208 Ra lpha decay

History

Type Author Citation Literature Cutoff Date

Full Evaluation C. J. Chiara and F. G. Kondev NDS 111,141 (2010)

1-Oct-2009

Parent: 208 Ra: E=0.0; J $^{\pi}$ =0+; T $_{1/2}$ =1.3 s 2; Q(α)=7273 5; % α decay=95 5

 α branching for ²⁰⁸Ra was adopted as 95% 5 by 2007Ma45 from estimated ε branching of ≈5% based on gross β decay theory calculations by 1973Ta30. The partial β half-life was calculated by 1997Mo25 as 23.8055 s which gives % ε +% β ⁺=5.46.

²⁰⁴Rn Levels

 $\frac{\text{E(level)}}{0.0} \quad \frac{\text{J}^{\pi}}{0^{+}}$

α radiations

 $\frac{\text{E}\alpha}{71335}$ $\frac{\text{E(level)}}{0.0}$ $\frac{\text{I}\alpha^{\ddagger}}{100}$ $\frac{\text{HF}^{\dagger}}{1.000}$ $\frac{\text{E}\alpha: \text{Recommended by 1991Ry01}}{\text{E}\alpha: \text{Recommended by 1991Ry01}}$.

 $^{^{\}dagger}$ $r_0(^{204}\text{Rn})$ =1.496 8 is calculated from Hf(7133 α)=1.0. This value fits the local r_0 trend where r_0 =1.50 1 is obtained.

[‡] For absolute intensity per 100 decays, multiply by 0.95 5.