²⁰³Tl(n,n'γ) 1981He14,2020Fo05

History								
Type Author		Citation	Literature Cutoff Date					
Full Evaluation	F. G. Kondev	NDS 105,1 (2005)	1-Mar-2005					

1981He14: E(n)=2.75 MeV; Target: natural thallium; Detectors: Ge(Li); Measured: E γ , I γ ; Deduced: absolute cross sections for γ emission.

2020Fo05: neutron produced by bombarding a natural W target with 800 proton beam at the LANSCE facility (LANL). GEANIE array comprising of 11 Compton-suppressed planar Ge detectors, 9 Compton-suppressed coaxial Ge detectors and 6 unsuppressed coaxial Ge detectors. Measured $E\gamma$, $I\gamma$, excitation functions, $\gamma\gamma$ coin.

Others: 1970Ba38, 1971Fe07, 1975Ah02, 1977Da06.

²⁰³Tl Levels

 σ is the neutron inelastic scattering cross section from 1981He14.

E(level) [†]	$J^{\pi \ddagger}$	Comments
0	$1/2^{+}$	J^{π} : From Adopted Levels.
279.14 6	$3/2^{+}$	σ =294 mb 141.
680.51 5	$5/2^+$	σ =280 mb 41.
1044.10 8	$3/2^{+}$	σ =62 mb 12.
1065.37 8	$(5/2)^+$	σ =90 mb 9.
1072.30 11	$(3/2^+)$	σ =71 mb <i>11</i> .
1073.91 7	$(7/2^+)$	
1113.78 11		σ =33 mb 9.
1184.24 8	$(7/2^+)$	σ =203 mb 20.
1215.55 7		σ =100 mb 8.
1217.39 11		
1232.32 12		σ =58 mb 6.
1305.77 18		
1320.12 11		$\sigma = 105 \text{ mb } 9.$
1334.8 3		σ =11 mb 3.
1406.3 7		
1447.98 10		σ =34 mb 3.
1449.40 12	(0/2-)	
1483.7 4	(9/2)	J^{*} : Based on excitation function data in 2020F005 and systematics of similar states in neighboring nuclei.
1 400 22 12		configuration: Proposed intruder $\pi(h_{9/2}^{\circ})$ state. The assignment is tentative.
1488.22 12		$\sigma = 20.2 \text{ mb } 24.$
1508.85 11		$\sigma = 10 \text{ mb } 3.$
1011.02 12		$\sigma = 15 \text{ mb } 5$
1057.77		$\sigma = 14 \text{ mb} 3$.
1683 66 10		$\sigma = -14 \text{ mb} 3.$
1715 5 3		<i>σ</i> −21 mb 3
1836 31 15		σ^{-35} mb 8
1839 76 20		$\sigma = 45 \text{ mb} l/2$
1888 5 4		$\sigma = 16.2 \text{ mb } 2l$
1901.5 3		$\sigma = 6.6 \text{ mb } 9.$
1988.94 1.5		$\sigma = 22 \text{ mb } 3.$
2076 002 [#] 13		
2231.6.4		$\sigma = 7.8 \text{ mb } 24$
$2251.0 \pm 2010119 \pm 10$		0 - 1.0 m0 21.
2310.11?" 19		r=55 mb 14
2341.9 3		0 = 3.3 III0 14.

[†] From a least-squares fit to $E\gamma$.

[±] From $\gamma(\theta)$ in 1977Da06 and the observed multiple decay branches, unless otherwise stated.

[#] Assigned by the evaluator on the basis of the observed multiple decay branches and energy sums.

 $^{203}_{81}{\rm Tl}_{122}\text{-}2$

			203	²⁰³ Tl(n,n'γ) 1981He14,2020Fo05 (continued)				<u>d)</u>
$\underline{\gamma(^{203}\text{Tl})}$								
E _i (level)	\mathbf{J}_i^{π}	${\rm E_{\gamma}}^{\dagger}$	I_{γ}^{\dagger}	E_f	J_f^π	Mult. [‡]	δ^{\ddagger}	Comments
279.14 680.51	3/2+ 5/2+	279.188 401.35 7 680.46 5	100 82 2 18 2	0 279.14 0	1/2 ⁺ 3/2 ⁺ 1/2 ⁺	M1+E2 M1(+E2) E2	+1.7 4 -0.03 15	
1044.10	3/2+	363.41 <i>15</i> 765.06 <i>9</i> 1044 17 20	30 <i>3</i> 46 <i>4</i> 24 <i>3</i>	680.51 279.14	$5/2^+$ $3/2^+$ $1/2^+$	M1(+E2)	+0.8 8	
1065.37	$(5/2)^+$	384.9 <i>3</i> 786.23 <i>5</i>	12 <i>3</i> 88 <i>3</i>	680.51 279.14	$5/2^+$ $3/2^+$	M1+E2	+2.7 10	
1072.30 1073.91 1113.78	$(3/2^+)$ $(7/2^+)$	793.16 9 794.73 5 834.55 15 1113.89 16	100 100 60 <i>8</i> 40 <i>4</i>	279.14 279.14 279.14 0	3/2 ⁺ 3/2 ⁺ 3/2 ⁺ 1/2 ⁺	M1(+E2) (E2)	-0.5 5	
1184.24 1215.55	(7/2+)	503.45 [#] 11 905.17 6 535.09 13 936.36 6 1215.85 17	12 2 88 2 29 3 62 4 9.3 20	680.51 279.14 680.51 279.14 0	5/2 ⁺ 3/2 ⁺ 5/2 ⁺ 3/2 ⁺ 1/2 ⁺	(E2)		
1217.39		143.16 <i>13</i> 537 11 [#] 14		1073.91	$(7/2^+)$ $5/2^+$			
1232.32		551.64 <i>16</i> 953.32 <i>15</i> 1232.8 <i>7</i>	20 <i>3</i> 71 <i>5</i> 9 <i>4</i>	680.51 279.14 0	$5/2^+$ $5/2^+$ $3/2^+$ $1/2^+$			
1305.77		232.01 ^{#@} 6 1026.6 4 1305.77 20		1073.91 279.14 0	$(7/2^+)$ $3/2^+$ $1/2^+$			
1320.12		276.1 <i>3</i> 639.58 <i>13</i> 1040.94 <i>20</i> 1321.3 <i>8</i>	34 <i>4</i> 23 <i>3</i> 42 <i>5</i> 1.9 <i>10</i>	1044.10 680.51 279.14 0	3/2 ⁺ 5/2 ⁺ 3/2 ⁺ 1/2 ⁺			
1334.8		654.3 <i>3</i> 1056.1 [@] 7	68 <i>13</i> 32 <i>13</i>	680.51 279.14	5/2 ⁺ 3/2 ⁺			
1406.3		1126.8 7 1408.2 <i>15</i>	≈8 ≈92	279.14 0	3/2 ⁺ 1/2 ⁺			I _{γ} : Line obscured by background transition, Branching from (γ , γ'). I _{γ} : Line obscured by background
1447.98		404.1 <i>3</i> 1168.84 <i>8</i> 1447.5 <i>5</i>	18 <i>4</i> 70 <i>5</i> 12 <i>4</i>	1044.10 279.14 0	3/2+ 3/2+ 1/2+			transition, Branching from (γ, γ') .
1449.40 1483.7 1488.22 1568.85	(9/2 ⁻)	232.01 [#] 6 409.8 4 303.96 9 336.6 3	100 100 39 8	1217.39 1073.91 1184.24 1232.32	$(7/2^+)$ $(7/2^+)$			E_{γ} : From 2020Fo05.
		503.45 [#] 11 888.4 2 1289.8 [@] 3	46 9 15 <i>10</i>	1065.37 680.51 279.14	(5/2) ⁺ 5/2 ⁺ 3/2 ⁺			
1611.02		497.24 <i>15</i> 537.11 [#] <i>14</i>	83 7	1113.78 1073.91	$(7/2^+)$			
1637.7		930.4 5 563.8 7	17 7 84 7	680.51 1073.91	$5/2^+$ (7/2 ⁺)			
1669.23		1637.8° 5 1389.2 5 1669.30 75	16 7 42 9 58 9	0 279.14 0	$\frac{1}{2}^{+}$ $\frac{3}{2}^{+}$ $\frac{1}{2}^{+}$			
1683.66		1404.55 9	100	279.14	$3/2^+$			

Continued on next page (footnotes at end of table)

	203 Tl(n,n' γ) 1981He14,2020Fo05 (continued)										
	γ (²⁰³ Tl) (continued)										
E _i (level)	\mathbf{J}_i^{π}	${\rm E_{\gamma}}^{\dagger}$	I_{γ}^{\dagger}	E_f	J_f^π	E _i (level)	\mathbf{J}_i^{π}	E_{γ}^{\dagger}	I_{γ}^{\dagger}	E_f	\mathbf{J}_f^{π}
1715.5		1035.5 7 1715.4 3	43 8 57 8	680.51 0	$5/2^+$ $1/2^+$	2076.00?		1002.2 <i>3</i> 1032.5 <i>4</i>	20 <i>4</i> 13 <i>4</i>	1073.91 1044.10	$(7/2^+)$ $3/2^+$
1836.31		386.89 10	89 5	1449.40	,			2075.9 4	12 3	0	$1/2^{+}$
1839.76		1156.1 [@] 6 1839.9 <i>5</i>	11 5 100	680.51 0	$5/2^+$ $1/2^+$	2231.6		1952.9 7 2231.4 5	71 <i>12</i> 29 <i>12</i>	279.14 0	$3/2^+$ $1/2^+$
1888.5		1609.4 4	100	279.14	3/2+	2310.11?		470.35 9	45 5	1839.76	,
1901.5 1988.94		1901.5 <i>3</i> 377.9 <i>3</i>	100 35 6	0 1611.02	1/2+			473.78 <i>13</i> 862.8	28 5 15 6	1836.31 1447.98	
		924.0 <i>5</i> 1988.88 <i>18</i>	18 6 47 6	1065.37 0	$(5/2)^+$ $1/2^+$			1244.5 [@] 4 2310.1 8	53 73	1065.37 0	$(5/2)^+$ $1/2^+$
2076.00?		392.42 15	27 5	1683.66		2341.9		2062.7 3	63 14	279.14	$3/2^{+}$
		587.1 <i>5</i> 858.1 <i>3</i>	10 <i>3</i> 18 8	1488.22 1217.39				2342.0 [@] 5	37 14	0	1/2+

[†] From 1981He14, unless otherwise stated. I γ is the % branching from each level. [‡] From $\gamma(\theta)$ in 1977Da06. [#] Multiply placed.

^(a) Placement of transition in the level scheme is uncertain. ^x γ ray not placed in level scheme.

²⁰³Tl(n,n'γ) 1981He14,2020Fo05

Legend

Level Scheme

Intensities: % photon branching from each level

 $--- \rightarrow \gamma$ Decay (Uncertain)

From ENSDF

 $\frac{203}{1}$ Tl(n,n' γ)

1981He14,2020Fo05

Legend

 \mathbf{v}