Adopted Levels, Gammas

		_	History								
		Туре		Author	Citation	Literature Cutoff Date					
		Full Evaluation	C. J. C	. J. Chiara and F. G. Kondev NDS 111,141 (2010) 1-Oct-2009							
$Q(\beta^{-})=-2305$ Note: Current	15; S(n) evaluatio	=7193 <i>16</i> ; S(p)= on has used the f	3149 <i>12</i> ; ollowing	$Q(\alpha) = 3977 \ 11 \ 2012 \ Q \ record \ -2330 \ 30$	Wa38 7200 30 3170 30 396	<i>0</i> 30 2003Au03.					
				²⁰⁴ Bi	Levels						
				Cross Reference	e (XREF) Flags						
				$\begin{array}{c} \mathbf{A} \\ \mathbf{B} \\ \mathbf{B} \\ \mathbf{B} \\ \mathbf{B} \\ \mathbf{B} \\ \mathbf{C} \\ $	lecay (1.07 ms) ecay						
				C 208 At α de 205 Tl(α .5r	ecay $(\alpha, 3n\gamma)$						
E(level) [†]	J π ‡	T _{1/2}	XREF		Comme	ents					
0	6+	11.22 h 10	ABCD	$\% \varepsilon + \% \beta^+ = 100$							
-				μ =+4.322 15; Q=-0.4	9 15						
				J^{π} : atomic beam.	$O_{\rm theres}$ 11 (h 2 (105)	W_{-14} 110 b 5 (1059E-52) and					
				$1_{1/2}$: From 1960St21. 11.2 h 3 (1966KaZ	Others: 11.0 n 2 (1950 Y).	(1938F133), and					
				μ : From 1996Ca02,20	00Bi23 using laser reso	nance fluorescence spectroscopy					
				technique. Others: 4	4.48 22 (1988Wo12) and	1 +4.28 2 (1959Li50).					
				Q: From 1996Ca02 and technique Others:	a 2000B123 using laser -0.68 20 (2001Bi23) an	resonance nuorescence spectroscopy $d = 0.43 4 (19591 i 50)$					
				Configuration= $((\pi h_{9/2})$	$(v f_{5/2})^{-1}$).						
5.55 5	5+ #		BC	J^{π} : 5.55 γ M1 to 6 ⁺ .	., (5/2) ,						
				Configuration=((π h _{9/2}	$(\nu f_{5/2})^{-1}).$						
15.08 7	4+ #		BC	BC J^{π} : 9.52 γ M1 to 5 ⁺ . Configuration= $((\pi h_{9/2})^{+1}(\gamma f_{5/2})^{-1})$.							
52 40 20	7+										
55.40 20	1		A CD	J J [*] : 53.4 γ M1 to 6'; nonobservation of γ 's to 4 ⁺ and 5 ⁺ tavors γ ⁺ . Configuration $-((\pi + b_{12})^{+1})(y + z_{12})^{-1})$							
78 25 7	3 ^{+#}		B	$T^{\pi} = 63.185 \times M1$ to 4^+							
200.84 8	$(4)^+$		B	J^{π} : 122.582 γ M1 to 3 ⁺ ; 3 ⁺ and 2 ⁺ excluded by shell model.							
215.27 8	2+ #		В	J^{π} : 137.023 γ M1 to 3 ⁺ .							
332.08 7	3+		В	J ^{π} : 253.836 γ M1 to 3 ⁺ , 317.016 γ M1 to 4 ⁺ , 762.52 γ E1 from 2 ⁻ .							
805.5 3	10-	13.0 ms <i>I</i>	A D	%11 = 100 $\mu = 2.36, 23; \Omega = 0.063$	12						
				μ =2.30 23, Q=0.003 I J ^{π} : 752.1 γ E3 to 7 ⁺ .	2						
				$T_{1/2}$: From ²⁰⁴ Bi IT d	lecay (1974Ra25). Othe	r: a value of 13 ms is confirmed in					
				205 Tl(α ,5n γ), 203 Tl(α	<i>α</i> ,3nγ) (1981Lo09).						
				Q: From 1990Ha30, 1	991Sc14 using the LEN	1S technique. The value of 0.0630 12,					
				μ : From g=0.236 23 (19913C14, seems to b 1980K106) using the in-	beam TDPAD technique. The values					
				was corrected for K	night and diamagnetic s	shifts.					
016.0.2	0		_	Configuration= $((\pi h_{9/2})^{\pi})$	$(v i_{13/2})^{-1}).$						
816.0 <i>3</i> 876 3 3	8' (9 ⁻)		ע ת	J^{π} : 762.6 γ M1+E2 to I^{π} : 822.9 γ (M2) to 7 ⁺	7^{-1} . Non-observation of γ	to 10^{-1} level at 805.5 keV may					
010.00			2	argue for lower J.	· · · · · · · · · · · · · · · · · · ·						
895.72 8	1+ #		В	J^{π} : 680.39 γ M1 to 2 ⁺	; direct feeding in ²⁰⁴ Pc	$\varepsilon \text{ decay } (J^{\pi}=0^+).$					
941.5 <i>3</i>	9+		D	J^{π} : 888.1 γ (E2) to 7 ⁺ .	Non-observation of γ t	to 10^- level at 805.5 keV may argue					
983 10 8	$(2^{-}3^{-})$)	R	tor lower J. $I^{\pi} \cdot 905 15\gamma (F1 \pm M2)$	to 3+. 768 1v to 2+						
1018.46 8	$(2,3)^+$,	B	J^{π} : 1003.31 γ M1 to 4	$^+$; 459.90 γ from 1478.3	7-keV level, which is directly					
				,							

Continued on next page (footnotes at end of table)

Adopted Levels, Gammas (continued)

²⁰⁴Bi Levels (continued)

E(level) [†]	Jπ‡	T _{1/2}	XREF	Comments
1094.57 8	2-	3.96 ns 8	В	populated in ²⁰⁴ Po ε decay ($J^{\pi}=0^+$), argues against $J^{\pi}=5^+$. J ^{π} : 1016.29 γ E1 to 3 ⁺ ; 539.5 γ M1 from 1 ⁻ . T _{1/2} : 270 γ -1016 γ (t) in 1970BrZP. The lifetime assignment to this level is
1009 28 8	1- 2-		R	tentative. It is possible that the lifetime is associated with the 1099-keV level. I^{π} : 203 561 \times E1 to 1 ⁺ 883 960 \times E1 to 2 ⁺
1055.20.8	1,2 1+#		D	$\overline{J} = 205.5017 \text{ E1 to 1}, 005.5007 \text{ E1 to 2}$
1255.32 8	1		В	$J^{*}: 11/1.7\gamma$ (E2) to 3°; 1040.01 γ MI to 2°.
1369.35 8	1		В	$J^*: 270.068\gamma$ M1 to 1, 2; direct feeding in ²⁰¹ Po ε decay ($J^*=0^+$).
1404.25 8	1-		В	J^{π} : 309.80 γ M1 to 2 ⁻ ; direct feeding in ²⁰⁴ Po ε decay ($J^{\pi}=0^{+}$).
1413.6 4	11		A D	J^{A} : 608.1 γ M1 to 10.
1454 6 11	10-			Configuration= $((\pi h_{9/2})^{+1}(\nu 1_{13/2})^{-1})$.
1454.6 11	12-		A D	J^{n} : 41 γ MI to 11 ⁻ ; yrast cascade.
1478.37 8	$(1,2)^+$		В	J ^{π} : 582.70 γ M1 to 1 ⁺ ; direct feeding in ²⁰⁴ Po ε decay (J ^{π} =0 ⁺) favors 0 ⁺ ,1 ⁺ , but 459.90 γ (M1) to (3) ⁺ favors $I^{\pi-2^+}$
1526 11 8	2-		R	I^{π} : 426 822 M1 to I^{-2} - 1194 352 to 3^{+} 108 0552 M1 from I^{-}
1546 422 8	$(1)^{-}$		R	J^{π} : 451 8469 M1 to 2 ⁻ : direct feeding in ²⁰⁴ Po s decay (I^{π} -0 ⁺)
1634 18 8	1-		R	I^{π} : 229.94 γ M1 to (1) ⁻ : 534.92 γ M1 to 1 ⁻ 2 ⁻ : 1419 (by to 2 ⁺ : direct feeding in
105 1.10 0	1		2	204 Po s decay $(I^{\pi}-0^{+})$ favor 1 ⁻
163974	12		D	$I^{\pi} 226 \ 1 \times D \ to \ 11^{-1}$
1774 7 5	12		D	
1789.4.5			D	
1821.6 11	13-		A D	J^{π} : 367.0 γ M1 to 12 ⁻ .
1915.3 11	14-		A D	J^{π} : 93.7 γ M1+E2 to 13 ⁻ .
1968.2 11			D	
2223.4 11	$(13)^{-}$		D	J^{π} : 401.8 γ M1(+E2) to 13 ⁻ ; relative population of this level would suggest 13 ⁻ .
2483.4 11	14-		D	J^{π} : 661.8 γ M1+E2 to 13 ⁻ .
2651.7 11	15-		A D	J^{π} : 736.4 γ M1+E2 to 14 ⁻ .
2684.5 12	(15 ⁻)		D	J^{π} : 201.1 γ (M1) to 14 ⁻ .
2705.3 11	(14) ⁻		D	J^{π} : 21 γ M1 to (15 ⁻), 883.7 γ M1+E2 to 13 ⁻ .
2819.9	$(12, 13, 14)^{-}$		D	J^{π} : 998.3 γ M1+E2 to 13 ⁻ .
2833.4 11	17+	1.07 ms 3	A D	%IT=100
				J^{π} : 181.8 γ M2 to 15 ⁻ , 918.1 γ E3 to 14 ⁻ .
				$T_{1/2}$: From 1974Ra25 in ²⁰⁴ Bi IT decay (1.07 ms). Other: a value of 1 ms is
				confirmed in $23311(\alpha, 5n\gamma)$, $23311(\alpha, 5n\gamma)$ (1981L009).
2025 2 12	$(15)^{-}$		D	Configuration= $((\pi \ n_{9/2})(\nu \ r_{5/2})^{-1}(\nu \ r_{13/2})^{-2})$.
2000.2 12	(13) $(19)^+$		ע	$J : 531.8\gamma$ M1 to 14. I^{π}_{2} , 554 lo M1 E2 to 17 ⁺
5501.5 12	(10)		ע	$\int \int \frac{1}{2} \int $
3516.0.12	16-		л	$U^{\pi} = \frac{100}{10} = \frac{100}{10} \frac{10}{2} \frac{100}{10} \frac{100}{10} \frac{100}{10} \frac{100}{100} $
3809 0 12	$(10)^+$		ע ח	$I^{\pi} \cdot 4215_{2} M_{1} + F_{2} t_{0} (18)^{+}$
5009.0 12	(19)		ע	$\int (\pi - \pi $
				$Configuration - ((\pi 19/2)(v 15/2) (v 113/2)).$

[†] From a least-squares fit to $E\gamma$.

[‡] From deduced transition multipolarities, unless otherwise specified.

[#] The 895.72- and 1255.32-keV levels are directly populated by ²⁰⁴Po ε decay ($J^{\pi}=0^+$) with log *ft* values indicating J=0,1 assignments. Both levels decay by a sequence of five M1 transitions to the 6⁺ g.s. (680.39 γ or 1040.01 γ to the 215.27-keV level, 137.023 γ to the 78.25-keV level, 63.185 γ to the 15.08-keV level, 9.52 γ to the 5.55-keV level, and 5.55 γ to g.s.), fixing the initial J^{π} to 1⁺, with each successive M1 decay changing J by 1. These assignments are consistent with shell model predictions for the $\pi h_{9/2}^{-1} \gamma f_{5/2}^{-1}$ multiplet.

						Adopt	ted Levels, Gammas (continued)
							γ ⁽²⁰⁴ Bi)	
E _i (level)	\mathbf{J}_i^{π}	E_{γ}^{\ddagger}	Ι _γ ‡#	\mathbf{E}_{f}	J_f^{π}	Mult.@	$lpha^{\dagger}$	Comments
5.55	5+	5.55 5	100	0	6+	M1	2.33×10 ³ 8	$\begin{array}{l} \alpha(\mathrm{M})=1.77\times10^3 \ 6; \ \alpha(\mathrm{N}+)=560 \ 18 \\ \alpha(\mathrm{N})=456 \ 14; \ \alpha(\mathrm{O})=93 \ 3; \ \alpha(\mathrm{P})=11.1 \ 4 \\ \mathrm{Mult.: \ From \ 1990Br19. \ N2/N1=0.13 \ 3; \ N3/N1=0.006 \ 5; \ N1/M1=0.21 \ 7; \\ \delta<0.002\% \end{array}$
15.08	4+	9.52 5	100	5.55	5+	M1	468 10	$\alpha(M)=356 \ 8; \ \alpha(N+)=112.0 \ 24$ $\alpha(N)=91.2 \ 20; \ \alpha(O)=18.6 \ 4; \ \alpha(P)=2.21 \ 5$ Mult.: From 1990Br19. M2/M1=1.7; M3/M1=0.03 2; N1/M1=0.23 3; $\delta < 0.03\%$. Note that no evidence was found in 1990Br19 for the expected 15.1-keV transition to the 6 ⁺ g.s.
53.40	7+	53.4 [#] 2	100	0	6+	M1 ^{<i>a</i>}	11.92 22	$\alpha(L)=9.10\ 17;\ \alpha(M)=2.14\ 4;\ \alpha(N+)=0.674\ 12$ $\alpha(N)=0.548\ 10;\ \alpha(Q)=0.1120\ 20;\ \alpha(P)=0.01333\ 24$
78.25	3+	63.185 7	100	15.08	4+	M1	7.28	$\alpha(L)=5.56\ 8;\ \alpha(M)=1.309\ 19;\ \alpha(N+)=0.411\ 6$ $\alpha(N)=0.335\ 5;\ \alpha(O)=0.0684\ 10;\ \alpha(P)=0.00814\ 12$
200.84	$(4)^{+}$	122.582 8	100	78.25	3+	M1	5.70	$\alpha(\mathbf{K}) = 0.535$, $\alpha(\mathbf{L}) = 0.813$ 12; $\alpha(\mathbf{M}) = 0.191$ 3; $\alpha(\mathbf{N}+) = 0.0601$ 9 $\alpha(\mathbf{K}) = 0.0489$ 7; $\alpha(\mathbf{C}) = 0.01000$ 14; $\alpha(\mathbf{R}) = 0.001100$ 17
215.27	2+	137.023 <i>3</i>	100	78.25	3+	M1	4.15	$\alpha(N)=0.04377$, $\alpha(D)=0.00077$, $\mu(r)=0.00119077$ $\alpha(N)=0.03565$; $\alpha(D)=0.05919$; $\alpha(N)=0.0139020$; $\alpha(N+)=0.04377$
332.08	3+	131.224 14	21.0 5	200.84	$(4)^{+}$	M1	4.69	$\alpha(N)=0.053555, \alpha(O)=0.06727717, \alpha(1)=0.000605757$ $\alpha(N)=3.826; \alpha(L)=0.66970; \alpha(M)=0.157322; \alpha(N+)=0.049577$ $\alpha(N)=0.04026; \alpha(O)=0.00822712; \alpha(D)=0.00007014$
		253.836 22	13.9 8	78.25	3+	(M1)	0.735	$\alpha(N)=0.0402$ 6, $\alpha(C)=0.00022$ 12, $\alpha(P)=0.000579$ 14 $\alpha(K)=0.599$ 9; $\alpha(L)=0.1038$ 15; $\alpha(M)=0.0244$ 4; $\alpha(N+)=0.00766$ 11 $\alpha(N)=0.00624$ 9; $\alpha(C)=0.001275$ 18; $\alpha(P)=0.0001518$ 22
		317.016 9	100 9	15.08	4+	M1	0.399	$\alpha(N)=0.00024$ 9, $\alpha(O)=0.001275$ 78, $\alpha(I)=0.001318$ 22 $\alpha(K)=0.326$ 5; $\alpha(L)=0.0562$ 8; $\alpha(M)=0.01319$ 19; $\alpha(N+)=0.00415$ 6 $\alpha(N)=0.00337$ 5; $\alpha(O)=0.000690$ 10; $\alpha(P)=8.21\times10^{-5}$ 12
805.5	10-	752.1 [#] 2	100	53.40	7+	E3 ^{&}	0.0326	α (K)=0.0217 3; α (L)=0.00811 12; α (M)=0.00205 3; α (N+)=0.000639 9 α (N)=0.000526 8; α (O)=0.0001028 15; α (P)=1.030×10 ⁻⁵ 15 B(E3)(W.u.)=0.0002689 22
816.0	8+	762.6 [#] 2	100	53.40	7+	M1+E2 ^{<i>a</i>}	0.025 14	α (K)=0.020 <i>12</i> ; α (L)=0.0037 <i>17</i> ; α (M)=0.0009 <i>4</i> ; α (N+)=0.00028 <i>12</i> α (N)=0.00023 <i>10</i> ; α (O)=4.6×10 ⁻⁵ <i>20</i> ; α (P)=5.E–6 <i>3</i>
876.3	(9 ⁻)	822.9 [#] 2	100	53.40	7+	(M2) ^{<i>a</i>}	0.0797	α (K)=0.0635 9; α (L)=0.01232 18; α (M)=0.00294 5; α (N+)=0.000928 13
895.72	1+	680.39 4	100	215.27	2+	M1	0.0521	$ \begin{array}{l} \alpha(\mathrm{N}) = 0.000755 \ 11; \ \alpha(\mathrm{O}) = 0.0001540 \ 22; \ \alpha(\mathrm{P}) = 1.81 \times 10^{-5} \ 3\\ \alpha(\mathrm{K}) = 0.0427 \ 6; \ \alpha(\mathrm{L}) = 0.00721 \ 10; \ \alpha(\mathrm{M}) = 0.001689 \ 24; \\ \alpha(\mathrm{N}+) = 0.000531 \ 8 \end{array} $
		817.6 ^b		78.25	3+			α (N)=0.000432 6; α (O)=8.83×10 ⁻⁵ 13; α (P)=1.055×10 ⁻⁵ 15
941.5	9+	888.1 [#] 2	100	53.40	7+	(E2) ^{<i>a</i>}	0.00884 13	α (K)=0.00692 <i>10</i> ; α (L)=0.001455 <i>21</i> ; α (M)=0.000350 <i>5</i> ; α (N+)=0.0001091
983.19	(2 ⁻ ,3 ⁻)	768.1 <i>3</i>	30 6	215.27	2+			α (N)=8.93×10 ⁻⁵ <i>13</i> ; α (O)=1.784×10 ⁻⁵ <i>25</i> ; α (P)=1.96×10 ⁻⁶ <i>3</i>

From ENSDF

 $^{204}_{83}{
m Bi}_{121}$ -3

L

	Adopted Levels, Gammas (continued)									
γ ⁽²⁰⁴ Bi) (continued)										
E _i (level)	\mathbf{J}_i^{π}	E_{γ}^{\ddagger}	Ι _γ ‡#	E_f	J_f^{π}	Mult. [@]	α^{\dagger}	Comments		
983.19	(2-,3-)	905.15 7	100 6	78.25 3	3+	(E1+M2)	0.03 3	$\alpha(K)=0.026\ 24;\ \alpha(L)=0.005\ 5;\ \alpha(M)=0.0012\ 11;\ \alpha(N+)=0.0004\ 4$ $\alpha(N)=0.0003\ 3;\ \alpha(Q)=6.E-5\ 6;\ \alpha(P)=7.E-6\ 7$		
1018.46	(3)+	817.61 5	100 4	200.84 (4	4) ⁺	(E2+M1)	0.021 11	$\alpha(K)=0.017 \ lo; \ \alpha(L)=0.0031 \ l4; \ \alpha(M)=0.0007 \ 3; \ \alpha(N+)=0.00023 \ lo \ \alpha(N)=0.00019 \ 8; \ \alpha(Q)=3.8\times10^{-5} \ l7; \ \alpha(P)=4.4\times10^{-6} \ 2l$		
		1003.31 8	73 5	15.08 4	I +	M1	0.0191	$\alpha(K) = 0.01564\ 22;\ \alpha(L) = 0.00261\ 4;\ \alpha(M) = 0.000611\ 9;\ \alpha(N+) = 0.000192$		
1094.57	2-	762.52 3	47.8 14	332.08 3	3+	E1	0.00430 6	$ \begin{array}{l} \alpha(\mathrm{N}) = 0.0001562 \ 22; \ \alpha(\mathrm{O}) = 3.20 \times 10^{-5} \ 5; \ \alpha(\mathrm{P}) = 3.82 \times 10^{-6} \ 6 \\ \alpha(\mathrm{K}) = 0.00357 \ 5; \ \alpha(\mathrm{L}) = 0.000559 \ 8; \ \alpha(\mathrm{M}) = 0.0001297 \ 19; \\ \alpha(\mathrm{N}+) = 4.05 \times 10^{-5} \ 6 \end{array} $		
		1016.29 <i>3</i>	100 2	78.25 3	3+	E1	0.00253 4	$\begin{aligned} \alpha(N) &= 3.30 \times 10^{-5} 5; \ \alpha(O) &= 6.69 \times 10^{-6} \ 10; \ \alpha(P) &= 7.78 \times 10^{-7} \ 11 \\ B(E1)(W.u.) &= 3.60 \times 10^{-8} \ 15 \\ \alpha(K) &= 0.00211 \ 3; \ \alpha(L) &= 0.000324 \ 5; \ \alpha(M) &= 7.50 \times 10^{-5} \ 11; \\ \alpha(N+) &= 2.34 \times 10^{-5} \ 4 \end{aligned}$		
								$\alpha(N)=1.91\times10^{-5} 3; \alpha(O)=3.88\times10^{-6} 6; \alpha(P)=4.57\times10^{-7} 7$ B(E1)(W.u.)=3.18×10 ⁻⁸ 11		
1099.28	1-,2-	(4.7) 116.057 <i>10</i>	2.36 7	1094.57 2 983.19 (2	2 ⁻ (2 ⁻ ,3 ⁻)	(M1+E2)	5.1 16	$\alpha(K)=2.9\ 25;\ \alpha(L)=1.6\ 7;\ \alpha(M)=0.42\ 20;\ \alpha(N+)=0.13\ 6$		
		203.561 10	9.4 3	895.72 1	+	E1	0.0766	$\alpha(N)=0.0621 \ 9; \ \alpha(L)=0.01112 \ 16; \ \alpha(M)=0.00262 \ 4; \ \alpha(N+)=0.000807 \ 12 \ \alpha(N)=0.000662 \ 10; \ \alpha(Q)=0.0001307 \ 19; \ \alpha(P)=1.403\times10^{-5} \ 20$		
		883.960 25	100 2	215.27 2	2+	E1	0.00326 5	$\alpha(K) = 0.00271 \ 4; \ \alpha(L) = 0.000421 \ 6; \ \alpha(M) = 9.75 \times 10^{-5} \ 14; \\ \alpha(N+) = 3.04 \times 10^{-5} \ 5 $		
1255.32	1+	1040.01 4	100 3	215.27 2	2+	M1	0.01738	$ \begin{array}{l} \alpha(\mathrm{N}) = 2.48 \times 10^{-3} \ 4; \ \alpha(\mathrm{O}) = 5.04 \times 10^{-6} \ 7; \ \alpha(\mathrm{P}) = 5.89 \times 10^{-7} \ 9 \\ \alpha(\mathrm{K}) = 0.01427 \ 20; \ \alpha(\mathrm{L}) = 0.00238 \ 4; \ \alpha(\mathrm{M}) = 0.000556 \ 8; \\ \alpha(\mathrm{N}+) = 0.0001748 \ 25 \end{array} $		
		1177.7 5	1.2 6	78.25 3	3+	(E2)	0.00512 8	$\alpha(N)=0.0001423 \ 20; \ \alpha(O)=2.91\times10^{-5} \ 4; \ \alpha(P)=3.48\times10^{-6} \ 5 \\ \alpha(K)=0.00411 \ 6; \ \alpha(L)=0.000765 \ 11; \ \alpha(M)=0.000182 \ 3; \\ \alpha(N+)=5.90\times10^{-5} \ 9 \\ \alpha(N)=4.63\times10^{-5} \ 7; \ \alpha(O)=0.34\times10^{-6} \ 14; \ \alpha(P)=1.060\times10^{-6} \ 15; \ \alpha(P)=1.060\times10^{-6} \ 1$		
12(0.25	1-	270.040.11	100	1000 00 1	- 0-	141	0 (10	$a(\text{IV})=4.05\times10^{-7}$, $a(\text{O})=9.54\times10^{-7}$, 14 , $a(\text{P})=1.000\times10^{-7}$ 15, $a(\text{IPF})=2.21\times10^{-6}$ 5		
1369.35	1	270.068 11	100	1099.28 1	,2	MI	0.619	$\alpha(K)=0.505$ /; $\alpha(L)=0.0874$ 13; $\alpha(M)=0.0205$ 3; $\alpha(N+)=0.00645$ 9 $\alpha(N)=0.00525$ 8; $\alpha(O)=0.001073$ 15; $\alpha(P)=0.0001278$ 18		
1404.25	1-	304.964 12	100 4	1099.28 1	-,2-	M1	0.444	$\alpha(K)=0.3625; \alpha(L)=0.06259; \alpha(M)=0.0146821; \alpha(N+)=0.004617$		
		309.80 14	16.9 <i>15</i>	1094.57 2	2-	M1	0.425	$\alpha(N)=0.00575$ 6; $\alpha(O)=0.00076711$; $\alpha(P)=9.14\times10^{-5}13$ $\alpha(K)=0.347$ 5; $\alpha(L)=0.0598$ 9; $\alpha(M)=0.01406$ 20; $\alpha(N+)=0.00442$ 7 $\alpha(N)=0.00360$ 5; $\alpha(O)=0.000735$ 11; $\alpha(P)=8.75\times10^{-5}$ 13		
1413.6	11-	608.1 [#] 2	100	805.5 1	0-	M1 ^{&a}	0.0699	α (K)=0.0573 8; α (L)=0.00970 14; α (M)=0.00227 4; α (N+)=0.000715 10 α (N)=0.000581 9; α (O)=0.0001189 17; α (P)=1.419×10 ⁻⁵ 20		

4

						Adopted Le	dopted Levels, Gammas (continued)				
γ ⁽²⁰⁴ Bi) (continued)											
E _i (level)	\mathbf{J}_i^{π}	E_{γ}^{\ddagger}	$I_{\gamma}^{\ddagger \#}$	E_f	\mathbf{J}_{f}^{π}	Mult.@	α^{\dagger}	Comments			
1454.6	12-	41 [#] I	100	1413.6	11-	M1	25.9 20	α (L)=19.8 <i>16</i> ; α (M)=4.7 <i>4</i> ; α (N+)=1.47 <i>12</i> α (N)=1.19 <i>10</i> ; α (O)=0.244 <i>19</i> ; α (P)=0.0290 <i>23</i> Mult.: From intensity balances consideration in 205 Tl(α 5ny) 203 Tl(α 3ny).			
1478.37	$(1,2)^+$	459.90 <i>5</i>	100 5	1018.46	(3)+	(M1)	0.1464	$\alpha(K)=0.1197 \ 17; \ \alpha(L)=0.0204 \ 3; \ \alpha(M)=0.00480 \ 7; \ \alpha(N+)=0.001507 \ 22 \ \alpha(N)=0.00127 \ 18; \ \alpha(Q)=0.000251 \ 4; \ \alpha(P)=2.99\times10^{-5} \ 5$			
		582.70 6	67 3	895.72	1+	M1	0.0782	$\alpha(K) = 0.0640 \ 9; \ \alpha(L) = 0.01087 \ 16; \ \alpha(M) = 0.00255 \ 4; \ \alpha(N+) = 0.000800 \ 12$ $\alpha(N) = 0.000651 \ 10; \ \alpha(Q) = 0.0001332 \ 19; \ \alpha(P) = 1.589 \times 10^{-5} \ 23$			
1526.11	2-	426.82 3	100 7	1099.28	1-,2-	M1	0.179	$\alpha(K) = 0.1460 \ 21; \ \alpha(L) = 0.0250 \ 4; \ \alpha(M) = 0.00587 \ 9; \ \alpha(N+) = 0.00184 \ 3 \ \alpha(N) = 0.001500 \ 21; \ \alpha(O) = 0.000307 \ 5; \ \alpha(P) = 3.66 \times 10^{-5} \ 6$			
		1194.35 14	7.0 10	332.08	3+						
1546.42?	(1) ⁻	451.846 22	100	1094.57	2-	M1	0.1535	α (K)=0.1254 <i>18</i> ; α (L)=0.0214 <i>3</i> ; α (M)=0.00503 <i>7</i> ; α (N+)=0.001581 <i>23</i> α (N)=0.001287 <i>18</i> ; α (O)=0.000263 <i>4</i> ; α (P)=3.14×10 ⁻⁵ <i>5</i>			
1634.18	1-	108.055 8	2.66 9	1526.11	2^{-}	M1	8.17	α (K)=6.64 10; α (L)=1.169 17; α (M)=0.275 4; α (N+)=0.0865 13 α (N)=0.0704 10; α (O)=0.01438 21; α (P)=0.001711 24			
		229.94 3	6.0 4	1404.25	1-	M1	0.966	$\alpha(K)=0.787 \ 11; \ \alpha(L)=0.1367 \ 20; \ \alpha(M)=0.0321 \ 5; \ \alpha(N+)=0.01010 \ 15 \ \alpha(N)=0.00822 \ 12; \ \alpha(O)=0.001679 \ 24; \ \alpha(P)=0.000200 \ 3$			
		534.92 6	100 5	1099.28	1-,2-	M1	0.0980	$\alpha(K)=0.0802$ 12; $\alpha(L)=0.01364$ 20; $\alpha(M)=0.00320$ 5; $\alpha(N+)=0.001005$ 14			
		539.5 4	10.2 7	1094.57	2-	M1	0.0959	$\alpha(N)=0.000818 \ 12; \ \alpha(O)=0.0001673 \ 24; \ \alpha(P)=1.99\times10^{-5} \ 3$ $\alpha(K)=0.0784 \ 11; \ \alpha(L)=0.01334 \ 19; \ \alpha(M)=0.00313 \ 5; \ \alpha(N+)=0.000983$ 14			
		1410.0 4	0.69	015.07	a^+			$\alpha(N)=0.000800 \ 12; \ \alpha(O)=0.0001635 \ 24; \ \alpha(P)=1.95\times10^{-5} \ 3$			
		1419.04	≈0.68	215.27	2	- 0					
1639.7	12	226.1" 2	100	1413.6	11-	Du					
1774.7		135.0# 2	100	1639.7	12						
1789.4		149.7 [#] 2	100	1639.7	12						
1821.6	13-	367.0 [#] 2	100	1454.6	12-	M1 ^{&a}	0.268	α (K)=0.219 3; α (L)=0.0376 6; α (M)=0.00884 13; α (N+)=0.00278 4 α (N)=0.00226 4; α (O)=0.000462 7; α (P)=5.50×10 ⁻⁵ 8			
1915.3	14-	93.7 [#] 2	100	1821.6	13-	M1+E2 ^{&}	10.6 17	$\alpha(K) = 55; \alpha(L) = 4.123; \alpha(M) = 1.17; \alpha(N+) = 0.3220$ $\alpha(N) = 0.2717; \alpha(O) = 0.053; \alpha(P) = 0.004318$			
1968 2		146 6 [#] 2	100	1821.6	13-						
2223 4	$(13)^{-}$	401.8# 2	100	1821.6	13-	$M1(\pm E2)^{a}$	0 13 8	$\alpha(\mathbf{K}) = 0.10.7; \ \alpha(\mathbf{L}) = 0.022.8; \ \alpha(\mathbf{M}) = 0.0053.17; \ \alpha(\mathbf{N}_{\perp}) = 0.0016.6$			
2223.4	(15)	401.6 2	100	1621.0	15	WI1(+E2)	0.15 8	$\alpha(N)=0.0013 5; \alpha(O)=0.0022 8; \alpha(N)=0.0035 17; \alpha(N+)=0.0010 0$ $\alpha(N)=0.0013 5; \alpha(O)=0.00027 10; \alpha(P)=3.0\times10^{-5} 14$			
2483.4	14-	661.8 [#] 2	100	1821.6	13-	M1+E2 ^{<i>a</i>}	0.036 20	α (K)=0.029 <i>17</i> ; α (L)=0.0054 <i>24</i> ; α (M)=0.0013 <i>6</i> ; α (N+)=0.00040 <i>17</i> α (N)=0.00033 <i>14</i> ; α (O)=7.E–5 <i>3</i> ; α (P)=8.E–6 <i>4</i>			
2651.7	15-	736.4 [#] 2	100	1915.3	14-	M1+E2 ^{&a}	0.028 15	α (K)=0.022 <i>13</i> ; α (L)=0.0041 <i>18</i> ; α (M)=0.0010 <i>4</i> ; α (N+)=0.00030 <i>13</i> α (N)=0.00025 <i>11</i> ; α (O)=5.0×10 ⁻⁵ 22; α (P)=6.E-6 <i>3</i>			

From ENSDF

²⁰⁴₈₃Bi₁₂₁-5

Adopted Levels, Gammas (continued)										
	γ ⁽²⁰⁴ Bi) (continued)									
E _i (level)	\mathbf{J}_i^{π}	E_{γ}^{\ddagger}	Ι _γ ‡#	$E_f J_f^{\pi}$	Mult. [@]	a^{\dagger}	Comments			
2684.5	(15 ⁻)	201.1 [#] 2	100	2483.4 14-	(M1) ^{<i>a</i>}	1.404	α (K)=1.144 <i>17</i> ; α (L)=0.199 <i>3</i> ; α (M)=0.0468 <i>7</i> ; α (N+)=0.01471 <i>21</i> α (N)=0.01197 <i>17</i> ; α (O)=0.00245 <i>4</i> ; α (P)=0.000291 <i>5</i>			
2705.3	(14) ⁻	21 [#] I		2684.5 (15 ⁻)	M1	1.9×10 ² 3	α (L)=143 22; α (M)=34 6; α (N+)=10.6 17 α (N)=8.6 14; α (O)=1.8 3; α (P)=0.21 4			
		883.7 [#] 2	100	1821.6 13-	M1+E2 ^{<i>a</i>}	0.018 9	Mult.: From intensity balances consideration in ${}^{205}\text{Tl}(\alpha,5n\gamma)$, ${}^{205}\text{Tl}(\alpha,3n\gamma)$. $\alpha(\text{K})=0.014\ 8;\ \alpha(\text{L})=0.0026\ 11;\ \alpha(\text{M})=0.00060\ 25;\ \alpha(\text{N}+)=0.00019\ 8$ $\alpha(\text{N})=0.00015\ 7;\ \alpha(\text{O})=3.1\times10^{-5}\ 14;\ \alpha(\text{P})=3.6\times10^{-6}\ 17$			
2819.9	(12,13,14) ⁻	998.3 [#] 2	100	1821.6 13-	M1+E2 ^{<i>a</i>}	0.013 7	α (K)=0.011 6; α (L)=0.0019 8; α (M)=0.00044 18; α (N+)=0.00014 6 α (N)=0.00011 5; α (O)=2.3×10 ⁻⁵ 10; α (P)=2.7×10 ⁻⁶ 12			
2833.4	17+	181.8 [#] 2	≈56	2651.7 15-	M2 ^{&a}	9.52	α (K)=6.75 <i>10</i> ; α (L)=2.07 <i>3</i> ; α (M)=0.524 <i>8</i> ; α (N+)=0.1663 <i>25</i> α (N)=0.1358 <i>20</i> ; α (O)=0.0274 <i>4</i> ; α (P)=0.00310 <i>5</i>			
		918.1 [#] 2	100	1915.3 14-	E3 ^{<i>a</i>}	0.0199	$\alpha(K) = 0.01428 \ 20; \ \alpha(L) = 0.00427 \ 6; \ \alpha(M) = 0.001064 \ 15; \ \alpha(N+) = 0.000332 \ 5 \ 5 \ \alpha(M) = 0.001064 \ 15; \ \alpha(N+) = 0.000332 \ 5 \ \alpha(M) = 0.001064 \ 15; \ \alpha(N+) = 0.000332 \ 5 \ \alpha(M) = 0.001064 \ 15; \ \alpha(N+) = 0.000332 \ 5 \ \alpha(M) = 0.001064 \ 15; \ \alpha(N+) = 0.000332 \ 5 \ \alpha(M) = 0.001064 \ 15; \ \alpha(N+) = 0.000332 \ 5 \ \alpha(M) = 0.001064 \ 15; \ \alpha(N+) = 0.000332 \ 5 \ \alpha(M) = 0.001064 \ 15; \ \alpha(N+) = 0.000332 \ 5 \ \alpha(M) = 0.001064 \ 15; \ \alpha(N+) = 0.000332 \ 5 \ \alpha(M) = 0.001064 \ 15; \ \alpha(N+) = 0.000332 \ 5 \ \alpha(M) = 0.001064 \ 15; \ \alpha(N+) = 0.000332 \ 5 \ \alpha(M) = 0.001064 \ 15; \ \alpha(N+) = 0.000332 \ 5 \ \alpha(N+) = 0.000332 \ 15 \ \alpha(N$			
							$\alpha(N)=0.0002724; \alpha(O)=5.37\times10^{-5}8; \alpha(P)=5.60\times10^{-6}8$ B(E3)(W,u)=0.000126			
2835.2	(15) ⁻	351.8 [#] 2	100	2483.4 14-	M1 ^{<i>a</i>}	0.301	α (K)=0.245 4; α (L)=0.0422 6; α (M)=0.00992 14; α (N+)=0.00312 5 α (N)=0.00254 4; α (O)=0.000519 8; α (P)=6.18×10 ⁻⁵ 9			
3387.5	$(18)^+$	554.1 [#] 2	100	2833.4 17+	M1+E2 ^{<i>a</i>}	0.06 4	α (K)=0.05 3; α (L)=0.009 4; α (M)=0.0021 9; α (N+)=0.0007 3 α (N)=0.00053 22; α (O)=0.00011 5; α (P)=1.2×10 ⁻⁵ 6			
3516.0	16-	810.7 [#] 2	100	2705.3 (14)-	E2 ^{<i>a</i>}	0.01062	$\alpha(K)=0.00822$ 12; $\alpha(L)=0.00182$ 3; $\alpha(M)=0.000440$ 7; $\alpha(N+)=0.0001369$ 20			
3809.0	(19)+	421.5 [#] 2	100	3387.5 (18) ⁺	M1+E2 ^{<i>a</i>}	0.12 7	α (N)=0.0001122 <i>16</i> ; α (O)=2.23×10 ⁻⁵ <i>4</i> ; α (P)=2.42×10 ⁻⁶ <i>4</i> α (K)=0.09 <i>6</i> ; α (L)=0.019 <i>7</i> ; α (M)=0.0046 <i>15</i> ; α (N+)=0.0014 <i>5</i> α (N)=0.0012 <i>4</i> ; α (O)=0.00023 <i>9</i> ; α (P)=2.6×10 ⁻⁵ <i>12</i>			

6

[†] Additional information 1.
[‡] From ²⁰⁴Po ε decay, unless otherwise specified.
[#] From ²⁰⁵Tl(α,5nγ),²⁰³Tl(α,3nγ).
[@] From measured conversion coefficients and sub-shell ratios in ²⁰⁴Po ε decay (1979Va21,1990Br19), unless otherwise specified.
[&] From measured conversion electron sub-shell ratios in ²⁰⁴Bi IT decay (1.07 ms).
^a From γ(θ) and α(K)exp in ²⁰⁵Tl(α,5nγ),²⁰³Tl(α,3nγ).

^b Placement of transition in the level scheme is uncertain.

 $^{204}_{83}{\rm Bi}_{121}\text{-}6$

Adopted Levels, Gammas

 $^{204}_{\ 83}{\rm Bi}_{121}$