$^{204}\mathbf{Po}\,\varepsilon\,\mathbf{decay}$ 1979Va21

	Histo	ory	
Туре	Author	Citation	Literature Cutoff Date
Full Evaluation	C. J. Chiara and F. G. Kondev	NDS 111,141 (2010)	1-Oct-2009

Parent: ²⁰⁴Po: E=0.0; $J^{\pi}=0^+$; $T_{1/2}=3.519$ h *12*; $Q(\varepsilon)=2330 \ 30$; $\mathscr{H}\varepsilon+\mathscr{H}\beta^+$ decay=99.33 *3* 1979Va21: Mass separated ²⁰⁴Po from chemically separated Po fraction following spallation of Th target; measured γ 's and $\gamma\gamma$ coin withGe(Li); ce with magnetic spectrometer and Si(Li).

Others: 1971DaZM, 1971Ku16, 1978VaZD, 1990Br19.

²⁰⁴Bi Levels

E(level) [†]	$J^{\pi \ddagger}$	T _{1/2}	Comments
0	6+		J^{π} : From Adopted Levels.
5.55 5	5+		-
15.07 7	4+		
78.26 7	3+		
200.84 8	$(4)^+$		
215.28 8	2+		
332.08 8	3+		
895.70 8	1^{+}		
983.21 8	$(2^{-}, 3^{-})$		
1018.45 8	$(3)^{+}$		
1094.57 8	2-	3.96 ns 8	$T_{1/2}$: 270 γ -1016 γ (t) in 1970BrZP. The assignment to this level is tentative. It is possible that the lifetime is associated with the 1099-keV level.
1099.27 8	1-,2-		
1255.30 9	1^{+}		
1369.34 8	1-		
1404.23 8	1-		
1478.37 9	$(1,2)^+$		
1526.11 8	2-		
1546.42? 8	$(1)^{-}$		
1634.17 8	1-		

[†] From a least-squares fit to $E\gamma$.

[‡] From deduced transition multipolarities, unless otherwise specified.

ε, β^+ radiations

E(decay)	E(level)	$\mathrm{I}\beta^+$ ‡	Ie‡	Log ft	$I(\varepsilon + \beta^+)^{\dagger \ddagger}$	Comments
$(7.0 \times 10^2 \ 3)$	1634.17		24.0 9	5.90 5	24.0 9	εK=0.7713 21; εL=0.1709 15; εM+=0.0579 6
$(7.8 \times 10^2 \ 3)$	1546.42?		2.53 10	6.99 5	2.53 10	εK=0.7763 16; εL=0.1673 12; εM+=0.0564 5
(8.5×10 ^{2#} 3)	1478.37		2.06 8	7.16 4	2.06 8	εK=0.7795 13; εL=0.1650 10; εM+=0.0555 4
$(9.3 \times 10^2 \ 3)$	1404.23		4.5 <i>3</i>	6.90 5	4.5 3	εK=0.7823 11; εL=0.1630 8; εM+=0.0547 3
$(9.6 \times 10^2 \ 3)$	1369.34		51.6 18	5.87 4	51.6 18	εK=0.7834 10; εL=0.1622 7; εM+=0.0544 3
$(1.07 \times 10^3 \ 3)$	1255.30		11.3 5	6.64 4	11.3 5	εK=0.7866 8; εL=0.1599 6; εM+=0.05346 22
$(1.43 \times 10^3 \ 3)$	895.70	0.0013 5	4.9 3	7.27 4	4.9 3	av E β =208 14; ε K=0.7929 4; ε L=0.1552 3; ε M+=0.05159 12

[†] I($\varepsilon + \beta^+$) were calculated from γ +ce intensity balances. The quoted uncertainties do not include $\approx 12\%$ unplaced I γ .

[‡] For absolute intensity per 100 decays, multiply by 0.9933 3.

[#] Existence of this branch is questionable.

 $\gamma(^{204}{\rm Bi})$

Iγ normalization: Using Ti(γ's above the 332-keV level) and by assuming that there is no direct $\varepsilon + \beta^+$ feeding to levels located at abd below the 332-keV one. The decay scheme is complete, since there is a good agreement between ²⁰⁴Po ε decay Q value of 2312 keV 29, calculated using the decay scheme and RADLST, and that of 2318 keV 28, as deduced from Q in 2003Au03.

E_{γ}^{\ddagger}	$I_{\gamma}^{\ddagger @}$	E _i (level)	\mathbf{J}_i^π	$\mathbf{E}_f \qquad \mathbf{J}_f^{\pi}$	Mult. [#]	$lpha^\dagger$	$I_{(\gamma+ce)}^{@}$	Comments
(4.7)		1099.27	1-,2-	1094.57 2-	[M1]		104 4	E_{γ} : Not observed directly. The value is from level energy differences.
5.55 5		5.55	5+	0 6+	M1	2.33×10 ³ 8	320 15	$I_{(\gamma+ce)}$: From intensity balance. $ce(M)/(\gamma+ce)=0.759 \ 17; \ ce(N+)/(\gamma+ce)=0.240 \ 9$ $ce(N)/(\gamma+ce)=0.196 \ 8; \ ce(O)/(\gamma+ce)=0.0400 \ 17;$ $ce(P)/(\gamma+ce)=0.00476 \ 21$
								$I_{(\gamma+ce)}$: From intensity balance, the γ was not seen. E_{γ} ,Mult.: From 1990Br19. N2/N1=0.13 3; N3/N1=0.006 5; N1/M1=0.21 7.
9.52 5		15.07	4+	5.55 5+	M1	468 10	320 15	$\begin{array}{l} {\rm ce(M)}/(\gamma+{\rm ce}){=}0.759 \ 11; \ {\rm ce(N+)}/(\gamma+{\rm ce}){=}0.239 \ 7 \\ {\rm ce(N)}/(\gamma+{\rm ce}){=}0.195 \ 6; \ {\rm ce(O)}/(\gamma+{\rm ce}){=}0.0397 \ 12; \\ {\rm ce(P)}/(\gamma+{\rm ce}){=}0.00472 \ 14 \end{array}$
								$I_{(\gamma+ce)}$: From intensity balance, the γ was not seen. E_{γ} ,Mult.: From 1990Br19. M2/M1=1.7; M3/M1=0.03 2; N1/M1=0.23 3. Note, that no evidence was found in 1990Br19 for the expected 15.1 keV crossover transition
63.185 7	36.0 11	78.26	3+	15.07 4+	M1	7.28		$\alpha(L)=5.56 \ \beta; \ \alpha(M)=1.309 \ 19; \ \alpha(N+)=0.411 \ 6 \ \alpha(N)=0.335 \ 5; \ \alpha(O)=0.0684 \ 10; \ \alpha(P)=0.00814 \ 12 \ N=0.00814 \ N=$
108.055 8	1.18 4	1634.17	1-	1526.11 2-	M1	8.17		Mult.: α (M)exp=1.55 34, α (N)exp=0.31 7. α (K)=6.64 10; α (L)=1.169 17; α (M)=0.275 4; α (N+)=0.0865 13
116.057.10	2367	1000 27	1- 2-	$(2^{-}3^{-})$	$(M1\pm F2)$	5116		$\alpha(N)=0.0704 \ 10; \ \alpha(O)=0.01438 \ 21; \ \alpha(P)=0.001711 \ 24$ Mult.: $\alpha(L12)\exp=0.98 \ 23, \ \alpha(L3)\exp<0.08.$ $\alpha(K)=2.9.25; \ \alpha(L)=1.6.7; \ \alpha(M)=0.42.20; \ \alpha(N+-)=0.13.6$
110.057 10	2.307	1099.27	1,2	903.21 (2 ,3)	(1011+E2)	5.1 10		$\alpha(\mathbf{N})=2.5, \alpha(\mathbf{L})=1.0, \gamma, \alpha(\mathbf{M})=0.42, 20, \alpha(\mathbf{N}+)=0.13, 0$ $\alpha(\mathbf{N})=0.11, 5; \alpha(\mathbf{O})=0.020, 9; \alpha(\mathbf{P})=0.0018, 5$ Mult.: $\alpha(\mathbf{K})\exp=1.20, 26; \alpha(\mathbf{L})\exp=1.5, 5.$
122.582 8	3.80 10	200.84	$(4)^{+}$	78.26 3+	M1	5.70		$\alpha(K)=4.63\ 7;\ \alpha(L)=0.813\ 12;\ \alpha(M)=0.191\ 3;\ \alpha(N+)=0.0601$
131.224 14	3.00 7	332.08	3+	200.84 (4) ⁺	M1	4.69		α (N)=0.0489 7; α (O)=0.01000 14; α (P)=0.001190 17 Mult.: α (K)exp=4.1 6, α (L12)exp=0.76 8, α (L3)exp<6. α (K)=3.82 6; α (L)=0.669 10; α (M)=0.1573 22; α (N+)=0.0495 7
137.023 3	32.5 7	215.28	2+	78.26 3+	M1	4.15		$\begin{aligned} &\alpha(N) = 0.0402 \ 6; \ \alpha(O) = 0.00822 \ 12; \ \alpha(P) = 0.000979 \ 14 \\ &\text{Mult.:} \ \alpha(K) \exp = 4.1 \ 4, \ \alpha(L12) \exp = 0.66 \ 10. \\ &\alpha(K) = 3.37 \ 5; \ \alpha(L) = 0.591 \ 9; \ \alpha(M) = 0.1390 \ 20; \\ &\alpha(N+) = 0.0437 \ 7 \\ &\alpha(N) = 0.0356 \ 5; \ \alpha(O) = 0.00727 \ 11; \ \alpha(P) = 0.000865 \ 13 \\ &\text{Mult.:} \ \alpha(L12) \exp = 0.59 \ 6, \ \alpha(M) \exp = 0.150 \ 16. \end{aligned}$

 $^{204}_{83}{\rm Bi}_{121}\text{-}2$

						204 Po ε d	lecay 1	979Va21 (continued)
							γ (²⁰⁴ Bi)	(continued)
Eγ [‡]	$I_{\gamma}^{\ddagger@}$	E _i (level)	\mathbf{J}_i^{π}	E_f	\mathbf{J}_{f}^{π}	Mult. [#]	α^{\dagger}	Comments
^x 152.321 <i>19</i> 203.561 <i>10</i>	0.89 7 9.4 <i>3</i>	1099.27	1-,2-	895.70	1+	E1	0.0766	$\alpha(K)=0.0621 \ 9; \ \alpha(L)=0.01112 \ 16; \ \alpha(M)=0.00262 \ 4; \ \alpha(N+)=0.000807 \ 12 \\ \alpha(N)=0.000662 \ 10; \ \alpha(O)=0.0001307 \ 19; \ \alpha(P)=1.403\times10^{-5} \ 20 \\ Mult.: \ \alpha(K)exp\approx0.15, \ \alpha(L12)exp=0.013 \ 4, \ \alpha(L3)exp=0.032 \ 10. Note that an M2 \\ Mult.: \ \alpha(K)exp\approx0.15, \ \alpha(L12)exp=0.013 \ 4, \ \alpha(L3)exp=0.032 \ 10. Note that an M2 \\ Mult.: \ \alpha(K)exp\approx0.15, \ \alpha(L12)exp=0.013 \ 4, \ \alpha(L3)exp=0.032 \ 10. Note that an M2 \\ Mult.: \ \alpha(K)exp\approx0.15, \ \alpha(K)exp\ 10, \ \alpha(K)exp\ 1$
^x 209.841 20	2.10 25					E2	0.380	admixture is possible. $\alpha(K)=0.1504\ 21;\ \alpha(L)=0.1709\ 24;\ \alpha(M)=0.0448\ 7;\ \alpha(N+)=0.01372\ 20$ $\alpha(N)=0.01141\ 16;\ \alpha(O)=0.00213\ 3;\ \alpha(P)=0.0001761\ 25$
229.94 <i>3</i>	2.67 19	1634.17	1-	1404.23	1-	M1	0.966	Mult: $\alpha(L12)\exp=0.13$ 4. $\alpha(K)=0.787$ 11; $\alpha(L)=0.1367$ 20; $\alpha(M)=0.0321$ 5; $\alpha(N+)=0.01010$ 15 $\alpha(N)=0.00822$ 12; $\alpha(O)=0.001679$ 24; $\alpha(P)=0.000200$ 3
^x 244.724 <i>14</i>	6.07 24					E1	0.0491	Mult.: α (K)exp=0.79 9. α (K)=0.0400 6; α (L)=0.00700 10; α (M)=0.001643 23; α (N+)=0.000508 8 α (N)=0.000416 6; α (O)=8.26×10 ⁻⁵ 12; α (P)=9.00×10 ⁻⁶ 13
253.836 22	1.98 <i>11</i>	332.08	3+	78.26	3+	(M1)	0.735	Mult.: $\alpha(L12)\exp<0.01$. $\alpha(K)=0.599 \ 9; \ \alpha(L)=0.1038 \ 15; \ \alpha(M)=0.0244 \ 4; \ \alpha(N+)=0.00766 \ 11$ $\alpha(N)=0.00624 \ 9; \ \alpha(O)=0.001275 \ 18; \ \alpha(P)=0.0001518 \ 22$
270.068 11	93 <i>3</i>	1369.34	1-	1099.27	1-,2-	M1	0.619	Mult.: $\alpha(K)\exp\approx 0.5$, $\alpha(L12)\exp\approx 0.1$. $\alpha(K)=0.505$ 7; $\alpha(L)=0.0874$ 13; $\alpha(M)=0.0205$ 3; $\alpha(N+)=0.00645$ 9 $\alpha(N)=0.00525$ 8; $\alpha(O)=0.001073$ 15; $\alpha(P)=0.0001278$ 18
304.964 12	10.9 4	1404.23	1-	1099.27	1-,2-	M1	0.444	Mult: $\alpha(K)\exp=0.52$, $\alpha(L)\exp=0.092$ /, $\alpha(M)\exp=0.0239$ 26. $\alpha(K)=0.362$ 5; $\alpha(L)=0.0625$ 9; $\alpha(M)=0.01468$ 21; $\alpha(N+)=0.00461$ 7 $\alpha(N)=0.00375$ 6; $\alpha(O)=0.000767$ 11; $\alpha(P)=9.14\times10^{-5}$ 13
309.80 14	1.84 <i>16</i>	1404.23	1-	1094.57	2-	M1	0.425	Mult.: α (K)exp=0.38 5, α (L)exp=0.066 10. α (K)=0.347 5; α (L)=0.0598 9; α (M)=0.01406 20; α (N+)=0.00442 7 α (N)=0.00360 5; α (O)=0.000735 11; α (P)=8.75×10 ⁻⁵ 13
317.016 9	14.3 <i>13</i>	332.08	3+	15.07	4+	M1	0.399	Mult.: α (K)exp=0.39 %. α (K)=0.326 5; α (L)=0.0562 8; α (M)=0.01319 19; α (N+)=0.00415 6 α (N)=0.00337 5; α (O)=0.000690 10; α (P)=8.21×10 ⁻⁵ 12
x362.14 4	4.24 17					(M1)	0.278	Mult.: $\alpha(K)\exp=0.355\ 5,\ \alpha(L)\exp=0.065\ 8,\ \alpha(M)\exp=0.0155\ 28.$ $\alpha(K)=0.227\ 4;\ \alpha(L)=0.0390\ 6;\ \alpha(M)=0.00917\ 13;\ \alpha(N+)=0.00288\ 4$ $\alpha(N)=0.00234\ 4;\ \alpha(O)=0.000479\ 7;\ \alpha(P)=5.71\times10^{-5}\ 8$ Mult: $\alpha(K)\exp=0.26$
x419.13 <i>11</i> 426.82 <i>3</i>	1.74 <i>17</i> 6.3 <i>4</i>	1526.11	2-	1099.27	1-,2-	M1	0.179	$\alpha(K)=0.1460\ 21;\ \alpha(L)=0.0250\ 4;\ \alpha(M)=0.00587\ 9;\ \alpha(N+)=0.00184\ 3$ $\alpha(N)=0.001500\ 21;\ \alpha(O)=0.000307\ 5;\ \alpha(P)=3.66\times10^{-5}\ 6$
451.846 22	6.40 24	1546.42?	(1) ⁻	1094.57	2-	M1	0.1535	Mult.: α (K)exp=0.167 20, α (L)exp=0.030 5. α (K)=0.1254 18; α (L)=0.0214 3; α (M)=0.00503 7; α (N+)=0.001581 23 α (N)=0.001287 18; α (O)=0.000263 4; α (P)=3.14×10 ⁻⁵ 5
459.90 5	3.22 15	1478.37	(1,2)+	1018.45	(3)+	(M1)	0.1464	Mult.: α (K)exp=0.15 3. α (K)=0.1197 17; α (L)=0.0204 3; α (M)=0.00480 7; α (N+)=0.001507 22 α (N)=0.001227 18; α (O)=0.000251 4; α (P)=2.99×10 ⁻⁵ 5
534.92 6	44.3 22	1634.17	1-	1099.27	1-,2-	M1	0.0980	Mult.: $\alpha(K)\exp\approx 0.15$. $\alpha(K)=0.0802$ 12; $\alpha(L)=0.01364$ 20; $\alpha(M)=0.00320$ 5; $\alpha(N+)=0.001005$ 14

ω

From ENSDF

 $^{204}_{83}{
m Bi}_{121}$ -3

L

					204 Po ε dec	ay 1979Va	21 (continued)
					γ	(²⁰⁴ Bi) (contir	nued)
E_{γ}^{\ddagger}	$I_{\gamma}^{\ddagger @}$	E _i (level)	\mathbf{J}_i^π	$\mathbf{E}_f \qquad \mathbf{J}_f^{\pi}$	Mult. [#]	α^{\dagger}	Comments
539.5 4	4.5 3	1634.17	1-	1094.57 2-	M1	0.0959	$ \begin{array}{l} \alpha(\mathrm{N}) = 0.000818 \ 12; \ \alpha(\mathrm{O}) = 0.0001673 \ 24; \ \alpha(\mathrm{P}) = 1.99 \times 10^{-5} \ 3 \\ \mathrm{Mult.:} \ \alpha(\mathrm{M}) \mathrm{exp} = 0.0033 \ 5. \\ \alpha(\mathrm{K}) = 0.0784 \ 11; \ \alpha(\mathrm{L}) = 0.01334 \ 19; \ \alpha(\mathrm{M}) = 0.00313 \ 5; \ \alpha(\mathrm{N}+) = 0.000983 \\ 14 \end{array} $
582.70 6	2.16 11	1478.37	(1,2)+	895.70 1+	M1	0.0782	$\alpha(N)=0.000800 \ 12; \ \alpha(O)=0.0001635 \ 24; \ \alpha(P)=1.95\times10^{-5} \ 3$ Mult.: $\alpha(K)\exp=0.098 \ 20, \ \alpha(L)\exp=0.019 \ 5.$ $\alpha(K)=0.0640 \ 9; \ \alpha(L)=0.01087 \ 16; \ \alpha(M)=0.00255 \ 4; \ \alpha(N+)=0.000800 \ 12$ $\alpha(N)=0.000651 \ 10; \ \alpha(O)=0.0001332 \ 19; \ \alpha(P)=1.589\times10^{-5} \ 23$ Mult.: $\alpha(K)\exp=0.067 \ 11 \ \alpha(D)\exp=0.0090 \ 23$
680.39 4	25.5 7	895.70	1+	215.28 2+	M1	0.0521	Mult.: $\alpha(K)\exp=0.067$ 17, $\alpha(L)\exp=0.0089$ 23. $\alpha(K)=0.0427$ 6; $\alpha(L)=0.00721$ 10; $\alpha(M)=0.001689$ 24; $\alpha(N+)=0.000531$ 8
^x 751.59 6	3.54 23				M1	0.0402	$\begin{aligned} &\alpha(N) = 0.000432 \ 6; \ \alpha(O) = 8.83 \times 10^{-5} \ 13; \ \alpha(P) = 1.055 \times 10^{-5} \ 15 \\ &Mult.: \ \alpha(K) exp = 0.049 \ 6, \ \alpha(L) exp = 0.0079 \ 12. \\ &\alpha(K) = 0.0330 \ 5; \ \alpha(L) = 0.00555 \ 8; \ \alpha(M) = 0.001300 \ 19; \ \alpha(N+) = 0.000408 \ 6 \\ &\alpha(N) = 0.000332 \ 5; \ \alpha(O) = 6.80 \times 10^{-5} \ 10; \ \alpha(P) = 8.12 \times 10^{-6} \ 12 \end{aligned}$
762.52 3	38.5 11	1094.57	2-	332.08 3+	E1	0.00430 6	Mult.: $\alpha(K)\exp=0.048$ 12. $\alpha=0.00430$ 6; $\alpha(K)=0.00357$ 5; $\alpha(L)=0.000559$ 8; $\alpha(M)=0.0001297$ 19; $\alpha(N+)=4.05\times10^{-5}$ 6
768.1 <i>3</i>	1.23 26	983.21	(2 ⁻ ,3 ⁻)	215.28 2+	[E1]	0.00424 6	$\alpha(N)=3.30\times10^{-5} 5; \ \alpha(O)=6.69\times10^{-6} \ 10; \ \alpha(P)=7.78\times10^{-7} \ 11$ Mult.: $\alpha(K)\exp=0.0041 \ 7, \ \alpha(L)\exp=0.0014 \ 3.$ $\alpha=0.00424 \ 6; \ \alpha(K)=0.00352 \ 5; \ \alpha(L)=0.000551 \ 8; \ \alpha(M)=0.0001279 \ 18;$ $\alpha(N+)=3.99\times10^{-5} \ 6$ $\alpha(N)=3.25\times10^{-5} \ 5; \ \alpha(O)=6.59\times10^{-6} \ 10; \ \alpha(P)=7.67\times10^{-7} \ 11$
817.6 ^{&}		895.70	1 ⁺	78.26 3+	[E2]	0.01044	α (K)=0.00809 <i>12</i> ; α (L)=0.001780 <i>25</i> ; α (M)=0.000430 <i>6</i> ; α (N+)=0.0001340 <i>19</i>
817.61 5	2.36 10	1018.45	(3)+	200.84 (4) ⁺	(E2+M1)	0.021 11	α (N)=0.0001098 <i>16</i> ; α (O)=2.19×10 ⁻⁵ <i>3</i> ; α (P)=2.37×10 ⁻⁶ <i>4</i> α (K)=0.017 <i>10</i> ; α (L)=0.0031 <i>14</i> ; α (M)=0.0007 <i>3</i> ; α (N+)=0.00023 <i>10</i> α (N)=0.00019 <i>8</i> ; α (O)=3.8×10 ⁻⁵ <i>17</i> ; α (P)=4.4×10 ⁻⁶ <i>21</i> What is α (K)=0.0122 22
883.960 25	100.0 21	1099.27	1-,2-	215.28 2+	E1	0.00326 5	Mult.: $\alpha(\mathbf{K})\exp=0.0123$ 22. $\alpha=0.00326$ 5; $\alpha(\mathbf{K})=0.00271$ 4; $\alpha(\mathbf{L})=0.000421$ 6; $\alpha(\mathbf{M})=9.75\times10^{-5}$ 14; $\alpha(\mathbf{N}+)=3.04\times10^{-5}$ 5 $\alpha(\mathbf{M})=2.48\times10^{-5}$ 4; $\alpha(\mathbf{Q})=5.04\times10^{-6}$ 7; $\alpha(\mathbf{R})=5.80\times10^{-7}$ 0
905.15 7	4.14 25	983.21	(2 ⁻ ,3 ⁻)	78.26 3+	(E1+M2)	0.03 3	
1003.31 8	1.71 <i>12</i>	1018.45	(3)+	15.07 4+	M1	0.0191	with M1+E2 mult. $\alpha(K)=0.01564\ 22;\ \alpha(L)=0.00261\ 4;\ \alpha(M)=0.000611\ 9;\ \alpha(N+)=0.000192$ $\alpha(N)=0.0001562\ 22;\ \alpha(O)=3.20\times10^{-5}\ 5;\ \alpha(P)=3.82\times10^{-6}\ 6$ Mult.: $\alpha(K)\exp=0.020\ 7.$

4

From ENSDF

²⁰⁴₈₃Bi₁₂₁-4

 $^{204}_{83}{
m Bi}_{121}$ -4

L

					2	204 Po ε decay	1979Va21 (continued)			
γ ⁽²⁰⁴ Bi) (continued)										
Eγ [‡]	Ι _γ ‡@	E_i (level)	\mathbf{J}_i^{π}	$\mathbf{E}_f \mathbf{J}_f^{\pi}$	Mult. [#]	α^{\dagger}	Comments			
1016.29 3	80.5 18	1094.57	2-	78.26 3+	E1	0.00253 4	$\alpha = 0.00253 \ 4; \ \alpha(K) = 0.00211 \ 3; \ \alpha(L) = 0.000324 \ 5; \ \alpha(M) = 7.50 \times 10^{-5} \ 11; \\ \alpha(N+) = 2.34 \times 10^{-5} \ 4 \\ \alpha(N) = 1.91 \times 10^{-5} \ 3; \ \alpha(Q) = 3.88 \times 10^{-6} \ 6; \ \alpha(P) = 4.57 \times 10^{-7} \ 7$			
1040.01 4	32.1 11	1255.30	1+	215.28 2+	M1	0.01738	Mult.: $\alpha(K)\exp=0.0023 4$, $\alpha(L)\exp=0.00043 9$. $\alpha(K)=0.01427 20$; $\alpha(L)=0.00238 4$; $\alpha(M)=0.000556 8$; $\alpha(N+)=0.0001748 25$ $\alpha(N)=0.0001423 20$; $\alpha(O)=2.91\times10^{-5} 4$; $\alpha(P)=3.48\times10^{-6} 5$			
x1046.45 22	1.05 13						Mult.: $\alpha(K)\exp=0.0161\ 26$, $\alpha(L)\exp=0.0031\ 7$, $\alpha(M)\exp=0.00078\ 15$.			
1177.7 5	0.39 19	1255.30	1+	78.26 3+	(E2)	0.00512 8	$ \begin{array}{l} \alpha = 0.00512 \ 8; \ \alpha(\mathrm{K}) = 0.00411 \ 6; \ \alpha(\mathrm{L}) = 0.000765 \ 11; \ \alpha(\mathrm{M}) = 0.000182 \ 3; \\ \alpha(\mathrm{N}+) = 5.90 \times 10^{-5} \ 9 \\ \alpha(\mathrm{N}) = 4.63 \times 10^{-5} \ 7; \ \alpha(\mathrm{O}) = 9.34 \times 10^{-6} \ 14; \ \alpha(\mathrm{P}) = 1.060 \times 10^{-6} \ 15; \ \alpha(\mathrm{IPF}) = 2.21 \times 10^{-6} \ 5 \end{array} $			
1104 25 14	0.44.6	150(11	2-	222.08.2+	(12.1.)	0.00102.3	Mult.: $\alpha(K) \exp \approx 0.008$.			
1194.35 14	0.44 6	1526.11	2	332.08 31	[E1]	0.00192 3	$\alpha = 0.00192 \ 3; \ \alpha(\text{K}) = 0.001588 \ 23; \ \alpha(\text{L}) = 0.000242 \ 4; \ \alpha(\text{M}) = 5.59 \times 10^{-5} \ 8; \\ \alpha(\text{N}+) = 3.09 \times 10^{-5} \ 5 \\ \alpha(\text{N}) = 1.423 \times 10^{-5} \ 20; \ \alpha(\text{O}) = 2.90 \times 10^{-6} \ 4; \ \alpha(\text{P}) = 3.42 \times 10^{-7} \ 5; \ \alpha(\text{IPF}) = 1.342 \times 10^{-5} \\ 20 \\ \alpha(\text{P}) = 1.423 \times 10^{-5} \ 20; \ \alpha(\text{O}) = 2.90 \times 10^{-6} \ 4; \ \alpha(\text{P}) = 3.42 \times 10^{-7} \ 5; \ \alpha(\text{IPF}) = 1.342 \times 10^{-5} \\ \alpha(\text{P}) = 1.423 \times 10^{-5} \ 20; \ \alpha(\text{P}) = 2.90 \times 10^{-6} \ 4; \ \alpha(\text{P}) = 3.42 \times 10^{-7} \ 5; \ \alpha(\text{P}) = 1.342 \times 10^{-5} \\ \alpha(\text{P}) = 1.423 \times 10^{-5} \ 20; \ \alpha(\text{P}) = 1.423 \times 10^{-5} \ 5; \ \alpha(\text{P}) = 1.342 \times 10^{-5} \ 5; \ $			
1419.0 <i>4</i> <i>x</i> 1461.13 <i>20</i>	≈0.3 ≈0.2	1634.17	1-	215.28 2+			20			

S

[†] Additional information 1.
[‡] From 1979Va21, unless otherwise specified.
[#] From measured conversion coefficients and sub-shell ratios in 1979Va21 and 1990Br19, unless otherwise specified.
[@] For absolute intensity per 100 decays, multiply by 0.343 4.
[&] Placement of transition in the level scheme is uncertain.
^x γ ray not placed in level scheme.

From ENSDF

 $^{204}_{83}{\rm Bi}_{121}\text{-}5$

 $^{204}_{83}{\rm Bi}_{121}\text{-}6$

²⁰⁴Po ε decay 1979Va21

 $^{204}_{\ 83}{\rm Bi}_{121}$

6