204 Hg(α ,4n γ) 1978Li01

History									
Туре	Author	Citation	Literature Cutoff Date						
Full Evaluation	C. J. Chiara and F. G. Kondev	NDS 111,141 (2010)	1-Oct-2009						

1978Li01: ²⁰⁴Hg target enriched to 99.7% purity; $E(\alpha)=42$ to 51 MeV; three coax Ge(Li) detectors, FWHM=1.2 to 1.6 keV at 122 keV and 2.2 to 3.0 keV at 1332 keV, for γ excit functions, prompt and delayed γ spectra, $\gamma(\theta)$, $\gamma\gamma$ coin; one planar Ge(Li), FWHM=0.7 keV at 122 keV and 1.6 keV at 662 keV, as monitor in $\gamma(\theta)$ measurements; delayed γ 's measured during time window 34 to 84 ns after beam pulse, period of beam pulses 115 ns; ce spectrometer. Comparison with shell-model calculations.

²⁰⁴Pb Levels

E(level) [†]	$J^{\pi \ddagger}$	T _{1/2} #	Comments
0	0^{+} @		
899.30 20	2+ [@]		
1274.0 <i>3</i>	4+ @		
2185.7 4	9- <mark>@</mark>	66.93 [@] min 10	Proposed configuration= $\nu[(p_{1/2})^{-2}(f_{5/2})^{-1}(i_{13/2})^{-1}].$
2945.4 4	10-		J^{π} : $\gamma(\theta)$ of 246.2 γ , 759.8 γ , and 1005.7 γ determine J, whereas parity assignment by 1978Li01 was taken from comparison with shell model; however, it is unlikely that the 759.8 γ has mult M2+E1 with so large an M2 component. Thus, the parity is also experimentally established.
			Proposed configuration= $\nu[(p_{1/2})^{-1}(f_{5/2})^{-2}(i_{13/2})^{-1}].$
3191.5 4	11-		Proposed configuration= $v[(p_{1/2})^{-1}(f_{5/2})^{-2}(i_{13/2})^{-1}]$.
3516.2 5	12^{+}		Proposed configuration= $v[(p_{1/2})^{-2}(i_{13/2})^{-2}]$.
4134.6 5	14^{+}		Proposed configuration= $v[(p_{1/2})^{-1}(f_{5/2})^{-1}(i_{13/2})^{-2}].$
4301.8 5	15^{+}		Proposed configuration= $\nu[(p_{1/2})^{-1}(f_{5/2})^{-1}(i_{13/2})^{-2}].$
4887.6 5	16^{+}		Proposed configuration= $v[(f_{5/2})^{-2}(i_{13/2})^{-2}]$.
5348.5 5	16^{+}		Proposed configuration= $\nu[(f_{5/2})^{-1}(p_{3/2})^{-1}(i_{13/2})^{-2}].$
5664.3 6	17^{-}		Proposed configuration= $v[(p_{1/2})^{-1}(i_{13/2})^{-3}]$.
6072.9 6	17		Proposed configuration= $\nu[(f_{5/2})^{-1}(i_{13/2})^{-3}]$.
6098.0 <i>6</i>	19-		Proposed configuration= $v[(f_{5/2})^{-1}(i_{13/2})^{-3}]$.
7402.1 6	(20)		Proposed configuration= $\pi[(h_{9/2})(h_{11/2})^{-1}]\nu[(p_{1/2})^{-2}(i_{13/2})^{-2}].$
7849.2 7	(21)		Proposed configuration= $\pi[(h_{9/2})(h_{11/2})^{-1}]\nu[(p_{1/2})^{-2}(i_{13/2})^{-2}].$
8125.9 7	(22)		Proposed configuration= $\pi[(h_{9/2})(h_{11/2})^{-1}] \nu[(p_{1/2})^{-1}(f_{5/2})^{-1}(i_{13/2})^{-2}].$

[†] From a least-squares fit to $E\gamma$.

[#] No delayed (>20 ns) γ 's were found except for those deexciting the 9-, 66.93-min isomer.

[@] From Adopted Levels.

$\gamma(^{204}\text{Pb})$

 α (K)exp from ce(K)/I γ , normalized to α (K)(618.4 γ)=0.014 (pure E2), at E(α)=51 MeV in 1978Li01.

E_{γ}^{\ddagger}	$I_{\gamma}^{\#}$	E_i (level)	\mathbf{J}_i^{π}	$\mathbf{E}_f \mathbf{J}_f^{\pi}$	Mult.@	δ&	α^{\dagger}	Comments
167.2 2	10.5 6	4301.8	15+	4134.6 14+	M1(+E2)	0.00 4	2.17 4	$\begin{aligned} &\alpha(\mathbf{K}) = 1.77 \ 3; \ \alpha(\mathbf{L}) = 0.305 \ 5; \ \alpha(\mathbf{M}) = 0.0715 \ 11; \\ &\alpha(\mathbf{N}+) = 0.0222 \ 4 \\ &\alpha(\mathbf{N}) = 0.0182 \ 3; \ \alpha(\mathbf{O}) = 0.00362 \ 6; \\ &\alpha(\mathbf{P}) = 0.000387 \ 6 \\ &A_2 = -0.21 \ 3, \ A_4 = 0.00 \ 3. \\ &\mathbf{1978Li01} \text{ considered the intensities of} \\ &\text{transitions into and out of the 4301.8-keV} \end{aligned}$

[‡] From 1978Li01 based on mult and on yrast arguments, except as noted.

					204 H	$g(\alpha, 4n\gamma)$	1978Li01 (continued)	
γ ⁽²⁰⁴ Pb) (continued)									
E _γ ‡	$I_{\gamma}^{\#}$	E _i (level)	\mathbf{J}_i^{π}	E_f	\mathbf{J}_f^{π}	Mult. [@]	$\delta^{\&}$	α^{\dagger}	Comments
246.2 2	3.0 2	3191.5	11-	2945.4	10-	M1+E2	0.09 5	0.730 12	level and placed the limits 2.0 $2 < \alpha(\exp) < 5.0 \ 6$ for 167.2 γ , consistent with an M1 assignment. $\alpha(K)=0.596 \ 11; \ \alpha(L)=0.1027 \ 15;$ $\alpha(M)=0.0241 \ 4; \ \alpha(N+)=0.00746 \ 11$ $\alpha(N)=0.00612 \ 9; \ \alpha(O)=0.001219 \ 18;$ $\alpha(P)=0.0001299 \ 21$
276.7 <i>3</i> 315.9 2	2.0 2 17.1 9	8125.9 5664.3	(22) 17 ⁻	7849.2 5348.5	(21) 16 ⁺	D E1		0.0262 7	A ₂ =-0.32 2, A ₄ =+0.04 2. A ₂ =-0.2 3, A ₄ =+0.2 4. α (K)=0.0215 5; α (L)=0.00361 11; α (M)=0.00084 3; α (N+)=0.000258 9 α (N)=0.000213 7; α (O)=4.13×10 ⁻⁵ 14; α (P)=3.86×10 ⁻⁶ 14
324.7 2	85 4	3516.2	12+	3191.5	11-	E1(+M2)	0.03 3	0.026 4	δ: found by 1978Li01 to be consistent with zero, δ =0.00 2. A ₂ =-0.232 8, A ₄ =-0.01 1, α(K)exp=0.029 4. α(K)=0.0210 25; α(L)=0.0036 6; α(M)=0.00084 15; α(N+)=0.00026 5 α(N)=0.00021 4; α(O)=4.1×10 ⁻⁵ 8; α(P)=3.9×10 ⁻⁶ 8 δ: from 1978Li01. A ₂ =-0.143 5, A ₄ =+0.031 7, α(K)exp=0.017 8, K/L=8 5; ce intensities are corrected for contamination by the 323.2-keV transition in ²⁰⁵ Pb
374.7 ^{<i>a</i>} 2 433.7 2	17.3 9	1274.0 6098.0	4+ 19-	899.30 5664.3	2+ 17-	E2		0.045 15	$\alpha(K)=0.030 \ 11; \ \alpha(L)=0.011 \ 4; \\ \alpha(M)=0.0027 \ 9; \ \alpha(N+)=0.0008 \ 3 \\ \alpha(N)=0.00070 \ 22; \ \alpha(O)=0.00013 \ 5; \\ \alpha(P)=1.0\times10^{-5} \ 4 \\ \delta: \ found \ by \ 1978Li01 \ to \ be \ consistent \\ with \ zero, \ \delta=0.05 \ 7. \\ A_2=+0.28 \ 1, \ A_4=-0.16 \ 2, \\ \Omega=0.16 \ 2$
447.1 2 585.7 2	6.5 <i>4</i> 9.3 <i>5</i>	7849.2 4887.6	(21) 16 ⁺	7402.1 4301.8	(20) 15 ⁺	D+Q M1+E2	-0.05 8 0.4 2	0.064 7	$\begin{array}{l} \alpha(\text{K})\exp=0.031\ 4.\\ \text{A}_2=-0.12\ 4,\ \text{A}_4=+0.06\ 6.\\ \alpha(\text{K})=0.052\ 6;\ \alpha(\text{L})=0.0090\ 8;\\ \alpha(\text{M})=0.00211\ 17;\ \alpha(\text{N}+)=0.00065\ 6\\ \alpha(\text{N})=0.00054\ 5;\ \alpha(\text{O})=0.000107\ 9;\\ \alpha(\text{P})=1.13\times10^{-5}\ 11\\ \text{A}_2=-0.86\ 2,\ \text{A}_4=+0.15\ 3, \end{array}$
618.4 2	76 4	4134.6	14+	3516.2	12+	E2		0.0180 6	α (K)exp=0.038 6. α (K)=0.0134 5; α (L)=0.00348 12; α (M)=0.00085 3; α (N+)=0.000261 9 α (N)=0.000216 8; α (O)=4.13×10 ⁻⁵ 15; α (P)=3.50×10 ⁻⁶ 14 δ : found by 1978Li01 to be consistent with zero, δ =-0.01 3. A ₂ =+0.325 7, A ₄ =-0.048 9, K/L=3.5 6; α (K)exp normalized to 1968Ha53
752.9 2	11.6 6	4887.6	16+	4134.6	14+	E2		0.0118 4	theoretical value 0.014 for pure E2. $\alpha(K)=0.00910\ 25;\ \alpha(L)=0.00205\ 6;$ $\alpha(M)=0.000496\ 15;$ $\alpha(N+)=0.000152\ 5$

Continued on next page (footnotes at end of table)

 $^{204}_{82}\text{Pb}_{122}\text{-}3$

					²⁰⁴ Hg	$(\alpha, 4\mathbf{n}\gamma)$ 1	1978Li01 (con	tinued)	
γ ⁽²⁰⁴ Pb) (continued)									
E_{γ}^{\ddagger}	$I_{\gamma}^{\#}$	E_i (level)	\mathbf{J}_i^{π}	\mathbf{E}_{f}	J_f^{π}	Mult. [@]	$\delta^{\&}$	α^{\dagger}	Comments
750.8.2	11.0.6	2945.4	10-	2185 7	0-	M1+F2	7 + 12-3	0.0121 /0	$\alpha(N)=0.000126 4;$ $\alpha(O)=2.43\times10^{-5} 8;$ $\alpha(P)=2.19\times10^{-6} 7$ δ : found by 1978Li01 to be consistent with zero, δ =-0.01 +4-3. A_2 =+0.34 <i>I</i> , A_4 =-0.07 2. $\alpha(K)$ =0.0093 9: $\alpha(I)$ =0.00206 <i>I</i> 2:
159.0 2	11.0 0	2773.7	10	2105.7	,	IVITEZ	7 +12-3	0.0121 10	$\begin{array}{l} \alpha(\mathbf{N}) = 0.0050 \ 3, \ \alpha(\mathbf{L}) = 0.00200 \ 12, \\ \alpha(\mathbf{M}) = 0.00050 \ 3; \\ \alpha(\mathbf{N}+) = 0.000153 \ 9 \\ \alpha(\mathbf{N}) = 0.000126 \ 7; \\ \alpha(\mathbf{O}) = 2.44 \times 10^{-5} \ 14; \\ \alpha(\mathbf{P}) = 2.22 \times 10^{-6} \ 17 \\ \mathbf{A}_{2} = -0.25 \ 2 \ \mathbf{A}_{4} = +0.27 \ 3 \end{array}$
776.7 2	7.1 4	5664.3	17-	4887.6	16+	(E1)		0.0041 11	$\begin{aligned} \alpha &= 0.024 \ 11; \ \alpha(K) = 0.024 \ 9; \\ \alpha(L) &= 0.00053 \ 17; \ \alpha(M) = 0.00012 \\ 4; \ \alpha(N+) &= 3.8 \times 10^{-5} \ 12 \\ \alpha(N) &= 3.1 \times 10^{-5} \ 10; \\ \alpha(O) &= 6.2 \times 10^{-6} \ 20; \\ \alpha(P) &= 6.3 \times 10^{-7} \ 21 \\ \delta: \ found \ by \ 1978Li01 \ to \ be \\ consistent \ with \ zero, \ \delta &= -0.04 \ 8. \\ A_2 &= -0.16 \ 5, \ A_4 &= +0.01 \ 7. \end{aligned}$
899.3 ^{<i>a</i>} 2 911.7 ^{<i>a</i>} 2 1005.7 2	100 5	899.30 2185.7 3191.5	2 ⁺ 9 ⁻ 11 ⁻	0 1274.0 2185.7	0 ⁺ 4 ⁺ 9 ⁻	E2		0.0067 8	α =0.0067 8; α (K)=0.0053 6; α (L)=0.00104 14; α (M)=0.00025 4; α (N+)=7.6×10 ⁻⁵ 10 α (N)=6.3×10 ⁻⁵ 9; α (O)=1.23×10 ⁻⁵ 17; α (P)=1.19×10 ⁻⁶ 17 δ : found by 1978Li01 to be consistent with zero, δ =-0.04 7. A ₂ =+0.23 1, A ₄ =+0.005 20,
1046.7 2	22 1	5348.5	16+	4301.8	15+	M1(+E2)	-0.07 4	0.01577 24	$\alpha(K)\exp=0.0056\ 7,\ K/L=4.8\ 15.$ $\alpha(K)=0.01298\ 19;\ \alpha(L)=0.00214$ $4;\ \alpha(M)=0.000499\ 8; \alpha(N+)=0.0001546\ 23$ $\alpha(N)=0.0001266\ 19; \alpha(O)=2.53\times10^{-5}\ 4; \alpha(P)=2.72\times10^{-6}\ 4$ $A_2=-0.10\ 3,\ A_4=0.00\ 4, \alpha(K)\exp=0.013\ 2,\ K/L=5.4\ 24.$
1185.3 2 1214.0 <i>3</i>	5.9 <i>4</i> 1.7 <i>3</i>	6072.9 5348.5	17 16 ⁺	4887.6 4134.6	16 ⁺ 14 ⁺	D(+Q) E2(+M3)	0.00 <i>3</i> -0.2 <i>1</i>	0.0062 19	$A_{2}=-0.22 2, A_{4}=+0.02 2.$ $\alpha=0.0062 19; \alpha(K)=0.0050 15;$ $\alpha(L)=0.0009 3; \alpha(M)=0.00022$ $8; \alpha(N+)=7.4\times10^{-5} 23$ $\alpha(N)=5.7\times10^{-5} 19;$ $\alpha(O)=1.1\times10^{-5} 4;$ $\alpha(P)=1.1\times10^{-6} 4;$ $\alpha(IPF)=4.91\times10^{-6} 22$
1304.1 2	9.4 6	7402.1	(20)	6098.0	19-	D+Q	0.05 2		$A_2 = +0.50 \ 6, \ A_4 = -0.06 \ 9.$ $A_2 = -0.33 \ 1, \ A_4 = -0.02 \ 1.$

Continued on next page (footnotes at end of table)

204 Hg(α ,4n γ) 1978Li01 (continued)

 γ (²⁰⁴Pb) (continued)

- [†] Additional information 1. [‡] From 1978Li01; $\Delta E\gamma$ was not given and is estimated by evaluators. [#] At θ =125° and E(α)=48 MeV in 1978Li01. [@] From $\gamma(\theta)$, $\alpha(K)$ exp, and K/L in 1978Li01.

- [&] From $\gamma(\theta)$ in 1978Li01.
- ^{*a*} Observed in γ singles and in ce spectrum, but not in spectra gated on γ 's above isomeric 9⁻ level.

