²⁰⁴**Pb**(α ,4**n** γ), ¹⁹⁸**Pt**(¹²**C**,6**n** γ) **1990Fa03**

History								
Туре	Author	Citation	Literature Cutoff Date					
Full Evaluation	C. J. Chiara and F. G. Kondev	NDS 111,141 (2010)	1-Oct-2009					

1990Fa03: ²⁰⁴Pb(α ,4n γ) E(α)=52-54 MeV; 6-mg/cm² thick target enriched to 99.9 % in ²⁰⁴Pb; one intrinsic Ge, severalGe(Li) and Si(Li) detectors; measured γ (t), $\gamma\gamma$ (t), $\gamma(\theta)$, ce, excitation functions; $\gamma\gamma$ coin using ¹⁹⁸Pt(¹²C,6n γ) and a metallic ¹⁹⁸Pt target, 2-mg/cm² thick.

Others: 1970Ya03: ²⁰⁴Pb(α ,4n γ) E(α)=50 MeV; 20-mg/cm² thick low-enrichment in ²⁰⁴Pb target; oneGe(Li) detector; measured γ (t). 1976Be12: ²⁰⁶Pb(α ,6n γ), ¹⁹⁷Au(¹⁰B,3n γ); severalGe(Li) and Si(Li) detectors; measured γ (t), $\gamma\gamma$ (t), $\gamma(\theta)$, and Ce(t). 1982Ha16: ²⁰⁴Pb(α ,4n γ) E(α)=50 MeV; 100- μ g/cm² ²⁰⁴Pb target on a 170- μ g/cm² Ni backing; measured Ce(θ ,t,H). The decay scheme is based mainly on 1990Fa03.

²⁰⁴Po Levels

E(level) [†]	$J^{\pi \ddagger}$	$T_{1/2}^{\#}$	Comments
0	0^{+}		
684.30 10	2^{+}		
1200.58 14	4+		
1255.20 23	2+		
1552.37 22	4+		
1626.79 <i>18</i>	6+		
1638.91 <i>19</i>	8+	150 ns <i>10</i>	 T_{1/2}: Others: 190 ns 20 (1970Ya03), 140 ns (1976Be12). g-factor=+0.923 13 (1973Br14) deduced using the stroboscopic resonance technique. The value was corrected for Knight (1.2% 4) and diamagnetic (-1.79%) shifts. Configuration=(π hoc)⁺²
1962.6.5	6+		$\operatorname{Conn}\operatorname{Sut}(\operatorname{Conn}(\operatorname{A}\operatorname{ng}_{\mathbb{Z}}))$
2041 82 23	5-		Main Configuration $-((y_1,y_2)^{-1}(y_1,y_2)^{-1})$
2227 31 21	9-	15 ns 4	$T_{1/2}$: From 1976Be12 Others: <22 ns (1990Fa03) and \approx 20 ns (1970Ya03)
2227.31 21	/	15 115 7	Main Configuration $-((y_{1/2})^{-1}(y_{1/2})^{-1})$
2200 2 1	7-		Main Configuration= $((y_1 _{y_2}), (y_3 _{z_3}))$.
2290.2 4	(6^{-})		Wall Configuration $-((v_{1}_{3/2}) (v_{1}_{5/2}))$.
2302.9 3	(0)		E(level): Quoted (probably in error) as 2427.9 in Fig. 4 of 1990 Fa03
2527 4 3	10^{+}		
2539.0.3	9+		
2620 5 5	11-		Main Configuration= $((\pi h_{0,2})^{+1}(\pi i_{1,2,2})^{+1})$
2788.7 4	10^{+}		(111) = (111) (1
2827.6 6	10-		
2895.1 6	(11^{+})		
2905.03 23	11-		Main Configuration= $((y p_{3/2})^{-1}(y f_{5/2})^{-2}(y i_{1/3/2})^{-1})$.
2946.3 5	10-		$((F_{3/2}) ((-3/2)) ((-1/3/2)))$
3083.4 6	11^{+}		
3125.5 4	12^{+}		Possible Configuration= $(\nu i_{13/2})^{-2}$.
3133.3 6	11^{+}		
3227.3 3	12^{-}		
3387? <i>3</i>			
3387.3 5	13-	9 ns <i>3</i>	T _{1/2} : Value deduced using 261.8 γ (t) and 598.1 γ (t) (1990Fa03). Main Configuration=((π h _{9/2}) ⁺² (ν f _{5/2}) ⁻¹ (ν i _{13/2}) ⁻¹).
3439.2 5	13-		
3459.0 7	12-		
3528.2 4	13-		
3564.0 6	15-	13 ns 2	T _{1/2} : Other: 13 ns 3 (1976Be12) and 11 ns <i>l</i> (1982Ha16). g-factor=0.41 2 deduced using the in-beam time differential perturbed angular distribution technique from $\gamma(\theta, t)$ of ²⁰⁴ Po implanted in nickel foil (1982Ha16). For calibration of the internal magnetic field, 1982Ha16 assumed g-factor=0.91 for the 6 ⁺ state in ²⁰⁸ Po. Main Configuration=((π h _{9/2}) ⁺² (ν f _{5/2}) ⁻¹ (ν i _{13/2}) ⁻¹).
3576? 3			

204 Pb (α ,4n γ).	$,^{198}$ Pt (12 C,6n γ)	1990Fa03 (continued)
---	--	----------------------

					²⁰⁴ P	o Levels (con	ntinued)
E(level) [†]	$J^{\pi \ddagger}$						
3649? 5		4168.6 7	(16 ⁻)	4362.2 8	13-	4978.1 11	
3723.2 7		4174.9 6	15-	4383.2 7	(17^{-})	5155.1 <i>12</i>	
3767.4 9	13-	4186.5 12		4437.68	(16^{+})	5295.1 <i>12</i>	(19 ⁻)
3898.6 9	14^{-}	4202.9 6	15^{-}	4471.1 7	17-	5911.1 <i>16</i>	(20)
3975.3 7	15^{-}	4212.2 6	(14^{+})	4532.4 8			
4096? 5		4312.7 8	16-	4615.4 9	(18^{-})		
4137.3 9		4358.6 10	(16 ⁻)	4819.4 10	. ,		

[†] From a least-squares fit to E γ . [‡] From 1990Fa03, based on deduced transition multipolarities using $\gamma(\theta)$ and $\alpha(K)$ exp. [#] From 1990Fa03, unless otherwise specified.

γ ⁽²⁰⁴Po)

 α (K)exp was normalized to 0.0119 for 684.3-keV E2.

E_{γ}^{\dagger}	Iγ [‡]	E _i (level)	\mathbf{J}_i^{π}	E_f	\mathbf{J}_f^{π}	Mult. [#]	Comments
$(12.1\ 2)$		1638.91	8+	1626.79	6+		E_{γ} : From adopted gammas.
93.1 5	≈6	2620.5	11-	2527.4	10^{+}		
106.4 5	0.7 2	2895.1	(11 ⁺)	2788.7	10^{+}	(M1)	Mult.: 1990Fa03 do not present the evidence for this assignment.
124.8 <i>3</i>	3.1 5	3564.0	15^{-}	3439.2	13-	(E2)	Mult.: $A_2 > 0$.
158.7 5	≈3	4978.1		4819.4			-
211.9 5	2.3 3	3439.2	13-	3227.3	12-	(M1)	Mult.: α (K)exp=0.55; A ₂ =0.32 25, A ₄ =-0.2 4.
225.4 4	2.2 4	4437.6	(16^{+})	4212.2	(14^{+})	(E2)	Mult.: $\alpha(K) \exp = 0.44$; A ₂ =0.18 18, A ₄ =-0.11 25.
232.2 5	0.5 1	4615.4	(18-)	4383.2	(17-)	M1	Mult.: $\alpha(K) \exp = 0.94$; $A_2 = -0.60 \ 8$, $A_4 = 0.24 \ 12$.
249.7 <i>3</i>	4.9 5	2788.7	10+	2539.0	9+	M1	Mult.: $\alpha(K) \exp = 0.54$; A ₂ =-0.15 8, A ₄ =-0.41 14.
261.1 4	<1	2302.9	(6 ⁻)	2041.82	5-		
261.8 <i>3</i>	6	3387.3	13-	3125.5	12^{+}	E1	Mult.: α (K)exp=0.04; A ₂ =0.13 18, A ₄ =-0.0 3.
≈262		3649?		3387?			
281.4 5	1.6 3	3227.3	12^{-}	2946.3	10-	E2	Mult.: α (K)exp=0.16; A ₂ =0.1 3, A ₄ =-0.0 5.
287.0 5	≈5	4819.4		4532.4			
294.7 5	0.7 2	3083.4	11^{+}	2788.7	10^{+}	M1	Mult.: α (K)exp=0.39; A ₂ \approx 0.
296.2 4	1.6 3	4471.1	17^{-}	4174.9	15^{-}	E2	Mult.: $\alpha(K)exp=0.05$.
308.4 5	0.9 2	3767.4	13-	3459.0	12-	M1	Mult.: $\alpha(K)\exp=0.20$; A ₂ =-0.52 8, A ₄ =0.05 12.
322.2 2	3.3 <i>3</i>	3227.3	12^{-}	2905.03	11-	M1	Mult.: $\alpha(K) \exp = 0.27$; A ₂ =-0.37 16, A ₄ =0.2 3.
327.6 2	1.1 2	2290.2	7^{-}	1962.6	6+		
335.9 <i>5</i>	1.8 <i>3</i>	3723.2		3387.3	13-		
336	<1	1962.6	6+	1626.79	6+		
344.6 5	0.5 1	3133.3	11^{+}	2788.7	10^{+}	M1	Mult.: α (K)exp=0.55; A ₂ =-0.15 9, A ₄ =0.15 13.
426.2 1	86 5	1626.79	6+	1200.58	4+	E2	Mult.: $\alpha(K)\exp=0.02$; A ₂ =0.08 4, A ₄ =-0.04 7. Note, that the A ₂ value is not consistent with the adopted stretched E2 assignment.
439.6 5	1.5 2	3898.6	14^{-}	3459.0	12^{-}	E2	Mult.: $\alpha(K) \exp = 0.07$.
447		4096?		3649?			
447.1 5	≈3	3975.3	15^{-}	3528.2	13-	E2	Mult.: $\alpha(K) \exp = 0.08$.
460.0 5	≈0.5	4358.6	(16^{-})	3898.6	14-	E2	Mult.: $\alpha(K) \exp = 0.06$.
489.0 5	0.7 2	2041.82	5-	1552.37	4+		· · · •
516.3 <i>1</i>	93 5	1200.58	4+	684.30	2+	E2	Mult.: α (K)exp=0.02; A ₂ =0.12 4, A ₄ =-0.04 6.
534.2 5	15 2	3439.2	13-	2905.03	11-	E2	Mult.: α (K)exp=0.03; A ₂ =0.24 9, A ₄ =-0.16 14.

Continued on next page (footnotes at end of table)

²⁰⁴Pb(α,4nγ), ¹⁹⁸Pt(¹²C,6nγ) **1990Fa03** (continued)

$\gamma(^{204}Po)$ (continued)

E_{γ}^{\dagger}	I_{γ}^{\ddagger}	E _i (level)	\mathbf{J}_i^{π}	E_f	\mathbf{J}_f^{π}	Mult. [#]	Comments
570.9 2	0.7 2	1255.20	2+	684.30	2+	M1+E2	Mult.: $\alpha(K) \exp[0.03]$.
588.4 1	38 2	2227.31	9-	1638.91	8+	E1	Mult.: $\alpha(K) \exp = 0.006$; A ₂ =-0.15 4, A ₄ =0.05 6.
≈598		3387?		2788.7	10^{+}		
598.1 2	11 <i>1</i>	3125.5	12^{+}	2527.4	10^{+}	E2	Mult.: α (K)exp=0.01; A ₂ =0.25 9, A ₄ =-0.06 13.
600.3 5	2.3 4	2827.6	10-	2227.31	9-	M1	Mult.: α (K)exp=0.09; A ₂ =-0.17 9, A ₄ =-0.00 14.
604.6 4	1.8 <i>3</i>	4168.6	(16 ⁻)	3564.0	15-	(M1)	Mult.: α (K)exp=0.22; A ₂ =-0.71 <i>14</i> , A ₄ =-0.05 <i>20</i> .
616.0 10	<1	5911.1	(20)	5295.1	(19 ⁻)		
623.2 <i>3</i>	2.5 3	3528.2	13-	2905.03	11-	E2	Mult.: α (K)exp=0.01; A ₂ =0.5 3, A ₄ =0.6 5.
663.3 4	0.9 2	2290.2	7-	1626.79	6+		
677.7 1	23 2	2905.03	11-	2227.31	9-	E2	Mult.: α (K)exp=0.01; A ₂ =0.25 4, A ₄ =0.01 6.
678.3 5	≈0.5	4137.3		3459.0	12-		
684 <i>1</i>	<1	5155.1		4471.1	17^{-}		
684.3 <i>1</i>	100	684.30	2+	0	0^{+}	E2	Mult.: $A_2=0.10$ 15, $A_4=-0.04$ 7.
719.3 5	≈ 2	2946.3	10^{-}	2227.31	9-	M1	Mult.: α (K)exp=0.05; A ₂ <0.
748.7 <i>5</i>	1.3 2	4312.7	16-	3564.0	15-	M1	Mult.: α (K)exp=0.02; A ₂ =-0.32 <i>19</i> , A ₄ =-0.4 <i>3</i> .
762.6	≈2	1962.6	6^{+}	1200.58	4+		E_{γ} : 761.49 3 from adopted gammas, probably a multiplet.
							Mult.: α (K)exp=0.03 would suggest M1+E2 assignment,
							but the adopted level scheme favors E2.
≈787	<1	3576?		2788.7	10^{+}		
787.6 <i>3</i>	2.6 4	4174.9	15^{-}	3387.3	13-	E2	Mult.: α (K)exp=0.006; A ₂ =0.36 <i>19</i> , A ₄ =-0.05 <i>9</i> .
809.2 4	5.1 5	4532.4		3723.2			E_{γ} : Table II in 1990Fa03 cites 1983He08 and 1987Ra04 for
							this γ , but it was not reported in either work.
815.6 4	2.6 5	4202.9	15^{-}	3387.3	13-	E2	Mult.: α (K)exp=0.006; A ₂ =0.37 <i>19</i> , A ₄ =-0.1 <i>3</i> .
819.2 4	2.3 4	4383.2	(17^{-})	3564.0	15-	(E2)	Mult.: α (K)exp=0.006.
824 1	<1	5295.1	(19 ⁻)	4471.1	17^{-}	(E2)	
824.9 4	4.9 5	4212.2	(14^{+})	3387.3	13-	(E1)	
838.5 5	≈5	3459.0	12-	2620.5	11-	M1	Mult.: $\alpha(K) \exp = 0.04$.
841.3 2	2.3 3	2041.82	5-	1200.58	4+	E1	Mult.: $\alpha(K) \exp = 0.004$; A ₂ ≈ 0 .
844.3 <i>3</i>	1.7 3	2471.1		1626.79	6+	E1	Mult.: α (K)exp=0.005; A ₂ <0.
868.0 2	1.0 2	1552.37	4+	684.30	2+	(E2)	Mult.: α (K)exp=0.008.
888.5 2	23 2	2527.4	10^{+}	1638.91	8+	E2	Mult.: α (K)exp=0.005; A ₂ =0.06 5, A ₄ =0.14 7. Note that
							the measured A_2 value is not consistent with the assigned
							multipolarity.
900.1 2	13 2	2539.0	9+	1638.91	8+	M1	Mult.: $\alpha(K) \exp[0.02; A_2 < 0.$
903.2 4	2.0 3	4362.2	13-	3459.0	12-	M1+E2	Mult.: α (K)exp=0.02; A ₂ =-0.81 <i>19</i> , A ₄ =0.7 <i>3</i> .
907.7 5	0.8 2	3528.2	13-	2620.5	11-	(E2)	Mult.: $\alpha(K)\exp=0.01$; A ₂ <0. Note that the measured A ₂
							value is not consistent with the assigned multipolarity.
1103 <i>1</i>	<1	4186.5		3083.4	11+		
1149.9 5	1.5 3	2788.7	10+	1638.91	8+	(E2)	Mult.: No evidence is presented by 1990Fa03 for the mult assignment.

[†] From 1990Fa03, unless otherwise specified. $\Delta E\gamma$ were estimated by the evaluators.

[±] From 1990Fa03 at $E(\alpha)=52$ MeV. $\Delta I\gamma$ were estimated by the evaluators based on the statement in 1990Fa03 that $\Delta I\gamma=5\%$ for strong lines and 20% for the weaker ones.

[#] From 1990Fa03, based on $\gamma(\theta)$ and $\alpha(K)$ exp, unless otherwise specified.

 $^{204}_{\ 84} Po_{120}$