$(3.67 \times 10^3 \ 3)$

2789.14

²⁰⁴At ε decay **1983He08**

	Histo	ory	
Туре	Author	Citation	Literature Cutoff Date
Full Evaluation	C. J. Chiara and F. G. Kondev	NDS 111,141 (2010)	1-Oct-2009

Parent: ²⁰⁴At: E=0.0; $J^{\pi}=7^+$; $T_{1/2}=9.12 \text{ min } 11$; $Q(\varepsilon)=6460 \ 30$; $\%\varepsilon+\%\beta^+$ decay=96.09 16

1983He08: Mass separated source from ¹⁹³Ir(¹⁶O,xn); measured γ 's, $\gamma\gamma$, $\gamma\gamma$ (t) usingGe(Li); ce, ce- γ using Si(Li). Others: 1970BrZO, 1970DaZM, 1971Ha01.

 γ^{\pm} =26.3 8, K α_1 x ray≈86, K β_2 x ray=4.0 4. Values are relative to I γ (684.3 γ)=100 (1983He08).

²⁰⁴Po Levels

E(level) [†]	$J^{\pi \ddagger}$	T _{1/2}	Comments								
0 684.341 10 1200.661 14 1255.30 15 1552.18 4 1626.915 17 1634.55 7 1639.03 6 1651.4? 3 1728.58 6 1962.15 3	$ \begin{array}{c} 0^+\\ 2^+\\ 4^+\\ (3)^+\\ 4^+\\ 6^+\\ (3^+)\\ 8^+\\ (6^-,7^-)\\ (4)^+\\ 6^+ \end{array} $	140 ns 5	T _{1/2} : From	1971Ha01.	Others: 143 r	ns 5 (1970BrZO) and 150 ns 10 (1983He08).					
2041.697 23	5-										
2194? 2227.33 6 2248.17 6 2289.70 4 2303.14 4 2323.65 9 2376.37 15 2471.58 5 2547.55 8 2547.55 8 2553.26 7 2727.95 16 2789.14 18 2803.35? 6 2899.86 10 3009.82? 8 [†] From a leas [‡] From Adop	9^{-} 8^{+} 7^{-} 6^{-} 6,7,8 (7) $(6,7)^{+}$ $6^{+},7,8^{+}$ $(6,7,8)^{+}$ $(6,7,8^{+})$ $(6,7^{-})$ 7^{-} $(6^{+},7,8)$ st-squares finited Levels.	≈17 ns t to Eγ.	T _{1/2} : From	1983He08.							
				:	ε, β^+ radiation	<u>s</u>					
E(decay)	E(level)	Ιβ ⁺ ‡	$\mathrm{I}\varepsilon^{\ddagger}$	Log ft	$I(\varepsilon + \beta^+)^{\dagger \ddagger}$	Comments					
$(3.45 \times 10^3 3)$	3009.82?	0.31 15	2.1 10	7.11 22	2.4 12	av $E\beta$ =1096 <i>14</i> ; ε K=0.699 <i>4</i> ; ε L=0.1300 <i>7</i> ; ε M+=0.04310 <i>23</i>					
$(3.56 \times 10^3 \ 3)$	2899.86	0.219 25	1.31 15	7.34 5	1.53 17	av $E\beta$ =1145 <i>14</i> ; ϵ K=0.687 <i>4</i> ; ϵ L=0.1275 <i>7</i> ; ϵ M+=0.04227 <i>23</i>					
$(3.66 \times 10^{3 \text{\#}} 3)$	2803.35?	0.38 19	2.0 10	7.18 22	2.4 12	av $E\beta$ =1188 14; ε K=0.676 4; ε L=0.1253 7;					

 ε M+=0.04152 24 av E β =1194 14; ε K=0.674 4; ε L=0.1250 7; ε M+=0.04141 24

Continued on next page (footnotes at end of table)

0.089 21 0.47 11 7.81 11 0.56 13

			²⁰⁴ A	At ε decay 1	983He08 (cont	inued)
				ϵ, β^+ radiation	ons (continued)	
E(decay)	E(level)	Iβ ⁺ ‡	Ie‡	Log ft	$I(\varepsilon + \beta^+)^{\ddagger\ddagger}$	Comments
$(3.73 \times 10^3 \ 3)$	2727.95	0.13 2	0.62 12	7.71 9	0.75 14	av Eβ=1221 14; εK=0.667 4; εL=0.1235 8; εM+=0.04092 24
$(3.91 \times 10^3 \ 3)$	2553.26	0.261 25	1.07 10	7.51 4	1.33 12	av Eβ=1299 14; εK=0.645 4; εL=0.1193 8; εM+=0.03950 25
$(3.91 \times 10^3 \ 3)$	2547.55	0.27 3	1.09 10	7.51 5	1.36 <i>13</i>	av Eβ=1301 14; εK=0.644 4; εL=0.1191 8; εM+=0.03945 25
$(3.99 \times 10^3 \ 3)$	2471.58	0.30 3	1.12 10	7.51 4	1.42 12	av Eβ=1335 14; εK=0.634 4; εL=0.1172 8; εM+=0.0388 3
$(4.08 \times 10^3 \ 3)$	2376.37	0.14 4	0.50 13	7.89 12	0.64 17	av Eβ=1378 14; εK=0.622 4; εL=0.1148 8; εM+=0.0380 3
$(4.14 \times 10^3 \ 3)$	2323.65	0.16 3	0.54 9	7.86 8	0.70 12	av Eβ=1402 14; εK=0.615 4; εL=0.1135 8; εM+=0.0376 3
$(4.16 \times 10^3 \ 3)$	2303.14	0.86 10	2.7 3	7.16 5	3.6 4	av Eβ=1411 14; εK=0.612 4; εL=0.1129 8; εM+=0.0374 3
$(4.17 \times 10^3 \ 3)$	2289.70	1.5 1	4.9 2	6.913 <i>23</i>	6.4 3	av Eβ=1417 14; εK=0.610 4; εL=0.1126 8; εM+=0.0373 3
$(4.21 \times 10^3 \ 3)$	2248.17	5.8 4	17.8 11	6.36 <i>3</i>	23.6 15	av Eβ=1435 14; εK=0.605 4; εL=0.1115 8; εM+=0.0369 3
$(4.23 \times 10^3 \ 3)$	2227.33	0.73 4	6.1 3	8.650 ¹ <i>u</i> 25	6.8 <i>3</i>	av Eβ=1407 13; εK=0.7116 23; εL=0.1362 5; εM+=0.04538 18
$(4.42 \times 10^3 \ 3)$	2041.697	0.56 16	3.9 11	8.91 ¹ <i>u</i> 13	4.5 13	av Eβ=1486 13; εK=0.6973 25; εL=0.1331 6; εM+=0.04430 18
$(4.50 \times 10^3 \ 3)$	1962.15	1.1 4	2.7 9	7.24 15	3.8 13	av Eβ=1564 14; εK=0.566 5; εL=0.1040 8; εM+=0.0344 3
$(4.82 \times 10^3 \ 3)$	1639.03	≈5.3	≈9.7	≈6.7	≈15	av Eβ=1710 14; εK=0.521 5; εL=0.0956 8; εM+=0.0316 3
(4.83×10 ^{3#} 3)	1626.915	≈4.2	≈7.8	≈6.8	≈12	av Eβ=1715 14; εK=0.519 5; εL=0.0953 8; εM+=0.0315 3

[†] From γ +ce intensity balances. The quoted uncertainties do not include the effect of $\approx 12\%$ unplaced I γ . [‡] For absolute intensity per 100 decays, multiply by 0.9609 *16*. [#] Existence of this branch is questionable.

 $\gamma(^{204}\mathrm{Po})$

I γ normalization: From Ti(684.34 γ)=96.09% 16. The decay scheme is incomplete, since there is poor agreement between ²⁰⁴At ε decay Q value of 5682 keV *107*, calculated using the decay scheme and RADLST, and that of 6207 keV *30*, as deduced from 2003Au03 and Branching. It should be noted that 12% imbalance in I γ was obtained from intensity balances.

E_{γ}^{\ddagger}	$I_{\gamma}^{\ddagger a}$	E _i (level)	\mathbf{J}_i^{π}	\mathbf{E}_{f}	\mathbf{J}_{f}^{π}	Mult. [#]	δ ^{&}	α^{\dagger}	Comments
(12.1)	1.0×10 ⁻³ 3	1639.03	8+	1626.915	6+	[E2]		5.3×10 ⁴ 5	$\begin{aligned} \alpha(M) = 4.1 \times 10^4 \ 4; \ \alpha(N+) = 1.25 \times 10^4 \ 11 \\ \alpha(N) = 1.04 \times 10^4 \ 9; \ \alpha(O) = 1.95 \times 10^3 \ 17; \ \alpha(P) = 169 \ 15 \\ ce(N)/(\gamma+ce) = 0.195 \ 22; \ ce(O)/(\gamma+ce) = 0.037 \ 5; \\ ce(P)/(\gamma+ce) = 0.0032 \ 4 \\ I_{\gamma}: \ From I(\gamma+ce) = 52\% \ 13 \ in \ 1983 He08 \ and \ \alpha. \end{aligned}$
24 ^c	≈0.5	1651.4?	(6 ⁻ ,7 ⁻)	1626.915	6+	(E1)		4.49	$\alpha(L)=3.395; \alpha(M)=0.84712; \alpha(N+)=0.2504$ $\alpha(N)=0.2093; \alpha(O)=0.03776; \alpha(P)=0.003285$ Mult : From intensity balance
74	≈0.108	1626.915	6+	1552.18	4+	[E2]		28.4	$\alpha(L)=21.1 \ 3; \ \alpha(M)=5.62 \ 8; \ \alpha(N+)=1.737 \ 25 \ \alpha(N)=1.439 \ 21; \ \alpha(O)=0.273 \ 4; \ \alpha(P)=0.0242 \ 4 \ ce(N)/(\gamma+ce)=0.00489 \ 10; \ ce(O)/(\gamma+ce)=0.00927 \ 18; \ ce(P)/(\gamma+ce)=0.00821 \ 16 \ L_{2}: \ From I(\gamma+ce)\approx 3\% \ in \ 1983He08 \ and \ \alpha.$
152 ^c ^x 209.5 3	≈0.5 0.25 <i>3</i>	2194?		2041.697	5-				-,
222 ^c	≈0.5	2471.58	(6,7)+	2248.17	8+	[M1,E2]		0.7 5	α (K)=0.5 4; α (L)=0.156 10; α (M)=0.0388 7; α (N+)=0.0122 3 α (N)=0.00997 18; α (O)=0.00201 11; α (P)=0.00023 5
261.44 <i>3</i>	2.45 19	2303.14	6-	2041.697	5-	M1		0.738	$\alpha(K)=0.4; \alpha(L)=0.1$ $\alpha(K)=0.600 \ 9; \alpha(L)=0.1051 \ 15; \alpha(M)=0.0248 \ 4;$ $\alpha(N+)=0.00789 \ 11$ $\alpha(N)=0.00638 \ 9; \alpha(O)=0.001335 \ 19; \alpha(P)=0.0001725 \ 25$ Mult.: $\alpha(K)$ exp=0.38; K/L=5.9 4.
^x 297.72 12	0.33 8					(M1)		0.516	$\alpha(K)=0.420\ 6$; $\alpha(L)=0.0734\ 11$; $\alpha(M)=0.01730\ 25$; $\alpha(N+)=0.00550\ 8$ $\alpha(N)=0.00445\ 7$; $\alpha(O)=0.000932\ 13$; $\alpha(P)=0.0001204\ 17$ Mult: $\alpha(K)=0.0255$
327.69 6	3.51 25	2289.70	7-	1962.15	6+	E1		0.0256	$\alpha(K) = 0.0209 \ 3; \ \alpha(L) = 0.00359 \ 5; \ \alpha(M) = 0.000844 \ 12; \\ \alpha(N+) = 0.000265 \ 4 \\ \alpha(N) = 0.000215 \ 3; \ \alpha(O) = 4.41 \times 10^{-5} \ 7; \ \alpha(P) = 5.36 \times 10^{-6} \ 8 \\ \text{Mult:} \ \alpha(K) = 0.0023 \ 3 \\ \alpha(N) = 0.00215 \ 3; \ \alpha(O) = 4.41 \times 10^{-5} \ 7; \ \alpha(P) = 5.36 \times 10^{-6} \ 8 \\ \text{Mult:} \ \alpha(K) = 0.0023 \ 3 \\ \alpha(K) = 0.00$
335.21 <i>3</i>	3.73 26	1962.15	6+	1626.915	6+	M1		0.373	$\alpha(K) = 0.304 5; \ \alpha(L) = 0.0530 8; \ \alpha(M) = 0.01248 \ 18; \alpha(N+) = 0.00397 6 \alpha(N) = 0.00321 5; \ \alpha(O) = 0.000672 \ 10; \ \alpha(P) = 8.69 \times 10^{-5} \ 13 $ Mult: $\alpha(K) = 0.335; \ K/I = 6.65$
^x 338.37 15 ^x 350.00 15	0.44 <i>9</i> 0.68 <i>14</i>					E2,E1			Mult.: $\alpha(K)\exp \le 0.16$.
351.70 10	3.08 20	1552.18	4+	1200.661	4+	M1+E2	0.7 2	0.25 4	$\alpha(K)=0.19$ 3; $\alpha(L)=0.039$ 3; $\alpha(M)=0.0094$ 7; $\alpha(N+)=0.00298$

ω

 $^{204}_{84} Po_{120}\text{--}3$

						204 At ε deca	y 1983	He08 (conti	inued)			
γ ⁽²⁰⁴ Po) (continued)												
E_{γ}^{\ddagger}	$I_{\gamma}^{\ddagger a}$	E _i (level)	\mathbf{J}_i^{π}	E_f	\mathbf{J}_{f}^{π}	Mult. [#]	δ ^{&}	α^{\dagger}	Comments			
									20 α (N)=0.00242 <i>16</i> ; α (O)=0.00050 <i>4</i> ; α (P)=6.2×10 ⁻⁵ <i>6</i> Mult.: α (K)exp=0.21 <i>5</i> .			
^x 361.17 27	0.50 10					(M1)		0.305	δ: 0.6 4 from α(K)exp. α(K)=0.248 4; α(L)=0.0432 7; α(M)=0.01018 15; α(N+)=0.00324 5			
379.1 2	0.44 15	1634.55	(3 ⁺)	1255.30	$(3)^+$	[M1]		0.267	α (N)=0.00262 4; α (O)=0.000548 8; α (P)=7.09×10 ⁻⁵ 10 Mult.: α (K)exp=0.60. α (K)=0.218 3; α (L)=0.0379 6; α (M)=0.00892 13;			
									α (N+)=0.00284 <i>4</i> α (N)=0.00230 <i>4</i> ; α (O)=0.000480 <i>7</i> ; α (P)=6.21×10 ⁻⁵ <i>9</i> E _v .I _v : From Adopted Levels, gammas,			
414.62 5	1.00 9	2041.697	5-	1626.915	6+	[E1]		0.01524	$\alpha(K)=0.01251 \ I8; \ \alpha(L)=0.00209 \ 3; \ \alpha(M)=0.000490 \ 7; \ \alpha(N+)=0.0001543 \ 22 \ \alpha(N)=0.0001253 \ I8; \ \alpha(O)=2.58\times10^{-5} \ 4; \ \alpha(P)=3.17\times10^{-6} \ 5$			
426.24 1	71.3 21	1626.915	6+	1200.661	4+	E2		0.0476	$\alpha(\mathbf{K}) = 0.0309 \ 5; \ \alpha(\mathbf{L}) = 0.01252 \ 18; \ \alpha(\mathbf{M}) = 0.00318 \ 5; \ \alpha(\mathbf{N}+) = 0.00096 \ 14 \ \alpha(\mathbf{N}) = 0.00096 \ 14 \ \alpha(\mathbf{N}) = 0.0009617 \ 12; \ \alpha(\mathbf{Q}) = 0.0001618 \ 23; \ \alpha(\mathbf{P}) = 1.723 \times 10^{-5} \ 25 \ 10^{-5} \ 25 \ 10^{-5} \ 25 \ 10^{-5} \ 25 \ 10^{-5} \ 25 \ 10^{-5} \ 25 \ 10^{-5} \ 25 \ 10^{-5} \ 25 \ 10^{-5} \ 25 \ 10^{-5} \ 25 \ 10^{-5} \ 25 \ 10^{-5} \ 25 \ 10^{-5} \ 25 \ 10^{-5} \ 25 \ 10^{-5} \ 25 \ 10^{-5} \ 1$			
433.7 2	0.72 19	1634.55	(3+)	1200.661	4+	[M1]		0.186	$\begin{array}{l} \text{Mult.: } \alpha(\text{K}) \text{exp}=0.0335; \text{K/L}=2.7 \ 2. \\ \alpha(\text{K})=0.1518 \ 22; \ \alpha(\text{L})=0.0263 \ 4; \ \alpha(\text{M})=0.00619 \ 9; \\ \alpha(\text{N}+)=0.00197 \ 3 \end{array}$			
479.78 <i>15</i>	0.69 13	2727.95	(7,8)+	2248.17	8+	M1		0.1422	$\alpha(N)=0.001593\ 23;\ \alpha(O)=0.000333\ 5;\ \alpha(P)=4.31\times10^{-5}\ 6$ E_{γ},I_{γ} : From Adopted Levels, gammas. $\alpha(K)=0.1160\ 17;\ \alpha(L)=0.0200\ 3;\ \alpha(M)=0.00471\ 7;$ $\alpha(N+)=0.001500\ 21$			
^x 485.50 25	0.51 10								α (N)=0.001213 <i>17</i> ; α (O)=0.000254 <i>4</i> ; α (P)=3.29×10 ⁻⁵ 5 Mult.: α (K)exp=0.10.			
489.52 5	2.88 18	2041.697	5-	1552.18	4+	E1		0.01073	$\alpha(K)=0.00883 \ I3; \ \alpha(L)=0.001453 \ 21; \ \alpha(M)=0.000340 \ 5; \ \alpha(N+)=0.0001071 \ I5 \ \alpha(N)=8.69\times10^{-5} \ I3: \ \alpha(O)=1.79\times10^{-5} \ 3: \ \alpha(P)=2.23\times10^{-6} \ 4$			
516.32 <i>1</i>	95.4 30	1200.661	4+	684.341	2+	E2		0.0297	Mult.: From adopted gammas. $\alpha(K)=0.0207 \ 3; \ \alpha(L)=0.00678 \ 10; \ \alpha(M)=0.001699 \ 24; \ \alpha(N+)=0.000533 \ 8$			
^x 522.47 9	0.66 12								α (N)=0.000436 7; α (O)=8.72×10 ⁻⁵ 13; α (P)=9.63×10 ⁻⁶ 14 Mult.: α (K)exp=0.0217; K/L=3.7 3.			
527.88 6	0.76 10	1728.58	(4)+	1200.661	4+	M1(+E2) [@]	≤0.5	0.102 9	$\alpha(K)=0.083 \ 8; \ \alpha(L)=0.0146 \ 10; \ \alpha(M)=0.00344 \ 22; \ \alpha(N+)=0.00109 \ 7$			
x539.22 13 x558.30 10 570.8 2	0.53 <i>12</i> 0.43 <i>9</i> 0.52 <i>18</i>	1255.30	$(3)^{+}$	684.341	2+	M1+E2	0.6 4	0.072 16	$\alpha(K) = 0.00089 0; \alpha(C) = 0.000185 12; \alpha(F) = 2.58 \times 10^{-5} 17$ $\alpha(K) = 0.058 14; \alpha(L) = 0.0106 18; \alpha(M) = 0.0025 4;$			
l												

4

I

						204 At ε dec	ay 19	83He08 (conti	nued)		
γ ⁽²⁰⁴ Po) (continued)											
E_{γ}^{\ddagger}	$I_{\gamma}^{\ddagger a}$	E _i (level)	\mathbf{J}_i^{π}	E_f	\mathbf{J}_f^{π}	Mult. [#]	δ ^{&}	$lpha^\dagger$	Comments		
			_						α(N+)=0.00080 13 α(N)=0.00065 11; α(O)=0.000134 23; α(P)=1.7×10-5 4 $ E_γ,Mult.: From Adopted Levels, gammas. $ $ I_γ: From intensity balances. $		
588.30 2	7.26 26	2227.33	9-	1639.03	8+	E1		0.00738 11	α =0.00738 <i>11</i> ; α (K)=0.00609 <i>9</i> ; α (L)=0.000986 <i>14</i> ; α (M)=0.000230 <i>4</i> ; α (N+)=7.26×10 ⁻⁵ <i>11</i> α (N)=5.89×10 ⁻⁵ <i>9</i> ; α (O)=1.218×10 ⁻⁵ <i>17</i> ; α (P)=1.525×10 ⁻⁶ <i>22</i> Mult : α (K)exp<0.028		
596.66 25	0.38 9	2899.86	7-	2303.14	6-	[M1]		0.0798	$\alpha(K)=0.0652 \ I0; \ \alpha(L)=0.01119 \ I6; \ \alpha(M)=0.00263 \ 4; \ \alpha(N+)=0.000837 \ I2 \ \alpha(N)=0.000677 \ I0; \ \alpha(O)=0.0001418 \ 20; \ \alpha(P)=1.84\times10^{-5} \ 3 \ Mult: \ 1983He08 \ report \ \alpha(K)exp=0.21, \ consistent \ with \ a \ M2$		
609.14 <i>3</i>	26.0 8	2248.17	8+	1639.03	8+	M1+E2	0.6 4	0.061 13	mult. The adopted J^{π} requires M1 mult. $\alpha(K)=0.049 \ II; \ \alpha(L)=0.0089 \ I6; \ \alpha(M)=0.0021 \ 4; \ \alpha(N+)=0.00067 \ II \ \alpha(D)=0.000113 \ I0; \ \alpha(D)=1.4\times10^{-5} \ 3$		
621.20 9	0.60 9	2248.17	8+	1626.915	6+	[E2]		0.0195	$\alpha(N)=0.00034$ 9, $\alpha(O)=0.000113$ 79, $\alpha(1)=1.4\times10^{-1}$ 5 Mult.: $\alpha(K)$ exp=0.055. Additional information 1. $\alpha(K)=0.01432$ 20; $\alpha(L)=0.00394$ 6; $\alpha(M)=0.000974$ 14; $\alpha(N+)=0.000306$ 5		
650.66 6	1.74 <i>14</i>	2289.70	7-	1639.03	8+	[E1]		0.00605 9	$ α(N)=0.000250 4; α(O)=5.04×10^{-5} 7; α(P)=5.75×10^{-6} 8 Iγ: From spectrum in Fig. 3 and Table V of 1983He08 (misprinted in Table I). α=0.00605 9; α(K)=0.00500 7; α(L)=0.000803 12; QED = 0.00500 7; α(L)=0.00803 12; CD = 0.00500 7; α(L)=0.00803 12; $		
X (5 (() 2)	0.70.11								$\alpha(M)=0.0001873; \alpha(N+)=5.91\times10^{-5}9$ $\alpha(N)=4.79\times10^{-5}7; \alpha(O)=9.92\times10^{-6}14; \alpha(P)=1.247\times10^{-6}18$		
662.72 <i>4</i>	0.70 11 1.46 <i>13</i>	2289.70	7-	1626.915	6+	[E1]		0.00584 9	α =0.00584 9; α (K)=0.00483 7; α (L)=0.000774 11; α (M)=0.000180 3; α (N+)=5.69×10 ⁻⁵ 8 α (N)=4.61×10 ⁻⁵ 7; α (O)=9.56×10 ⁻⁶ 14; α (P)=1.203×10 ⁻⁶ 17		
672.4 ^b 6	≤0.21 ^b	2323.65	6,7,8	1651.4?	(6 ⁻ ,7 ⁻)				I_{γ} : 0.21 2 for the doublet.		
672.4 ^b 6	≤0.21 ^b	2899.86	7-	2227.33	9-	[E2]		0.01645	α (K)=0.01226 <i>18</i> ; α (L)=0.00316 <i>5</i> ; α (M)=0.000778 <i>11</i> ; α (N+)=0.000245 <i>4</i>		
684.34 <i>1</i>	100 3	684.341	2+	0	0+	E2		0.01584	$ \begin{aligned} \alpha(N) = 0.000200 \ 3; \ \alpha(O) = 4.05 \times 10^{-5} \ 6; \ \alpha(P) = 4.68 \times 10^{-6} \ 7 \\ \alpha(K) = 0.01185 \ 17; \ \alpha(L) = 0.00302 \ 5; \ \alpha(M) = 0.000741 \ 11; \\ \alpha(N+) = 0.000233 \ 4 \end{aligned} $		
<i></i>					<.+				α (N)=0.000190 3; α (O)=3.86×10 ⁻⁵ 6; α (P)=4.47×10 ⁻⁶ 7 Mult.: α (K)exp=0.012 (this value was used to normalize the measured α (K)exp); K/L=3.6 3.		
696.73 9 x712 26 11	0.64 11	2323.65	6,7,8	1626.915	6+						
749.45 15	0.68 18	2376.37	(7)	1626.915	6+	D					

S

L

					-	204 At ε deca	iy 1983He0	8 (continued)
						<u>γ(</u>	²⁰⁴ Po) (continu	ued)
E_{γ}^{\ddagger}	$I_{\gamma}^{\ddagger a}$	E _i (level)	\mathbf{J}_i^π	E_{f} J	\mathbf{J}_{f}^{π}	Mult. [#]	α^{\dagger}	Comments
761.65 5	≤5	1962.15	6+	1200.661 4	4+	(E2) [@]	0.01266	$\alpha(K)=0.00965 \ 14; \ \alpha(L)=0.00228 \ 4; \ \alpha(M)=0.000556 \ 8; \\ \alpha(N+)=0.0001752 \ 25 \\ \alpha(N)=0.0001427 \ 20; \ \alpha(O)=2.90\times10^{-5} \ 4; \ \alpha(P)=3.42\times10^{-6} \ 5 \\ Mult: \ \alpha(K)exp<0.007 $
761.65 ^b 5	≤5 ^b	2803.35?	$(6,7^{-})$	2041.697 5	5-			
761.65 ^b 5	<5 ^b	3009.82?	$(6^+, 7, 8)$	2248.17 8	8+			
841.06 2	8.7 3	2041.697	5-	1200.661 4	4+	E1	0.00372 6	$ \begin{array}{l} \alpha = 0.00372 \ 6; \ \alpha(\mathrm{K}) = 0.00309 \ 5; \ \alpha(\mathrm{L}) = 0.000485 \ 7; \ \alpha(\mathrm{M}) = 0.0001128 \ 16; \\ \alpha(\mathrm{N}+) = 3.57 \times 10^{-5} \ 5 \\ \alpha(\mathrm{N}) = 2.89 \times 10^{-5} \ 4; \ \alpha(\mathrm{O}) = 6.00 \times 10^{-6} \ 9; \ \alpha(\mathrm{P}) = 7.62 \times 10^{-7} \ 11 \end{array} $
844.66 <i>4</i>	1.47 12	2471.58	(6,7)+	1626.915 6	6+	M1(+E2)	0.021 11	Mult.: From adopted gammas. $\alpha(K)=0.017 \ 10; \ \alpha(L)=0.0031 \ 14; \ \alpha(M)=0.0007 \ 4; \ \alpha(N+)=0.00023 \ 10$ $\alpha(N)=0.00019 \ 8; \ \alpha(O)=3.9\times10^{-5} \ 18; \ \alpha(P)=5.0\times10^{-6} \ 24$ $\alpha(N)=0.0001094 \ 16; \ \alpha(O)=2.24\times10^{-5} \ 4; \ \alpha(P)=2.67\times10^{-6} \ 4$
858.18 <i>10</i>	1.10 14	2899.86	7-	2041.697 5	5-	[E2]	0.00994 14	Mult.: from adopted gammas. $\alpha = 0.00994 \ 14; \ \alpha(K) = 0.00771 \ 11; \ \alpha(L) = 0.001690 \ 24; \ \alpha(M) = 0.000409 \ 6; \ \alpha(N+) = 0.0001292$
o (- o o) (.+		a +			$\alpha(N)=0.0001052\ 15;\ \alpha(O)=2.15\times10^{-5}\ 3;\ \alpha(P)=2.5/\times10^{-6}\ 4$
867.80 4	1.98 14	1552.18	4+	684.341 2	2*	E2 C	0.00972 14	α =0.009/2 14; α (K)=0.00/55 11; α (L)=0.001645 23; α (M)=0.000398 6; α (N+)=0.0001257
^x 899.39 6	2.62 16							α (N)=0.0001023 15; α (O)=2.09×10 ⁻⁵ 3; α (P)=2.51×10 ⁻⁶ 4 E _{γ} : 1987Ra04 in (³ He,3n γ) report a 899.6 γ deexciting the 2100-keV level; however, the coin information of 1983He08 indicates that the 899.39 γ is in coin with the 426.2 γ . This is inconsistent with the $\gamma\gamma$ -coin results of 1987Ra04.
908.49 7	0.98 10	2547.55	$6^+, 7, 8^+$	1639.03 8	8+			
920.72 14	0.46 9	2547.55	$6^+,7,8^+$	1626.915 6	6 ⁺			
926.34 6 ^x 935.50 25	1.41 <i>12</i> 0.37 <i>11</i>	2553.26	6,7,8	1626.915 6	6+			E_{γ} : Placement based on Adopted Levels, gammas.
950.25 7	1.06 <i>13</i>	1634.55	(3+)	684.341 2	2+	(M1+E2)	0.0237	α(K)=0.0194 3; α(L)=0.00329 5; α(M)=0.000772 11; α(N+)=0.000246 $ a(N)=0.000199 3; α(O)=4.16×10^{-5} 6; α(P)=5.39×10^{-6} 8 $ $ E_{\gamma}: Placement based on adopted gammas. Coin with 684γ and no coin with any other γ (see Table IV of 1983He08) supports this assignment. MultipEquation (1)$
x053.05.10	0 55 11							Mult.: From adopted gammas.
x1003.45 25	0.59 17							
1044.32 9	0.61 8	1728.58	(4)+	684.341 2	2+	[E2]	0.00676 10	$ \begin{array}{l} \alpha = 0.00676 \ 10; \ \alpha(\mathrm{K}) = 0.00536 \ 8; \ \alpha(\mathrm{L}) = 0.001067 \ 15; \ \alpha(\mathrm{M}) = 0.000256 \ 4; \\ \alpha(\mathrm{N}+) = 8.08 \times 10^{-5} \ 12 \\ \alpha(\mathrm{N}) = 6.57 \times 10^{-5} \ 10; \ \alpha(\mathrm{O}) = 1.351 \times 10^{-5} \ 19; \ \alpha(\mathrm{P}) = 1.653 \times 10^{-6} \ 24 \end{array} $
^x 1101.45 <i>15</i>	0.33 8							E_{γ} : Placement based on Adopted Levels, gammas.

6

 $^{204}_{84} Po_{120}\text{--}6$

Eγ [‡]	$I_{\gamma}^{\ddagger a}$	E _i (level)	\mathbf{J}_i^{π}	E_f	J_f^π
1137.74 <i>30</i>	0.20 <i>9</i>	2789.14	$(6,7,8^+)$	1651.4?	$(6^-,7^-)$
1162.23 <i>18</i>	0.39 <i>10</i>	2789.14	$(6,7,8^+)$	1626.915	6^+

[†] Additional information 2.
[‡] From 1983He08, unless otherwise specified.

[#] From $\alpha(K)$ exp and K/L in 1983He08, unless otherwise specified. Uncertainties estimated by 1983He08 to be 5-11% for $\alpha(K)$ exp and 4-7% for K/L.

[@] From adopted gammas.

[&] From adopted gammas.

^{*a*} For absolute intensity per 100 decays, multiply by 0.9459 *16*.

^b Multiply placed with undivided intensity.

^c Placement of transition in the level scheme is uncertain.

 $x \gamma$ ray not placed in level scheme.

 ∞

 $^{204}_{84}\mathrm{Po}_{120}\text{--}8$