Adopted Levels, Gammas

	History							
	Туре	Author	Citation	Literature Cutoff Date				
Fu	Ill Evaluation	C. J. Chiara and F. G. Kondev	NDS 111,141 (2010)	1-Oct-2009				
$Q(\beta^{-})=2.7\times10^{3} \ syst; \ S(n)$	$=6.4 \times 10^3 \ syst$; $S(p)=1.05 \times 10^4 \text{ syst}$; $Q(\alpha)=-1.6$	5×10 ³ syst 2012Wa38					
Note: Current evaluation	has used the fo	ollowing O record 2320 62	60 10400 1670	1997Mo25.				

Note: Current From theoretical predictions in 1997Mo25.

²⁰⁴Pt Levels

Cross Reference (XREF) Flags

9 Be(208 Pb,X γ) A

E(level) [†]	J ^π ‡	T _{1/2}	XREF	Comments
0.0	0+	10.3 s <i>14</i>	A	$%\beta^-=100$ T _{1/2} : Weighted averages of 10.4 s <i>18</i> (165γ(t)) and 10.1 s <i>22</i> (305γ(t)) in 2009Mo17. The 165γ and 305γ were identified in 2009Mo17 as belonging to ²⁰⁴ Au, produced following β^- decay of ²⁰⁴ Pt.
872.0? 10	(2+)		A	E(level): The energy of this level depends on the order of the 872 γ and 1123 γ , which could not be determined experimentally in ${}^{9}\text{Be}({}^{208}\text{Pb},X\gamma)$, but were placed based on comparison with the ${}^{206}\text{Hg}$ level scheme and shell-model calculations. If the γ' s are interchanged, this level energy is instead 1123 keV.
1995.0 15	(5 ⁻)	5.5 [#] µs 7	Α	Proposed configuration: $\pi[(d_{3/2})^{-1}(h_{11/2})^{-1}]$.
1995.0+x	(7 ⁻)	55 [#] μs 3	A	E(level): γ decay to the 1995-keV level is expected, but not observed. 2008St20 suggest E γ is below the K x-ray threshold of 78.4 keV due to the absence of observed x rays associated with this decay. Such a low-energy transition would be dominated by internal conversion. Proposed configuration: $\pi[(d_{3/2})^{-1}(h_{1/2})^{-1}]$.
3056+x? 1	(8 ⁺)		A	E(level): The energy of this level depends on the order of the 1061 γ and 97 γ , which could not be determined experimentally in ⁹ Be(²⁰⁸ Pb,X γ), but were placed based on comparison with the ²⁰⁶ Hg level scheme and shell-model calculations. If the γ 's are interchanged, this level energy is instead 2092+x keV.
		щ		Proposed configuration: $\pi[(h_{11/2})^{-2}]$.
3153+x <i>1</i>	(10^{+})	146 [#] ns <i>14</i>	Α	Proposed configuration: $\pi[(h_{11/2})^{-2}]$.

[†] From a least-squares fit to E γ . [‡] From ⁹Be(²⁰⁸Pb,X γ), based on comparison with the ²⁰⁶Hg level scheme and shell-model calculations (2008St20). [#] From γ (t) measurements in ⁹Be(²⁰⁸Pb,X γ) reaction (2008St20).

						γ ⁽²⁰⁴ Pt)	
E _i (level)	\mathbf{J}_i^{π}	E_{γ}^{\ddagger}	$I_{\gamma}^{\#}$	$\mathbf{E}_f = \mathbf{J}_f^{\pi}$	Mult.	α^{\dagger}	Comments
872.0?	(2 ⁺)	872 1	100	0.0 0+	[E2]	0.00720 11	$\begin{aligned} \alpha(\text{K}) = 0.00577 \ 9; \ \alpha(\text{L}) = 0.001099 \ 16; \ \alpha(\text{M}) = 0.000258 \ 4; \\ \alpha(\text{N}+) = 7.54 \times 10^{-5} \ 11 \\ \alpha(\text{N}) = 6.37 \times 10^{-5} \ 9; \ \alpha(\text{O}) = 1.114 \times 10^{-5} \ 16; \\ \alpha(\text{P}) = 6.10 \times 10^{-7} \ 9 \end{aligned}$
1995.0	(5 ⁻)	1123 <i>I</i>	100	872.0? (2 ⁺)	[E3]	0.00956 14	$\begin{aligned} &\alpha(\mathbf{K}) = 0.00741 \ 11; \ \alpha(\mathbf{L}) = 0.001637 \ 24; \ \alpha(\mathbf{M}) = 0.000392 \ 6; \\ &\alpha(\mathbf{N}+) = 0.0001145 \\ &\alpha(\mathbf{N}) = 9.67 \times 10^{-5} \ 14; \ \alpha(\mathbf{O}) = 1.684 \times 10^{-5} \ 24; \end{aligned}$

Adopted Levels, Gammas (continued)

 γ (²⁰⁴Pt) (continued)

E _i (level)	\mathbf{J}_i^{π}	E_{γ}^{\ddagger}	$I_{\gamma}^{\#}$	\mathbf{E}_{f}	\mathbf{J}_{f}^{π}	Mult.	α^{\dagger}	Comments
3056+x?	(8+)	1061 <i>1</i>	100	1995.0+x	(7 ⁻)	[E1]	0.00190 3	$\frac{\alpha(P)=8.66\times10^{-7} \ 13; \ \alpha(IPF)=1.06\times10^{-7} \ 5}{B(E3)(W.u.)=0.040 \ 5} \\ \alpha(K)=0.001600 \ 23; \ \alpha(L)=0.000234 \ 4; \\ \alpha(M)=5.33\times10^{-5} \ 8; \ \alpha(N+)=1.565\times10^{-5} \ 22 \\ \alpha(K)=0.001600 \ \alpha(K)=0.000234 \ 4; \\ \alpha(M)=5.33\times10^{-5} \ 10$
3153+x	(10+)	97 1	49 9	3056+x?	(8+)	[E2]	5.6 3	$\begin{array}{l} \alpha(N)=1.514\times10^{-7} \ 2; \ \alpha(O)=2.55\times10^{-7} \ 4; \\ \alpha(P)=1.573\times10^{-7} \ 23 \\ \alpha(K)=0.730 \ 12; \ \alpha(L)=3.63 \ 19; \ \alpha(M)=0.94 \ 5; \\ \alpha(N+)=0.264 \ 14 \\ \alpha(N)=0.229 \ 12; \ \alpha(O)=0.0356 \ 19; \\ \alpha(D)=0.4\times10^{-5} \ 2.5 $
		1158 <i>1</i>	100 14	1995.0+x	(7 ⁻)	[E3]	0.00893 <i>13</i>	$\begin{array}{l} \alpha(\mathrm{F}) = 9.4 \times 10^{-5} \ 3 \\ \mathrm{B(E2)(W.u.)} = 0.73 \ 20 \\ \alpha(\mathrm{K}) = 0.00695 \ 10; \ \alpha(\mathrm{L}) = 0.001506 \ 22; \\ \alpha(\mathrm{M}) = 0.000359 \ 6; \ \alpha(\mathrm{N}+) = 0.0001055 \\ \alpha(\mathrm{N}) = 8.88 \times 10^{-5} \ 13; \ \alpha(\mathrm{O}) = 1.549 \times 10^{-5} \ 22; \\ \alpha(\mathrm{P}) = 8.09 \times 10^{-7} \ 12; \ \alpha(\mathrm{IPF}) = 3.88 \times 10^{-7} \ 14 \\ \mathrm{B(E3)(W.u.)} = 0.28 \ 7 \end{array}$

[†] Additional information 1. [‡] Uncertainties assigned by evaluators. [#] From ${}^{9}Be({}^{208}Pb,X\gamma)$ (2008StZY).

Adopted Levels, Gammas

²⁰⁴₇₈Pt₁₂₆