Adopted Levels

	History			
	Туре	Author	Citation	Literature Cutoff Date
	Full Evaluation	C. J. Chiara and F. G. Kondev	NDS 111,141 (2010)	1-Oct-2009
$Q(\beta^{-})=4.04\times10^3 \ syst$; $S(n)=5.58\times10^3 s$	yst; $S(p)=8.3 \times 10^3$ syst; $Q(\alpha)=-1$.	.5×10 ³ syst 2012Wa3	8
Note: Current evaluat	2003Au03.			

Note: Current evaluation has used the following Q record 3940 syst 5678 syst $\Delta Q(\beta^{-}), \Delta S(n)$ uncertainty is 200 keV on each from syst.

1984Cr01: ²⁰⁴Au produced via ²⁰⁴Hg(n,p) reaction, E(n)=14 MeV; 32-g natural Hg target; delayed γ 's following ²⁰⁴Au β^- decay to ²⁰⁴Hg were measured in singles with a Ge detector, and in coin using Ge(Li) and Ge detectors. γ (t) was also measured.

1972Pa06: ²⁰⁴Au produced via ²⁰⁴Hg(n,p) reaction, E(n)=14-15 MeV; 1-10-g natural Hg target; delayed γ 's following ²⁰⁴Au β^- decay to ²⁰⁴Hg were measured in singles with a Ge(Li) detector and in coin using NaI(Tl) and Ge(Li) detectors. γ (t) was also measured. β^- spectrum measured with plastic scintillator.

2009Mo17: ²⁰⁴Au produced by bombarding a 2.5-g/cm² ⁹Be target with $E(^{208}Pb)=1$ GeV/A beam; GSI Fragment Separator; A/Q measured using magnetic rigidity and ToF; two multi sampling ionization chambers for ΔE ; fragments were implanted on an active stopper consisting of three DSSD's each with 16 horizontal and vertical strips. An array of 15 HPGe cluster detectors with 15% total efficiency at 662 keV surrounded the active stopper; measured $E\gamma$, $\gamma\gamma$ coin and γ (t).

²⁰⁴Au Levels

Cross Reference (XREF) Flags

1

В

 $^{9}\text{Be}(^{208}\text{Pb},\text{X}\gamma)$

E(level)	\mathbf{J}^{π}	T _{1/2}	XREF	Comments	
0	(2 ⁻)	39.8 s 9	AB	$\%\beta^-=100$ J^{π} : ²⁰⁴ Au β^- decay feedings to the 1947.7-keV ($J^{\pi}=2^+$) and 2812.8-keV ($J^{\pi}=3^-$) levels in ²⁰⁴ Hg favor J=2,3. The negligible β^- decay branch to the 1128.2-keV ($J^{\pi}=4^+$) level suggest J=2. Ground-state J^{π} of neighboring ²⁰³ Au (3/2 ⁺) and ²⁰³ Pt (tentative 1/2 ⁻) nuclei support $J^{\pi}=2^-$. Configuration=(($\pi d_{3/2})^{-1}(v p_{1/2})^{-1}$), based on shell model predictions in 1984Cr01 and 1972Pa06. The Nordheim rule (1950No10) favors $J^{\pi}=2^-$ assignment. The form 436 for(t) 691 7v(t) and 723 0v(t) in 1984Cr01. This value agrees with	
976.6+x		2.1 μs 3	В	earlier result of 40 s 3 from measurement of several intense γ 's by 1972Pa06. A value of $T_{1/2}$ =4.0 s 10 and β^- branch with endpoint energy of $E(\beta^-)$ =4500 keV 300 was reported in 1967Wa23, but this $T_{1/2}$ was not corroborated by 1972Pa06 or 1984Cr01. E(level): 839.0 γ and 976.6 γ were assigned firmly to ²⁰⁴ Au in 2008StZY. They follow decay of an isomer with the same lifetime. Thus, the excitation energy of this state is larger than 976.6 keV.	

T_{1/2}: From $839\gamma(t)$ and $977\gamma(t)$.