.000340 \ 5; \alpha(N+)=0.0001096 \ 16 \alpha(N)=8.79\times10^{-5} \ 13; \alpha(O)=1.90\times10^{-5} \ 3; (P) = 2.69\times10^{-6} \ 4$			
		1040.6 <i>3</i>	100 7	2636.61	10+	E2	0.00753 11	$\alpha(P)=2.68 \times 10^{-6} 4$ $\alpha(K)=0.00591 9; \ \alpha(L)=0.001228 18;$ $\alpha(M)=0.000297 5;$ $\alpha(N+)=9.62 \times 10^{-5} 14$ $\alpha(N)=7.72 \times 10^{-5} 11;$ $\alpha(O)=1.664 \times 10^{-5} 24;$ $\alpha(D)=2.22 \times 10^{-6} 4$			
3736.5 3782.3	$(12,13,14^+)$ $(12,13,14^+)$	262.9 8 508.0 4 371.8 4	25 5 100 8 100	3473.6 3228.5 3410.5	$(11,12^+)$ $(11,12^+)$ (12^+)			$a(r) = 2.32 \times 10^{-4}$			
3895.0 3949.0	(13,14,15 ⁻) 14 ⁺	589.2 <i>3</i> 271.8 <i>2</i>	100 100	3305.8 3677.2	13 ⁻ 12 ⁺	E2	0.187	α (K)=0.0854 <i>12</i> ; α (L)=0.0753 <i>11</i> ; α (M)=0.0199 <i>3</i> ; α (N+)=0.00637 <i>10</i> α (N)=0.00518 <i>8</i> ; α (O)=0.001062 <i>16</i> ;			
3980.2 3983.8	(12,13,14 ⁺) (14,15 ⁻)	751.7 <i>12</i> 452 [#]	100	3228.5 3531.9	(11,12 ⁺) (13 ⁻)			$\alpha(P) = 0.0001260 \ T8$			
4001.9	14+	494.8 <i>2</i>	100	3505.8 3507.1	13 13 ⁻	E1	0.01125	$\alpha(K)=0.00921 \ 13; \ \alpha(L)=0.001550 22; \ \alpha(M)=0.000365 \ 6; \alpha(N+)=0.0001177 \ 17 \alpha(N)=9.44\times10^{-5} \ 14; \alpha(O)=2.04\times10^{-5} \ 3; \alpha(D)=2.88\times10^{-6} \ 4$			
4087.4 4095.8	(14,15,16 ⁺) (15 ⁻)	138.4 <i>3</i> 112 [#] 790 [#]	100	3949.0 3983.8 3305.8	14 ⁺ (14,15 ⁻) 13 ⁻			a(1)=2.00×10 4			

$\gamma(^{204}\text{Rn})$ (continued)

E _i (level)	\mathbf{J}_i^{π}	E_{γ}^{\ddagger}	I_{γ}^{\ddagger}	E_f	\mathbf{J}_f^{π}
4120.7	(13,14 ⁺)	710.2 7	100	3410.5	(12 ⁺)
4253.9	$(14, 15^{-})$	722 [#]	100	3531.9	(13 ⁻)
4413.9	$(15, 16, 17^{-})$	518.9 5	100	3895.0	$(13, 14, 15^{-})$
4583.2	$(15, 16, 17^{-})$	688.2 8	100	3895.0	$(13, 14, 15^{-})$

[†] Additional information 2. [‡] From ${}^{168}\text{Er}({}^{40}\text{Ar},4n\gamma)$, unless otherwise specified. [#] From ${}^{192}\text{Pt}({}^{16}\text{O},4n\gamma)$.

Adopted Levels, Gammas

