²⁰⁵Tl(d,³He) 1989Gr09 History | Type | Author | Citation | Literature Cutoff Date | | |-----------------|-------------------------------|--------------------|------------------------|--| | Full Evaluation | C. J. Chiara and F. G. Kondev | NDS 111,141 (2010) | 1-Oct-2009 | | $J^{\pi}(\text{target})=1/2^+$. 1989Gr09: Enriched 99.5% ²⁰⁵Tl; E(d)=52 MeV, polarized beam average polarization of 0.54, FWHM=110 keV for vector-polarized beam, FWHM=70 keV for unpolarized beam; E-ΔE Si detector. DWBA calculation normalized to ²⁰⁸Pb(d, ³He). Other: 1983AgZY: Enriched ²⁰⁵Tl; E(d)=45 MeV; magnetic spectrometer. Results are preliminary, no uncertainties given. ## ²⁰⁴Hg Levels | E(level) [†] | $J^{\pi \ddagger}$ | L [†] | s [@] | Comments | |-----------------------|--|----------------|----------------|---| | 0 | 0+ | 0 | 0.21 | | | 440 | 2+ | 2 | 0.18 | J^{π} : L transfer and vector analyzing power give $1^+,2^+$; the latter is taken by 1989Gr09 from earlier Nuclear Data Sheets assignment. | | 1130 | 4+ | | | J^{π} : taken by 1989Gr09 from earlier Nuclear Data Sheets assignment. | | 1630 | $(0,1)^+$ | 0 | 0.16 | L: a small L=2 contribution cannot be excluded. | | 1840 | 1 ⁺ ,2 ⁺
2 ⁺ | 2 | 0.14 | Additional information 1. | | 1950 | 2+ | 2 | 0.28 | J^{π} : 1 ⁺ ,2 ⁺ from j=3/2 transfer in 1989Gr09. J^{π} =2 ⁺ taken by 1989Gr09 based on earlier Nuclear Data Sheets assignment. | | ≈2060 | $(1,2,3)^+$ | 2 | 0.05 | | | 2120 | $(1,2)^+$ | 2 | 0.14 | Additional information 2. | | 2250 [#] | 5- | 2+5 | 0.04, 0.21 | J^{π} : L=5 for stronger member of multiplet. 1989Gr09 assume $h_{11/2}$ transfer, J^{π} =5 based on 5 state in 206 Hg. L=2 member indicates probable $(1,2)^+$ level nearby, assuming $d_{3/2}$ transfer. | | 2380 | (≤3)+ | 0+2 | 0.05, 0.04 | J^{π} : Possible multiplet; $J^{\pi}=1^+$ proposed by 1989Gr09 if only one state contributes. | | 2470 | $(1,2,3)^+$ | 2 | 0.03 | | | 2650 [#] | $(\leq 3)^{+}$ | 0+2 | 0.08, 0.03 | | | 2770 <mark>#</mark> | | 2+5 | 0.20, 0.16 | | | 2890 [#] | | 2+5 | 0.16, 0.10 | | | 3050 [#] | | 2+5 | 0.12, 0.05 | | | 3190 | $(2,3)^+$ | 2 | 0.41 | J^{π} : j=5/2 from vector analyzing power in 1989Gr09. | | 3320 [#] | | 2+5 | 0.07, 0.05 | | | 3460 | $(1,2,3)^+$ | 2 | 0.13 | | | 3600 [#] | | 2+5 | 0.03, 0.11 | | | 3770 | $(1,2,3)^+$ | 2 | 0.05 | | | 3890 | (≤3) ⁺ | 0+2 | 0.05, 0.06 | | [†] From 1989Gr09, Δ E≈15 keV, except Δ E≈30 keV for weak 2060-keV level. See also: 1987Cl01. [‡] From 1989Gr09 based on L transfer and vector analyzing power, except as noted. [#] Unresolved multiplet. [®] Spectroscopic factors for L=0 are from $3s_{1/2}$, for L=2 below 2.5 MeV and for 3320-keV level are from $2d_{3/2}$, for L=2 above 2.5 MeV are from $2d_{5/2}$, for L=5 are from $1h_{11/2}$. For cases of two L values, the S factors are listed in the order $s_{1/2}$, $d_{5/2}$. In cases where one of the L values is even and the other is odd, it is clear that at least two levels with opposite parities contribute.