			Tuna		Authon	Hi	story	Literature Cutoff Data
		En11 I	Type	EC	- Konday	ND	Citation	
		Full I	Evaluation	г . С	. Kondev	NDS	5 177, 509, 2021	4-Jul-2021
$Q(\beta^{-}) = -3262 \ l$	4; S(n)=6	917 8; S(p)	=6095 7; 0	$Q(\alpha)=2$	2335 7	2021W	a16	
						²⁰³ Pb	Levels	
					Cross F	Reference	ce (XREF) Flags	
		А	²⁰³ Pb IT	decay	(6.21 s)	Е	202 Hg(α ,3n γ)	$I = {}^{205}Pb(p,t)$
		В	²⁰³ Pb IT	decay	(480 ms)	F	204 Hg(α ,5n γ)	$J = {}^{209}\text{Bi}(\pi^-, 6n\gamma)$
		С	203 Bi ε d	lecay		G	$^{197}_{204}$ Au(209 Bi,X γ)	
		D	²⁰⁷ Po α	decay		Н	204 Pb(d,t)	
E(level) [†]	$J^{\pi \ddagger}$	T _{1/2}	XRE	F				Comments
0	$5/2^{-}$	51.92 h <i>3</i>	ABCDEF	HIJ	%ε=100	41 6 6	0.10.5	
					$\mu = +0.68$	41 0; (2=+0.10 S	$aring 205 D_{2}$ (N=121) isotopou u
					$T_{1/2}$: We	eighted	average of 51.88 h	2 (1980Ho17), 51.92 h 4 (2014Un01)
					2002U	Jn02,19	82HoZJ), 51.99 h 3	(average of 51.94 h <i>I</i> , 52.01 h <i>4</i> and 52.02
					h 6 in	2001L	i17) and 52.02 h 5 ((1971Ch54). Others: 52.1 h 2 (1961Pe12),
					52.0 h	13(194)	IFa04), 52 h I (193 ad in 2010StZV u=	54Pr04) and $52.1 h 2 (1958Ba04)$.
					measu	rement	by 1983Th03 and t	he laser induced fluorescence technique.
					Q: From	1986A	n06, 2016St14, bas	ed on the measurement by 1983Th03 using
					the las	ser-indu	ced fluorescence teo	chnique.
					configura	ation: L	Dominant $v(f_{5/2}^{-1})$.	108(4-0()
126 5 3	$1/2^{-}$	75 ns 3	СF	нті	o <r−>(2) XREF I</r−>	US,208) H(120)	$=-0.3045 \text{ Im}^2 23$ (1980AN00).
120.0 0	1/2	/0 115 0	C 1		J^{π} : L(p,t	=2; 12	26.5 γ E2 to 5/2 ⁻ .	
					T _{1/2} : Fr 1960B	om 126 e19 (²⁰	γ (t) in 1961Be29 (²) ³ Bi ε decay).	²⁰³ Bi ε decay). Superseded T _{1/2} =55 ns 5 in
196.6.2	2/2-		6 F		configura	ation: I	Dominant $\nu(p_{1/2}^{-1})$.	
180.0 3	5/2		CE	HI	$I^{\pi} \cdot 601^{\circ}$	1(190). 3ν M1 1	to 1/2 ⁻ · 186 6v M1	$(+E2)$ to $5/2^{-1}$
					configura	ation: I	Dominant $v(p_{2/2}^{-1})$.	(122) (0 5/2 .
595.1 [#] 5	3/2-		СЕ	I	$J^{\pi}: 468.8$	8γ M1+	-E2 to $1/2^-$; 595.3 γ	E2+M1 to $1/2^{-}$. L(p,t)=2.
775 [#] 5	$(1/2)^{-}$			I	J^{π} : L(p,t)=2.		
820.26 [#] 22	$7/2^{-}$		ABC E	I	XREF: I	(819).		
925 11 10	12/0+	(21 - 9)			$J^{\pi}: 633.8$	3γ to $3/2$	$/2^{-}; 820.2\gamma \text{ E2+M1}$	to $5/2^{-}$. L(p,t)=2.
823.11 10	15/2	0.21 8 0	ABC EF	HIJ	XREF: 1	0 H(820)I	(834).	
					$J^{\pi}: 825.2$	$2\gamma M4$	to $5/2^-$.	
					$T_{1/2}$: We	eighted	average of 6.7 s 4 ((1955Fi30), 6.5 s 5 (1956St05), 6.09 s 10
					(1957)	As65),	7.1 s 5 (1958Fr53),	6.4 s 2 (1977 L 104).
866 A# 5	5/2-		CE	т 1	VDEE, I	ation: L	$V(1_{13/2}).$	
800.4 5	5/2		CE	IJ	J^{π} : 271.	$1_{\nu} E2+$	M1 to $3/2^{-}$: 740.1 γ	E2 to $1/2^-$: 866.5 γ E2(+M1) to 5/2 ⁻ .
					L(p,t):	=2.		······································
896.9 [#] 3	9/2-		CE	IJ	XREF: I	(895).		
0009 10				-	J ^π : 896.9	$\partial \gamma E2 t$	o $5/2^{-}$. L(p,t)=2.	
909710 93313	$(5/2)^{-}$		CF	1 T1	XREE I	(930)		
755.1 5	(5/2)			13	J^{π} : 746.4	45γ M1	+E2 to 3/2 ⁻ ; 933.4	γ M1 to 5/2 ⁻ .

Continued on next page (footnotes at end of table)

Adopted Levels, Gammas (continued)

²⁰³Pb Levels (continued)

E(level) [†]	J ^{π‡}	T _{1/2}	XRE	F	Comments
060 10					configuration: Admixture of $\nu(p_{1/2}^{-1}) \otimes 2^+$ and $\nu(p_{3/2}^{-1}) \otimes 2^+$.
1033.76 24	7/2-		C	HI	XREF: H(1030)I(1032). J ^{π} : 136.8 γ M1+E2 to 9/2 ⁻ ; 847.2 γ E2 to 3/2 ⁻ .
1084 7 1161.0 <i>4</i>	(7/2)-		CE	I I	L(p,t)=(2). XREF: I(1160). $M_{12} \ge 64.22$ M1. E2 to $0/2^{-1}$: $0.74.22$, to $2/2^{-1}$: L (p,t)=2.
1177 10	0/2-		C	I	J . 204.27 MITEZ to $9/2^{-}$, $9/4.57$ to $3/2^{-}$, $L(p,t)=2$.
1198.5 4	9/2		C	IJ	XREP: 1(1195). J^{π} : 378.0 γ M1 to 7/2 ⁻ ; 1198.6 γ E2 to 5/2 ⁻ .
1203.0 5	(7/2)-		С	IJ	XREF: $I(1216)$. J^{π} : 306.1 γ to 9/2 ⁻ ; 1203.1 γ M1(+E2) to 5/2 ⁻ .
1262? 7 1536.5 4	(7/2)-		С	I h	XREF: h(1560). J ^π : 375.1γ M1+E2 to (7/2) ⁻ ; 1350.3γ to 3/2 ⁻ ; direct feeding in ²⁰³ Bi ε
1547.6 <i>3</i> 1560 <i>20</i>	9/2+ 7/2 ⁻		С	h	decay $(J^{\pi}=9/2^{-})$. J^{π} : 513.5 γ E1 to 7/2 ⁻ , 722.4 γ E2 to 13/2 ⁺ . E(level), J^{π} : From ²⁰⁴ Pb(d,t).
1592.8 6	(7/2)-		С		configuration: Dominant $v(f_{7/2}^{-1})$. J ^{π} : 558.9 γ M1 to 7/2 ⁻ ; 1592.7 γ M1+E2 to 5/2 ⁻ ; direct feeding in ²⁰³ Bi
1641.5 [@] 4	9/2+		СE		J^{π} : 816.3 γ E2 to 13/2 ⁺ .
1663.62 [@] 14	17/2+		B EF	J	J^{π} : 838.5 γ E2 to 13/2 ⁺ .
1682.6 5	(7/2)-		C		J ^π : 483.8γ to 9/2 ⁻ ; 1496.2γ to 3/2 ⁻ ; direct feeding in ²⁰³ Bi ε decay $(J^{\pi}=9/2^{-})$.
1802.3 <i>4</i> 1894.9 8	$(7/2)^+$ $(9/2^+)$		C C		J^{π} : 869.2 γ E1 to 5/2 ⁻ ; absence of transitions to $J^{\pi}=3/2^{-}$ levels. J^{π} : 861.2 γ to 7/2 ⁻ ; 1070.1 γ (E2) to 13/2 ⁺ .
1921.99 ^{&} 17	21/2+	42 ns <i>3</i>	B EF	J	$\mu = -0.641 \ 21; \ Q = 0.85 \ 3$
					J [*] : 258.4 γ E2 to 1//2 ⁺ . T _{1/2} : From $\gamma\gamma(t)$ in ²⁰² Hg(α ,3n γ) (1977Sa18) using time spectrum produced by gating on the 258.2 γ (below the isomer) and 239.6 γ and 873.6 γ (above the isomer). Other: 56 ns <i>I</i> from 258.2 $\gamma(t)$ and 838.3 $\gamma(t)$ in ²⁰² Hg(α ,3n γ) (1986Ja21), but this value seems to be less accurate given the possible contribution from the J^{π} =(25/2 ⁻) isomer (T ₁)=122 ns 4)
					(1)2 122 hs f): μ : using measured g-factor=-0.061 2 in ²⁰² Hg(α ,3n γ) (1986Ja21,2014StZZ) with the in-beam time differential perturbed angular distribution technique. However, there is a possible contribution from the I_{π}^{π} -(25(2 ⁻) isomer (T ₁)=122 ns 4)
					Q: From 2016St14, using the time-dependent perturbed angular
1943 82 <mark>&</mark> 20	19/2+		ΒE		$I^{\pi} \cdot 21.8\gamma$ to $21/2^+ \cdot 280.2\gamma$ M1 to $17/2^+$
2034.1 5	$(7/2)^+$		c		J^{π} : 392.5 γ M1+E2 to 9/2 ⁺ ; 1000.3 γ E1 to 7/2 ⁻ .
2048.6 5	$(9/2^+)$		C		J^{π} : 1223.7 γ E2 to 13/2 ⁺ ; 1228.4 γ to 7/2 ⁻ .
2078.8 5	$(11/2)^{+}$ $(19/2)^{+}$		C R F		J [*] : 531.27 to 9/2 [*] ; 542.87 to (//2); 1253.87 M1 to $13/2^{+}$. I ^{π} : 173.97 I to I (M1) to 19/2 ⁺
2161.31 21	$(21/2)^+$		B EF	J	J^{π} : 239.4 γ J to J M1 to 21/2 ⁺ .
2250 20			_	Н	E(level): From 204 Pb(d,t).
2371.8 4	$(1/2)^{+}$ $(9/2)^{+}$		C		J [*] : 477.09 to (9/2) ⁺ ; 569.39 M1 to (7/2) ⁺ ; 1438.19 (E1) to 5/2 ⁻ . I ^{π} : 746.459 M1(+F2) to 9/2 ⁺ : 1184.49 to 7/2 ⁻ : 1562.79 to 13/2 ⁺
2472.2 5	$(9/2^+, 11/2^-)$		c		J^{π} : 924.5 γ to 9/2 ⁺ ; 1311.0 γ to 7/2 ⁻ ; 1646.8 γ to 13/2 ⁺ .
2568.8 5	9/2 ⁺		C		J^{π} : 1743.5 γ to 13/2 ⁺ ; 1748.5 γ E1 to 7/2 ⁻ .
2620.0 / 2667.7 <i>3</i>	$(7/2^{+}, 9/2^{+})$ $(7/2, 9/2)^{+}$		C		J^{-1} : 1421.1 γ to 9/2 ; 1800.1 γ (E1) to 1/2 . J^{π} : 633.8 γ E2+M1 to (7/2) ⁺ ; 1120.2 γ (M1) to 9/2 ⁺ ; 1506.7 γ E1 to

Continued on next page (footnotes at end of table)

Adopted Levels, Gammas (continued)

²⁰³Pb Levels (continued)

E(level) [†]	$\mathrm{J}^{\pi \ddagger}$	T _{1/2}	XREF	Comments				
				7/2 ⁻ ; direct feeding in ²⁰³ Bi ε decay ($J^{\pi}=9/2^{-}$).				
2713.3 3	9/2+		С	J ^{π} : 1679.6 γ E1 to 7/2 ⁻ ; 1888.0 γ E2 to 13/2 ⁺ ; direct feeding in ²⁰³ Bi ε decay (J ^{π} =9/2 ⁻).				
2748.5 11	$(11/2^{-})$		С	J ^{π} : 1928.2 γ (E2) to 7/2 ⁻ ; direct feeding in ²⁰³ Bi ε decay (J ^{π} =9/2 ⁻).				
2753.6 3	(9/2)+		С	J ^{π} : 381.7 γ M1(+E2) to (7/2) ⁺ ; 674.8 γ to (11/2) ⁺ ; 1112.0 γ M1(+E2) to 9/2 ⁺ ; 1719.7 γ E1 to 9/2 ⁻ ; direct feeding in ²⁰³ Bi ε decay				
2774.6 6	$(7/2.9/2^{-})$		СН	(J = 2/2). XREF: H(2770).				
2704.1.5	(0/2)+		C .	J ^π : 880.0γ to (9/2 ⁺); 1091.7γ to (7/2) ⁻ ; 1576.0γ to 9/2 ⁻ ; 1841.9γ to to 5/2 ⁻ ; direct feeding in ²⁰³ Bi ε decay ($J^{\pi}=9/2^{-}$).				
2794.1 5	$(9/2)^{+}$		C	J^{*} : 406.3 γ M1(+E2) to (9/2) ⁺ ; 1246.1 γ M1+E2 to 9/2 ⁺ ; direct feeding in ²⁰³ Bi ε decay ($J^{\pi}=9/2^{-}$).				
2795.77 19	23/2+		B EF J	J^{π} : 634.5 γ M1 to (21/2) ⁺ ; 873.8 γ M1+E2 to 21/2 ⁺ ; 678.1 γ to (19/2 ⁺).				
				configuration: Dominant $v(p_{1/2}^{-1}, f_{2/2}^{-1}, f_{1/2}^{-2}, i_{1/2/2}^{-2})$ with $v(f^{-1}, f^{-1}, i^{-2}) \otimes 2^+$ admixtures				
2821.1 5	(7/2,9/2)+		С	$J^{\pi}: 252.2\gamma \text{ E2+M1 to } (9/2)^+; 2000.7\gamma \text{ E1 to } 7/2^-; \text{ direct feeding in } ^{203}\text{Bi } \varepsilon \text{ decay } (J^{\pi}=9/2^-).$				
2870.5 5	(7/2,9/2)+		C	J^{π} : 157.3 γ to 9/2 ⁺ ; 498.5 γ M1+E2 to (7/2) ⁺ ; direct feeding in ²⁰³ Bi a decay ($U = 0/2^{-1}$)				
2923.3 11	$(21/2^{-})$		Е	J^{π} : 979.5 γ D to 19/2 ⁺ ; shell-model predictions.				
2923.3+x	$(25/2^{-})$	122 ns 4	E	$\mu = -0.74 \ 4$				
				Additional information 1.				
				E(level): Based on the observed delayed component for the 9/9.5 γ , but no direct decay to the $J^{\pi} = (21/2^{-})$ level is observed in 202 Hg(α 3n γ)				
				J^{π} : Tentative assignment based on shell-model predictions.				
				T _{1/2} : From 280 γ (t) and 979 γ (t) in ²⁰² Hg(α ,3n γ) (1988Ro08). μ : Using g-factor=-0.059 3 (1988Ro08,2014StZZ) deduced using the				
				configuration: $v(p_1^{-1}, j_1^{-2}, j_2)$.				
2949.12 24	29/2-	480 ms 7	B EFG J	%IT=100				
				J^{π} : 154.3 γ E3 to 23/2 ⁺ ; 1027.0 γ M4 to 21/2 ⁺ .				
				$1_{1/2}$: weighted average from $\gamma(t)$ for 838./ γ (4/5 ms 12),258.6 γ (487 ms 10), 874.0 γ (475 ms 19), 634.2 γ (466 ms 40) and 153.4 γ				
				(471 ms 71). This value is consistent with that deduced from $\gamma(t)$				
				for the weak 102/.5 γ (441 ms 49), 853.8 γ (535 ms 71) and 1/4.0 γ (458 ms 82), as well as for the doublet 239.6 γ (460 ms 110)				
				deduced using a two isomer fit. All data are from 1977Li04 in				
				20^{-4} Hg(α , 5n γ).				
2964 52 11	$(7/2, 9/2, 11/2^{-})$		C	I^{π} : 2144 2 γ to 7/2 ⁻ : direct feeding in ²⁰³ Bi ε decay ($I^{\pi}=9/2^{-}$)				
3006.6 6	$(9/2^+,11/2)$		c	J^{π} : 212.57 to (9/2) ⁺ ; 2181.67 to 13/2 ⁺ ; direct feeding in ²⁰³ Bi ε decay (I^{π}_{-} -0/2 ⁻)				
3016.7 5	(7/2,9/2) ⁻		С	J^{π} : 1983.1 γ M1+E2 to 7/2 ⁻ ; 2084.0 γ to 5/2 ⁻ ; direct feeding in ²⁰³ Bi ε decay (J^{π} =9/2 ⁻).				
3044.9 6	(7/2,9/2)+		С	J^{π} : 331.3y to 9/2 ⁺ ; 2011.4y E1 to 7/2 ⁻ ; direct feeding in ²⁰³ Bi ε				
3689.5 ^a 5	(31/2 ⁻)		EG	J^{π} : 740.5 γ M1 to 29/2 ⁻ .				
3910.3 ^a 5	(33/2-)		EG	J^{π} : 961.0 γ (E2) to 29/2 ⁻ .				
4054.7 5	$(31/2^{-})$ $(33/2^{+})$		EG	J^{π} : 1105.6y to 29/2 ⁻ . J^{π} : 402 6y E1 to (31/2 ⁻): 546.7y (E1) to (33/2 ⁻)				
JI.4 J	(33/2)		6.0	configuration: Configuration: $\gamma(1,3)$.				
5025.3 7	$(37/2^+)$	2.5 ns 3	EG	J^{π} : 568.1 γ E2 to (33/2 ⁺).				

Continued on next page (footnotes at end of table)

Adopted Levels, Gammas (continued)

²⁰³Pb Levels (continued)

E(level) [†]	J ^π ‡	XREF	Comments
			T _{1/2} : From 568 γ -1529 γ (Δ t) and centroid-shift method in ¹⁹⁷ Au(²⁰⁹ Bi,X γ) (2020Wa24). configuration: Probably admixture of ν (p _{1/2} ⁻¹ ,f _{5/2} ⁻¹ ,i _{3/2}) and ν (p _{1/2} ⁻¹ ,p _{3/2} ⁻¹ ,i _{3/2}).
5296.3 13		Е	
5571.3 13		Е	
6081.0 9	(39/2)	G	
6554.0 9	(41/2)	G	
6625.2 10		G	
6700.4 10		G	

 † From a least-square fit to Ey, unless otherwise stated.

^{\ddagger} From the deduced γ -ray transition multipolarities, multiple decay branches, and L(p,t) and L(d,t).

[#] Dominant configuration: $\nu(f_{5/2}^{-1}) \otimes 2^+$.

^(a) Dominant configuration: $v(i_{5/2}^{-1})\otimes 2^+$. ^(a) Dominant configuration: $v(i_{13/2}^{-1})\otimes 4^+$. ^(a) Dominant configuration: $v(f_{5/2}^{-1},i_{13/2}^{-2})\otimes 2^+$.

						Adopted L	evels, Gan	nmas (continued)	
							γ (²⁰³ P	Pb)	
E _i (level)	\mathbf{J}_i^{π}	${\rm E_{\gamma}}^{\dagger}$	I_{γ}^{\dagger}	\mathbf{E}_{f}	\mathbf{J}_f^{π}	Mult. ^{&}	δ^{a}	$\alpha^{\boldsymbol{b}}$	Comments
126.5	1/2-	126.5 10	100	0	5/2-	E2		2.38 9	B(E2)(W.u.)=0.97 6 α (K)=0.426 8; α (L)=1.46 6; α (M)=0.385 16 α (N)=0.097 4; α (O)=0.0174 7; α (P)=0.00073 3 Mult.: K/L=0.17 2, L1/L2<0.16, L2/L3=1.41 11 (1960St21); (L1+L2)/L3=1.5 6 (1958No30)
186.6	3/2-	60.13 5	10.5 19	126.5	1/2-	M1		7.64	$\alpha(L) = 5.84 \ 9; \ \alpha(M) = 1.371 \ 20$ $\alpha(N) = 0.349 \ 5; \ \alpha(O) = 0.0695 \ 10; \ \alpha(P) = 0.00742 \ 11$ Multiply $L = 1.47 \ 2.02 \ 10 \ 10.0095 \ 10; \ \alpha(P) = 0.00742 \ 11$
		186.6 <i>5</i>	100 5	0	5/2-	M1(+E2)	<0.26	1.56 5	
595.1	3/2-	468.8 10	48 10	126.5	1/2-	M1+E2	0.6 4	0.103 23	$\alpha(K)=0.083\ 20;\ \alpha(L)=0.0151\ 23;\ \alpha(M)=0.0036\ 6$ $\alpha(N)=0.00091\ 13;\ \alpha(O)=0.00018\ 3;\ \alpha(P)=1.8\times10^{-5}\ 4$ Mult: $\alpha(K)=0.084\ 16\ (1976Ri10)$
		595.3 10	100 19	0	5/2-	E2+M1	2.9 3	0.0247 12	$\alpha(K) = 0.0189 \ 10; \ \alpha(L) = 0.00445 \ 14; \ \alpha(M) = 0.00108 \ 4$ $\alpha(N) = 0.000274 \ 9; \ \alpha(O) = 5.28 \times 10^{-5} \ 17; \ \alpha(P) = 4.69 \times 10^{-6} \ 20$ Mult.: $\alpha(K) \exp = 0.019 \ 3 \ (1976 Ri10).$ Other: $A_2 = -0.11 \ 5$, $A_4 = 0.27 \ 8 \ in \ ^{202} Hg(\alpha \ 3n\chi).$
820.26	7/2-	633.8 ^c 3 820.2 5	≤4.6 100 5	186.6 0	3/2 ⁻ 5/2 ⁻	E2+M1	5.4 3	0.01053 17	$\alpha(K) = 0.0128 4; \alpha(L) = 0.00329 10$ $\alpha(K) = 0.00826 14; \alpha(L) = 0.00173 3; \alpha(M) = 0.000416 7$ $\alpha(N) = 0.0001053 16; \alpha(O) = 2.05 \times 10^{-5} 3; \alpha(P) = 1.91 \times 10^{-6} 3$ Mult.: $\alpha(K) \exp = 0.0083 9 (1976 Ri10), K/L = 4.5 15$ (1958No30) and K/(L1+L2) = 4.9 10 (1960 St21). Other: $A_2 = -0.05 7, A_4 = -0.54 9 \text{ in } {}^{202} \text{Hg}(\alpha, 3n\gamma).$
825.11	13/2+	(4.9 3)	1.32×10 ⁻⁹ 14	820.26	7/2-	[E3]		7.0×10 ⁹ 4	B(E3)(W.u.)=0.011 +7-4 E_{γ} : From level energy difference. I_{γ} : From ²⁰³ Pb IT decay (480 ms).
		825.1 [‡] <i>I</i>	100 [‡] 5	0	5/2-	M4		0.299	$\alpha(K)=0.216 \ 3; \ \alpha(L)=0.0628 \ 9; \ \alpha(M)=0.01586 \ 23$ $\alpha(N)=0.00407 \ 6; \ \alpha(O)=0.000795 \ 12; \ \alpha(P)=7.35\times10^{-5} \ 11$ B(M4)(W.u.)=3.35 5 Mult.: Other: $\alpha(K)$ exp and K/L $\gamma(\theta)$ in ²⁰⁴ Hg(α ,5n γ); $\alpha(K)$ exp in ²⁰³ Ph IT decay (6.21 s)
866.4	5/2-	271.1 10	9.6 18	595.1	3/2-	E2+M1	1.7 3	0.26 4	$\alpha(K) = 0.18 \ 3; \ \alpha(L) = 0.0618 \ 22; \ \alpha(M) = 0.0155 \ 5$ $\alpha(N) = 0.00392 \ 12; \ \alpha(O) = 0.00074 \ 3; \ \alpha(P) = 5.5 \times 10^{-5} \ 5$ Mult: $\alpha(K) = 0.18 \ 5 \ (1976Pi10)$
		740.1 10	26 6	126.5	1/2-	E2		0.01222	$\alpha(K) = 0.00940 \ 14; \ \alpha(L) = 0.00214 \ 3; \ \alpha(M) = 0.000519 \ 8 \\ \alpha(N) = 0.0001314 \ 19; \ \alpha(O) = 2.54 \times 10^{-5} \ 4; \ \alpha(P) = 2.28 \times 10^{-6} \ 4 \\ Mult: \ \alpha(K) = n = 0.014 \ 7.(1976P;10) $
		866.5 10	100 20	0	5/2-	E2(+M1)		0.0257	$\alpha(K) = 0.0211 \ 3; \ \alpha(L) = 0.00350 \ 5; \ \alpha(M) = 0.000817 \ 12$ $\alpha(N) = 0.000207 \ 3; \ \alpha(O) = 4.14 \times 10^{-5} \ 6; \ \alpha(P) = 4.45 \times 10^{-6} \ 7$ Mult.: $\alpha(K) \exp = 0.0070 \ 16 \ (1976 \text{Ril0}).$

S

 $^{203}_{82} \mathrm{Pb}_{121}\text{-}5$

 $^{203}_{82} Pb_{121}\text{-}5$

Adopted	Levels,	Gammas	(continued)
---------	---------	--------	-------------

γ (²⁰³Pb) (continued)

E _i (level)	\mathbf{J}_i^{π}	${\rm E_{\gamma}}^{\dagger}$	I_{γ}^{\dagger}	E_f	\mathbf{J}_f^{π}	Mult. ^{&}	δ^{a}	α^{b}	Comments
896.9	9/2-	896.9 5	100	0	5/2-	E2		0.00825	$\alpha(K)=0.00651 \ 10; \ \alpha(L)=0.001331 \ 19; \ \alpha(M)=0.000319 \ 5$ $\alpha(N)=8.07\times10^{-5} \ 12; \ \alpha(O)=1.571\times10^{-5} \ 22; \ \alpha(P)=1.481\times10^{-6} \ 21$ Mult: $\alpha(K)=0.0075 \ 9 \ (1976R \ 10)$
933.1	(5/2)-	746.45 2	80 16	186.6	3/2-	M1+E2	0.5 4	0.033 7	$\alpha(K)=0.027 \ 6; \ \alpha(L)=0.0016 \ 8; \ \alpha(M)=0.00107 \ 18$ $\alpha(N)=0.00027 \ 5; \ \alpha(O)=5.4 \times 10^{-5} \ 9; \ \alpha(P)=5.7 \times 10^{-6} \ 11$ Mult: $\alpha(K)=p=0.027 \ 5; \ (1976 R i 10)$
		933.4 10	100 20	0	5/2-	M1		0.0212	$\alpha(K)=0.01746\ 25;\ \alpha(L)=0.00289\ 5;\ \alpha(M)=0.000673\ 10$ $\alpha(N)=0.0001709\ 25;\ \alpha(O)=3.41\times10^{-5}\ 5;\ \alpha(P)=3.67\times10^{-6}\ 6$ Mult: $\alpha(K)=p=0.022\ 3\ (1976Ri10)$
1033.76	$7/2^{-}$	100.5 10	0.64 13	933.1	$(5/2)^{-}$				Mult. u(R)exp=0.022.5 (1)/0R10).
	• / =	136.8 10	2.8 6	896.9	9/2-	M1+E2	1.4 3	2.45 25	$\alpha(K)=1.3$ 4; $\alpha(L)=0.86$ 7; $\alpha(M)=0.221$ 18
									α (N)=0.056 5; α (O)=0.0102 8; α (P)=0.00058 3
				1011	a /a_			0.000 .0	Mult.: α (K)exp=1.33 23 (1976Ri10).
		847.2.5	96.5	186.6	3/2	E2		0.00925	$\alpha(\mathbf{K})=0.00/25$ 11; $\alpha(\mathbf{L})=0.00152/22$; $\alpha(\mathbf{M})=0.00036/6$
									$\alpha(N) = 9.29 \times 10^{\circ} 13; \ \alpha(O) = 1.80 \times 10^{\circ} 3; \ \alpha(P) = 1.67 \times 10^{\circ} 24$ Mult: $\alpha(K) = 0.0070, 16, (1076 \text{ Pi10})$
		1033 7 5	100 5	0	5/2-	M1+E2	0 58 25	0.0138 16	$\alpha(K)=0.0113.14$; $\alpha(L)=0.00190.20$; $\alpha(M)=0.00044.5$
		1000.70	100 5	0	5/2	1011 1 122	0.50 25	0.0150 10	$\alpha(\mathbf{N}) = 0.000113 \ 12; \ \alpha(\mathbf{O}) = 2.24 \times 10^{-5} \ 24; \ \alpha(\mathbf{P}) = 2.4 \times 10^{-6} \ 3$
									Mult.: <i>α</i> (K)exp=0.0114 <i>13</i> (1976Ri10); K/L=5.0 <i>10</i>
									(1958No30); K/L>4.8 (1960St21).
1161.0	$(7/2)^{-}$	264.2 5	100 5	896.9	9/2-	M1+E2	0.5 3	0.52 9	$\alpha(K)=0.41 \ 8; \ \alpha(L)=0.080 \ 5; \ \alpha(M)=0.0190 \ 8$
									$\alpha(N)=0.00483\ 21;\ \alpha(O)=0.00095\ 6;\ \alpha(P)=9.4\times10^{-3}\ 13$
									Mult.: $\alpha(K)\exp=0.44 \ 3 \ (1970K110); \ K/L=3.0 \ 13 \ (1958N030);$ $K/(1+L2)=5.2 \ 5 \ (1960St21) \ Other: \ A_2=-0.39 \ 5 \ A_3=0.11 \ 8$
									\ln^{202} Hg(α .3ny).
		974.3 ^c 10	1.6 3	186.6	3/2-			0.00709	$\alpha = 0.00709; \ \alpha(K) = 0.00561 \ 17; \ \alpha(L) = 0.00111 \ 4$
1198.5	9/2-	378.0 10	14 <i>3</i>	820.26	7/2-	M1		0.228	$\alpha(K)=0.186 \ 3; \ \alpha(L)=0.0317 \ 5; \ \alpha(M)=0.00741 \ 12$
									α (N)=0.00188 3; α (O)=0.000375 6; α (P)=4.02×10 ⁻⁵ 7
		1100 6 10	100.01	0	5 10-	50		0.00451	Mult.: $\alpha(K) \exp = 0.20 4$ (1976Ri10).
		1198.6 10	100 21	0	5/2-	E2		0.00471	$\alpha(\mathbf{K})=0.00380\ 6;\ \alpha(\mathbf{L})=0.000691\ 10;\ \alpha(\mathbf{M})=0.0001631\ 23$
									$\alpha(N)=4.13\times10^{-6}$ 0; $\alpha(O)=8.13\times10^{-6}$ 12; $\alpha(P)=8.08\times10^{-6}$ 12; $\alpha(DE)=2.73\times10^{-6}$ 10
									$\alpha(\text{IFF}) = 5.75 \times 10^{-10}$ Mult $\cdot \alpha(\text{K}) = 0.004 \ l \ (1976\text{Ri}10)$
1203.0	$(7/2)^{-}$	306.1 10	1.9 4	896.9	9/2-				
		1203.1 10	100 19	0	5/2-	M1(+E2)	0.5 5	0.0098 20	$\alpha(K)=0.0081$ 17; $\alpha(L)=0.00133$ 25; $\alpha(M)=0.00031$ 6
									$\alpha(N)=7.9\times10^{-5}$ 15; $\alpha(O)=1.6\times10^{-5}$ 3; $\alpha(P)=1.7\times10^{-6}$ 4;
									$\alpha(\text{IPF}) = 6.7 \times 10^{-6} \ 10$
15265	$(7/2)^{-}$	275 1 10	470	1161.0	$(7/2)^{-}$	M1 . E2	172	0 105 14	Mult.: $\alpha(K) \exp = 0.0080 \ 16 \ (1976 Ri10).$
1330.5	(7/2)	3/3.1 10	4.79	1101.0	(7/2)	M1+E2	1./ 3	0.105 14	$\alpha(\mathbf{K}) = 0.078 \ I3; \ \alpha(\mathbf{L}) = 0.0208 \ I3; \ \alpha(\mathbf{M}) = 0.00013 \ 3$
									$\alpha(r) = 0.00125$ o, $\alpha(0) = 0.000247$ 10, $\alpha(r) = 2.07 \times 10^{-5} 25$ Mult.: $\alpha(K) = 0.078$ 16 (1976Ri10)
		1350.3 10	1.5 3	186.6	3/2-				

Adopted	Levels,	Gammas	(continued)
---------	---------	--------	-------------

γ (²⁰³Pb) (continued)

E _i (level)	J_i^π	${\rm E_{\gamma}}^{\dagger}$	I_{γ}^{\dagger}	E_f	\mathbf{J}_f^{π}	Mult. ^{&}	δ^{a}	$\alpha^{\boldsymbol{b}}$	Comments
1536.5	(7/2)-	1536.5 5	100 5	0	5/2-	M1(+E2)	0.7 7	0.0051 11	$\begin{aligned} \alpha(\text{K}) &= 0.0041 \ 9; \ \alpha(\text{L}) = 0.00067 \ 13; \ \alpha(\text{M}) = 0.00016 \ 3 \\ \alpha(\text{N}) &= 4.0 \times 10^{-5} \ 8; \ \alpha(\text{O}) = 7.9 \times 10^{-6} \ 16; \ \alpha(\text{P}) = 8.5 \times 10^{-7} \ 18; \\ \alpha(\text{IPF}) &= 0.000111 \ 18 \\ \text{Mult} : \ \alpha(\text{K}) &= xp = 0.0041 \ 8 \ (1976\text{Ri}10); \ \text{K/I} = 6.0 \ 15 \ (1958\text{No}30) \end{aligned}$
1547.6	9/2+	349.1 <i>10</i> 513.5 <i>10</i>	2.7 6 <21	1198.5 1033.76	9/2 ⁻ 7/2 ⁻	E1		0.00905	
		651.5 <i>10</i> 722.4 <i>5</i>	0.93 <i>19</i> 100 <i>5</i>	896.9 825.11	9/2 ⁻ 13/2 ⁺	E2		0.01285	α (K)=0.00985 <i>14</i> ; α (L)=0.00228 <i>4</i> ; α (M)=0.000553 <i>8</i> α (N)=0.0001401 <i>20</i> ; α (O)=2.70×10 ⁻⁵ <i>4</i> ; α (P)=2.41×10 ⁻⁶ <i>4</i>
1592.8	(7/2)-	558.9 10	15 3	1033.76	7/2-	M1		0.0805	Mult.: K/L=3.3 10 (1958No30). α (K)=0.0660 10; α (L)=0.01108 17; α (M)=0.00259 4 α (N)=0.000658 10; α (O)=0.0001312 20; α (P)=1.407×10 ⁻⁵ 21 Mult : α (K)exp=0.083 21 (1976Ri10).
		772.7 10 1592.7 10	19 <i>4</i> 100 <i>19</i>	820.26 0	7/2 ⁻ 5/2 ⁻	M1+E2	1.3 8	0.0039 12	$\begin{aligned} &\alpha(\mathbf{K}) = 0.0031 \ 10; \ \alpha(\mathbf{L}) = 0.00051 \ 15; \ \alpha(\mathbf{M}) = 0.00012 \ 4 \\ &\alpha(\mathbf{N}) = 3.0 \times 10^{-5} \ 9; \ \alpha(\mathbf{O}) = 6.0 \times 10^{-6} \ 18; \ \alpha(\mathbf{P}) = 6.4 \times 10^{-7} \ 20; \\ &\alpha(\mathbf{IPF}) = 0.00012 \ 3 \end{aligned}$
1641.5	9/2+	816.3 5	100	825.11	13/2+	E2		0.00998	Mult.: $\alpha(K)\exp=0.0031 \ 8 \ (1976Ri10).$ $\alpha(K)=0.00778 \ 11; \ \alpha(L)=0.001672 \ 24; \ \alpha(M)=0.000402 \ 6$ $\alpha(N)=0.0001020 \ 15; \ \alpha(O)=1.98\times10^{-5} \ 3; \ \alpha(P)=1.82\times10^{-6} \ 3$ Mult.: $\alpha(K)\exp=0.0090 \ 14 \ (1976Ri10).$
1663.62	17/2+	838.5 [‡] 1	100 [‡]	825.11	13/2+	E2		0.00945	$\alpha(K)=0.00739 \ 11; \ \alpha(L)=0.001566 \ 22; \ \alpha(M)=0.000376 \ 6 \ \alpha(N)=9.53\times10^{-5} \ 14; \ \alpha(O)=1.85\times10^{-5} \ 3; \ \alpha(P)=1.716\times10^{-6} \ 24 \ Mult.: \ A_{2}=0.11 \ 6, \ A_{4}=0.03 \ 8 \ in \ ^{202}Hg(\alpha,3n\gamma); \ \alpha(K)exp=0.0082 \ 14 \ (1979Mc02) \ and \ \alpha(K)exp=0.0067 \ 9 \ (1977Li04) \ in \ ^{204}Hg(\alpha,5n\gamma).$
1682.6	$(7/2)^{-}$ $(7/2)^{+}$	483.8 <i>10</i> 1087.8 <i>10</i> 1496.2 <i>10</i> 120.0 <i>10</i>	50 <i>10</i> 72 <i>17</i> 100 <i>22</i> 6.1 <i>13</i>	1198.5 595.1 186.6 1682.6	$9/2^{-}$ $3/2^{-}$ $3/2^{-}$ $(7/2)^{-}$				
	(1-)	768.8 <i>10</i> 869.2 <i>10</i>	45 <i>10</i> 55 <i>13</i>	1033.76 933.1	$7/2^{-}$ (5/2) ⁻	E1		0.00323	$\alpha(K)=0.00269 \ 4; \ \alpha(L)=0.000414 \ 6; \ \alpha(M)=9.56\times10^{-5} \ 14 \ \alpha(N)=2.42\times10^{-5} \ 4; \ \alpha(O)=4.79\times10^{-6} \ 7; \ \alpha(P)=4.90\times10^{-7} \ 7 \ M_{\odot}$
		936.0 10	81 <i>16</i>	866.4	5/2-	E1		0.00282	with: α (K)exp=0.006 4 (1976K110). α (K)=0.00235 4; α (L)=0.000360 5; α (M)=8.31×10 ⁻⁵ 12 α (N)=2.10×10 ⁻⁵ 3; α (O)=4.16×10 ⁻⁶ 6; α (P)=4.28×10 ⁻⁷ 6 Mult.: α (K)exp=0.0045 21 (1976Ri10).
1894.9	(9/2+)	1802.3 <i>10</i> 861.2 <i>10</i> 1070.1 ^c <i>10</i>	100 <i>19</i> 19 <i>4</i> 100 <i>21</i>	0 1033.76 825.11	5/2 ⁻ 7/2 ⁻ 13/2 ⁺	(E2)		0.00584	α(K)=0.00468 7; α(L)=0.000886 13; α(M)=0.000210 3

 \neg

						Adopted I	Levels, G	ammas (contin	nued)
						<u> </u>	(²⁰³ Pb) (continued)	
E _i (level)	\mathbf{J}_i^{π}	E_{γ}^{\dagger}	I_{γ}^{\dagger}	E_f	\mathbf{J}_f^{π}	Mult. ^{&}	δ ^a	$\alpha^{\boldsymbol{b}}$	Comments
									α (N)=5.33×10 ⁻⁵ 8; α (O)=1.043×10 ⁻⁵ 15; α (P)=1.019×10 ⁻⁶ 15 Mult.: α (K)exp=0.0053 17 (1976Ri10), but contaminated by 1068.3 γ .
1921.99	21/2+	258.4 [‡] 1	100 [‡]	1663.62	17/2+	E2		0.183	B(E2)(W.u.)=0.140 +11-10 α (K)=0.0924 13; α (L)=0.0676 10; α (M)=0.01749 25 α (N)=0.00442 7; α (O)=0.000807 12; α (P)=4.58×10 ⁻⁵ 7 Mult.: K/L=1.2 I and α (K)exp=0.074 10 (1979Mc02); α (L)exp=0.0047 24 and α (exp)=0.19 9 (1977Li04) in 204 Hg(α .5ny).
1943.82	19/2+	(21.8 3)	1.0 8	1921.99	21/2+				E_{γ} : From level energy difference. I_{γ} : From ²⁰³ Pb IT decay (480 ms).
		280.2 [‡] 2	100 [‡]	1663.62	17/2+	M1		0.514	$\alpha(K)=0.420\ 6;\ \alpha(L)=0.0719\ 11;\ \alpha(M)=0.01683\ 24$ $\alpha(N)=0.00428\ 6;\ \alpha(O)=0.000853\ 12;\ \alpha(P)=9.12\times10^{-5}\ 13$ Mult: $\Delta_{2}=-0.29\ 5\ \Delta_{4}=-0.17\ 8\ in\ 2^{02}Ha(\alpha\ 3nx)$
2034.1	(7/2)+	392.5 10	34 7	1641.5	9/2+	M1+E2	0.7 3	0.16 3	$\begin{array}{l} \alpha(\mathbf{K}) = 0.123 \ ; \ \alpha(\mathbf{L}) = 0.024 \ ; \ \alpha(\mathbf{M}) = 0.0057 \ 6 \\ \alpha(\mathbf{N}) = 0.00144 \ 16; \ \alpha(\mathbf{O}) = 0.00028 \ 4; \ \alpha(\mathbf{P}) = 2.8 \times 10^{-5} \ 5 \\ \end{array}$
		486.6 10	11.8 24	1547.6	$9/2^{+}$				Mult. $u(\mathbf{K})\exp(-0.122/25)$ (1970K110).
		1000.3 10	100 21	1033.76	7/2-	E1		0.00250	$\alpha(K)=0.00209 \ 3; \ \alpha(L)=0.000318 \ 5; \ \alpha(M)=7.34\times10^{-5} \ 11 \ \alpha(N)=1.86\times10^{-5} \ 3; \ \alpha(O)=3.68\times10^{-6} \ 6; \ \alpha(P)=3.80\times10^{-7} \ 6 \ Mult: \ \alpha(K)=0.0030 \ 16 \ (1976Ri10).$
2048.6	(9/2+)	1166.9 ^c 10 501.4 10 1151.5 10	16 3 25 5 19 4	866.4 1547.6 896.9	5/2 ⁻ 9/2 ⁺ 9/2 ⁻			0.00452	
		1223.7 10	100 20	825.11	13/2*	E2		0.00453	$\alpha(K)=0.00366\ 6;\ \alpha(L)=0.000661\ 10;\ \alpha(M)=0.0001559\ 22$ $\alpha(N)=3.95\times10^{-5}\ 6;\ \alpha(O)=7.77\times10^{-6}\ 11;\ \alpha(P)=7.75\times10^{-7}\ 11;$ $\alpha(IPF)=6.03\times10^{-6}\ 14$ Mult.: $\alpha(K)\exp=0.0028\ 12\ (1976Ri10).$
2078.8	$(11/2)^+$	1228.4 ^c 10 531.2 10 542.8 ^c 10	30 6 7.4 <i>14</i> 18.1 <i>19</i>	820.26 1547.6 1536.5	7/2 ⁻ 9/2 ⁺ (7/2) ⁻				
		1253.8 10	100 19	825.11	13/2+	Ml		0.00999 15	$\alpha(K)=0.00822 \ 12; \ \alpha(L)=0.001346 \ 19; \ \alpha(M)=0.000314 \ 5 \\ \alpha(N)=7.96\times10^{-5} \ 12; \ \alpha(O)=1.590\times10^{-5} \ 23; \ \alpha(P)=1.713\times10^{-6} \\ 25; \ \alpha(IPF)=1.67\times10^{-5} \ 4 \\ Mult : \ \alpha(K)=0.0067 \ 32 \ (1076P;10) $
2117.62	(19/2)+	173.9 [‡] 3	100 [‡] 15	1943.82	19/2+	(M1)		1.94	$\alpha(K)=1.582 24; \ \alpha(L)=0.273 4; \ \alpha(M)=0.0639 10$ $\alpha(N)=0.01625 25; \ \alpha(O)=0.00324 5; \ \alpha(P)=0.000346 6$ Mult : $A_2=0.16 6$ $A_4=0.14 8 in \frac{202}{4} Hg(\alpha 3n\alpha)$: I to I transition
		453.8 [‡] 3	77 [‡] 15	1663.62	$17/2^{+}$				$\prod_{i=1}^{n} \prod_{j=1}^{n} \prod_{i=1}^{n} \prod_{j=1}^{n} \prod_{j=1}^{n} \prod_{j=1}^{n} \prod_{i=1}^{n} \prod_{j=1}^{n} \prod_{j$
2161.31	$(21/2)^+$	217.4 [‡] 3	7.0 [‡] 16	1943.82	19/2+				
		239.4 [‡] 2	100 [‡] 5	1921.99	$21/2^+$	M1		0.794	$\alpha(K)=0.648$ 10; $\alpha(L)=0.1112$ 16; $\alpha(M)=0.0260$ 4

 ∞

From ENSDF

 $^{203}_{82}\text{Pb}_{121}\text{-}8$

 $^{203}_{82} \mathrm{Pb}_{121}\text{-}8$

						Ado	pted Levels,	Gamma	s (continued)	
							γ (²⁰³ Pb)) (continu	ued)	
	E _i (level)	${ m J}^{\pi}_i$	E_{γ}^{\dagger}	I_{γ}^{\dagger}	\mathbf{E}_{f}	\mathbf{J}_f^π	Mult. ^{&}	δ^{a}	$\alpha^{\boldsymbol{b}}$	Comments
	2271.8	(7/2)+	227.0.10	14.2	2024 1	(7/2)+				$\begin{aligned} &\alpha(N) = 0.00662 \ 10; \ \alpha(O) = 0.001319 \ 19; \\ &\alpha(P) = 0.0001410 \ 20 \\ &\text{Mult.: } A_2 = 0.20 \ 6, \ A_4 = 0.01 \ 8; \ \alpha(\exp) = 0.66 \ 18 \\ &(1977\text{Sa18}); \ \text{in}^{\ 202}\text{Hg}(\alpha, 3n\gamma); \ \text{J to J transition.} \end{aligned}$
	2371.0	(1/2)	477.0 <i>10</i> 569.3 <i>10</i>	7.1 <i>12</i> 100 <i>20</i>	2034.1 1894.9 1802.3	(7/2) $(9/2^+)$ $(7/2)^+$	M1		0.0767	α (K)=0.0629 <i>10</i> ; α (L)=0.01055 <i>16</i> ; α (M)=0.00247 <i>4</i> α (N)=0.000626 <i>10</i> ; α (O)=0.0001249 <i>19</i> ; α (P)=1.340×10 ⁻⁵ <i>20</i> Mult.: α (K)exp=0.068 7 (1976Ri10).
			1337.3 <i>10</i> 1438.1 <i>10</i>	31 6 54 10	1033.76 933.1	7/2 ⁻ (5/2) ⁻	(E1)		1.46×10 ⁻³	$\alpha(K)=0.001109 \ 16; \ \alpha(L)=0.0001659 \ 24; \\ \alpha(M)=3.82\times10^{-5} \ 6 \\ \alpha(N)=9.66\times10^{-6} \ 14; \ \alpha(O)=1.92\times10^{-6} \ 3; \\ \alpha(P)=2.02\times10^{-7} \ 3; \ \alpha(IPF)=0.0001298 \ 20 \\ Mult.: \ \alpha(K)exp=0.00036 \ 20 \ (1976Ri10). \ E2 \\ multipolarity \ cannot be unambiguously excluded$
>	2387.9	(9/2)+	2372.3 <i>10</i> 339.7 <i>10</i> 746.45 <i>2</i>	3.4 7 14 <i>3</i> 100	0 2048.6 1641.5	5/2 ⁻ (9/2 ⁺) 9/2 ⁺	M1(+E2)	0.5 4	0.033 7	$\alpha(K)=0.027\ 6;\ \alpha(L)=0.0046\ 8;\ \alpha(M)=0.00107\ 18$ $\alpha(N)=0.00027\ 5;\ \alpha(O)=5.4\times10^{-5}\ 9;\ \alpha(P)=5.7\times10^{-6}\ 11$
			1184.4 ^c 10	44 8	1203.0	(7/2)-			0.00186	Mult.: $\alpha(K)\exp=0.027$ 5 (19/6R110). $\alpha=0.00186; \alpha(K)=0.00155$ 5; $\alpha(L)=0.00023$ 1 $\alpha(K)\exp=0.007$ 3 (1976R110). M1 and E2 multipolarities cannot be unambiguously excluded
	2472.2	(9/2+,11/2-)	1562.7 <i>10</i> 924.5 <i>10</i> 1274.2 <i>10</i> 1311.0 <i>10</i> 1646 8 <i>10</i>	12.1 23 100 21 47 9 62 12 52 10	825.11 1547.6 1198.5 1161.0 825.11	13/2 ⁺ 9/2 ⁺ 9/2 ⁻ (7/2) ⁻ 13/2 ⁺			0.00236	α =0.00236; α (K)=0.00236 7
	2568.8	9/2+	490.2 <i>10</i> 1365.5 <i>10</i> 1370.1 <i>10</i> 1407.9 <i>10</i> 1743 5 <i>10</i>	5.8 <i>11</i> 6.6 <i>13</i> 19 <i>4</i> 50 <i>9</i> 13 <i>3</i>	2078.8 1203.0 1198.5 1161.0 825.11	$(11/2)^+$ $(7/2)^-$ $9/2^-$ $(7/2)^-$ $13/2^+$				
			1748.5 10	100 20	820.26	7/2-	E1		1.30×10 ⁻³	$\alpha(K)=0.000801 \ 12; \ \alpha(L)=0.0001188 \ 17; \ \alpha(M)=2.73\times10^{-5} \ 4 \ \alpha(N)=6.91\times10^{-6} \ 10; \ \alpha(O)=1.376\times10^{-6} \ 20; \ \alpha(P)=1.455\times10^{-7} \ 21; \ \alpha(IPF)=0.000348 \ 5 \ Mult.: \ \alpha(K)exp=0.00034 \ 17 \ (1976Ri10).$
	2620.0	(7/2 ⁺ ,9/2 ⁺)	1417.1 <i>10</i> 1421.1 <i>10</i> 1800.1 <i>10</i>	21 <i>4</i> 27 <i>5</i> 100 <i>19</i>	1203.0 1198.5 820.26	(7/2) ⁻ 9/2 ⁻ 7/2 ⁻	(E1)		1.30×10 ⁻³	$\alpha(K)=0.000763 \ 11; \ \alpha(L)=0.0001131 \ 16;$

L

					I	Adopted Le	evels, Ga	<mark>mmas</mark> (contin	ued)
						<u>γ(</u>	²⁰³ Pb) (c	ontinued)	
E _i (level)	\mathbf{J}_i^{π}	E_{γ}^{\dagger}	I_{γ}^{\dagger}	E_f	${ m J}_f^\pi$	Mult.&	δ ^a	$\alpha^{\boldsymbol{b}}$	Comments
2((7.7.7	(7/2 0/2)+	205.8.10	0.72.16	2271.9	(7/2)+				$\begin{aligned} \alpha(M) &= 2.60 \times 10^{-5} \ 4 \\ \alpha(N) &= 6.58 \times 10^{-6} \ 10; \ \alpha(O) &= 1.311 \times 10^{-6} \ 19; \\ \alpha(P) &= 1.386 \times 10^{-7} \ 20; \ \alpha(IPF) &= 0.000385 \ 6 \\ \text{Mult.:} \ \alpha(K) &= p = 0.00066 \ 25 \ (1976\text{Ri}10). \text{ Value interfered} \\ \text{by that for the } 1802.3\gamma. \end{aligned}$
2007.7	(1/2,9/2)*	633.8 <i>10</i>	0.75 10 11.7 23	2034.1	$(7/2)^+$ $(7/2)^+$	E2+M1	1.9 4	0.026 4	$\alpha(K)=0.020 \ 4; \ \alpha(L)=0.0043 \ 5; \ \alpha(M)=0.00102 \ 10$ $\alpha(N)=0.000259 \ 25; \ \alpha(O)=5.1\times10^{-5} \ 5; \ \alpha(P)=4.8\times10^{-6} \ 7$ Mult.: $\alpha(K)\exp=0.020 \ 5 \ (1976Ri10)$.
		985.0 <i>10</i> 1074.8 <i>10</i>	2.6 <i>5</i> 2.5 <i>5</i>	1682.6 1592.8	$(7/2)^{-}$ $(7/2)^{-}$			0.01000	
		1120.2 10	6.2 13	1547.6	9/2*	(M1)		0.01330	$\alpha(K)=0.01095\ 16;\ \alpha(L)=0.00180\ 3;\ \alpha(M)=0.000419\ 6$ $\alpha(N)=0.0001065\ 16;\ \alpha(O)=2.13\times10^{-5}\ 3;\ \alpha(P)=2.29\times10^{-6}$ $4;\ \alpha(IPF)=6.3\times10^{-7}\ 3$ Mult : $\alpha(K)=0.018\ 8\ (1976R;10)$
		1464.8 <i>10</i> 1469 2 <i>10</i>	5.4 <i>10</i> 3 9 8	1203.0 1198.5	$(7/2)^{-}$ 9/2 ⁻				Mutt. u(R)cxp=0.010 0 (1970R110).
		1506.7 5	32.1 16	1161.0	(7/2) ⁻	E1		1.40×10^{-3}	$\alpha(K)=0.001026 \ 15; \ \alpha(L)=0.0001531 \ 22; \ \alpha(M)=3.52\times10^{-5} \ 5 \\ \alpha(N)=8.91\times10^{-6} \ 13; \ \alpha(O)=1.774\times10^{-6} \ 25; \\ \alpha(P)=1.87\times10^{-7} \ 3; \ \alpha(IPF)=0.0001748 \ 25 \\ Mult: \ \alpha(K)exp=0.0011 \ 3 \ (1976Ri10).$
		1634.0 <i>10</i> 1770.7 <i>10</i>	5.7 <i>10</i> 4.4 <i>10</i>	1033.76 896.9	7/2 ⁻ 9/2 ⁻				
		1847.3 5	100 5	820.26	7/2-	E1		1.29×10 ⁻³	$\alpha(K)=0.000731 \ 11; \ \alpha(L)=0.0001083 \ 16; \ \alpha(M)=2.49\times10^{-5} \ 4$ $\alpha(N)=6.30\times10^{-6} \ 9; \ \alpha(O)=1.255\times10^{-6} \ 18; \ \alpha(P)=1.328\times10^{-7} \ 19; \ \alpha(IPF)=0.000420 \ 6$ Mult.: $\alpha(K)\exp=0.00053 \ 9 \ (1976Ri10); \ \alpha(K)\exp=0.00074 \ 21 \ (1958No30).$
2713.3	9/2+	2668.2 <i>10</i> 325.5 <i>10</i> 665.0 <i>10</i> 1177.0 <i>10</i> 1510.4 <i>10</i>	0.52 <i>10</i> 0.74 <i>14</i> 1.22 <i>24</i> 1.25 <i>24</i> 4.0 <i>8</i>	0 2387.9 2048.6 1536.5 1203.0	5/2 ⁻ (9/2) ⁺ (9/2 ⁺) (7/2) ⁻ (7/2) ⁻				
		1552.6 10	17 3	1161.0	(7/2)-	(E1)		1.37×10 ⁻³	$\alpha(K)=0.000976 \ 14; \ \alpha(L)=0.0001454 \ 21; \ \alpha(M)=3.35\times10^{-5} \ 5 \ \alpha(N)=8.47\times10^{-6} \ 12; \ \alpha(O)=1.685\times10^{-6} \ 24; \ \alpha(P)=1.774\times10^{-7} \ 25; \ \alpha(IPF)=0.000206 \ 3 \ Mult.: \ \alpha(K)exp=0.00074 \ 5 \ (1976Ri10). Value interfered by that for the 1550.6\gamma.$
		1679.6 <i>5</i>	100 5	1033.76	7/2-	E1		1.32×10 ⁻³	$\alpha(K)=0.000856 \ 12; \ \alpha(L)=0.0001272 \ 18; \ \alpha(M)=2.92\times10^{-5} \ 4$ $\alpha(N)=7.40\times10^{-6} \ 11; \ \alpha(O)=1.474\times10^{-6} \ 21; $ $\alpha(P)=1.556\times10^{-7} \ 22; \ \alpha(IPF)=0.000297 \ 5$ Mult.: $\alpha(K)\exp=0.00073 \ 12 \ (1976Ri10).$

From ENSDF

	Adopted Levels, Gammas (continued)								
E _i (level)	\mathbf{J}_i^π	${\rm E_{\gamma}}^{\dagger}$	I_{γ}^{\dagger}	E_f	J_f^π	Mult. ^{&}	δ^{a}	$\alpha^{\boldsymbol{b}}$	Comments
2713.3	9/2+	1779.1 <i>10</i> 1816.4 <i>10</i> 1888.0 <i>10</i>	0.47 <i>10</i> 4.7 <i>10</i> 22 4	933.1 896.9 825.11	(5/2) ⁻ 9/2 ⁻ 13/2 ⁺	E2		0.00224	$\alpha(K)=0.001670\ 24;\ \alpha(L)=0.000273\ 4;\ \alpha(M)=6.36\times10^{-5}$
		1893.0 5	93 5	820.26	7/2-	(E1)		1.29×10 ⁻³	$\begin{aligned} &\alpha(\mathrm{N}) = 1.612 \times 10^{-5} \ 23; \ \alpha(\mathrm{O}) = 3.20 \times 10^{-6} \ 5; \\ &\alpha(\mathrm{P}) = 3.34 \times 10^{-7} \ 5; \ \alpha(\mathrm{IPF}) = 0.000214 \ 3 \end{aligned}$ $\begin{aligned} &\mathrm{Mult.:} \ \alpha(\mathrm{K}) \exp = 0.0015 \ 2 \ (1976\mathrm{Ri}10). \\ &\alpha(\mathrm{K}) = 0.000702 \ 10; \ \alpha(\mathrm{L}) = 0.0001039 \ 15; \\ &\alpha(\mathrm{M}) = 2.39 \times 10^{-5} \ 4 \end{aligned}$ $\begin{aligned} &\alpha(\mathrm{N}) = 6.04 \times 10^{-6} \ 9; \ \alpha(\mathrm{O}) = 1.205 \times 10^{-6} \ 17; \\ &\alpha(\mathrm{P}) = 1.276 \times 10^{-7} \ 18; \ \alpha(\mathrm{IPF}) = 0.000453 \ 7 \end{aligned}$ $\begin{aligned} &\mathrm{Mult.:} \ \alpha(\mathrm{K}) \exp = 0.00056 \ 9 \ (1976\mathrm{Ri}10). \end{aligned}$
2748.5	(11/2 ⁻)	2118.2 ^c 10 2527.2 ^c 10 2713.0 10 1928.2 10	2.0 4 0.34 7 0.27 7 100	595.1 186.6 0 820.26	3/2 ⁻ 3/2 ⁻ 5/2 ⁻ 7/2 ⁻	(E2)		0.00218	$\alpha(K)=0.001608\ 23;\ \alpha(L)=0.000262\ 4;\ \alpha(M)=6.10\times10^{-5}$
2753.6	(9/2)+	381.7 10	37 8	2371.8	(7/2)+	M1(+E2)	0.5 4	0.19 4	9 $\alpha(N)=1.546\times10^{-5} 22; \ \alpha(O)=3.07\times10^{-6} 5; \ \alpha(P)=3.21\times10^{-7} 5; \ \alpha(IPF)=0.000232 4$ Mult.: $\alpha(K)exp=0.0013 4 (1976Ri10).$ $\alpha(K)=0.15 4; \ \alpha(L)=0.028 4; \ \alpha(M)=0.0066 8$ $\alpha(N)=0.00167 21; \ \alpha(O)=0.00033 5; \ \alpha(P)=3.4\times10^{-5} 7$ Mult.: $\alpha(K)exp=0.15 3 (1976Ri10); \ K/L=5.0 15$ (1958No30)
		674.8 <i>10</i> 704.4 <i>10</i> 719.0 <i>10</i>	3.0 6 4.2 9 11 3	2078.8 2048.6 2034.1	$(11/2)^+$ $(9/2^+)$ $(7/2)^+$	M1(+E2)	0.7 7	0.032 10	$\alpha(K)=0.026\ 8;\ \alpha(L)=0.0046\ 12;\ \alpha(M)=0.0011\ 3$ $\alpha(N)=0.00027\ 7;\ \alpha(O)=5.4\times10^{-5}\ 14;\ \alpha(P)=5.7\times10^{-6}\ 16$
		951.6 <i>10</i> 1112.0 <i>10</i>	6.7 <i>13</i> 21 <i>4</i>	1802.3 1641.5	(7/2) ⁺ 9/2 ⁺	M1(+E2)	<1.3	0.011 3	Mult.: $\alpha(K)\exp=0.026\ 8\ (1976Ri10).$ $\alpha(K)=0.0090\ 22;\ \alpha(L)=0.0015\ 4;\ \alpha(M)=0.00035\ 8$ $\alpha(N)=9.0\times10^{-5}\ 19;\ \alpha(O)=1.8\times10^{-5}\ 4;\ \alpha(P)=1.9\times10^{-6}$ $5;\ \alpha(IPF)=3.9\times10^{-7}\ 7$ Mult.: $\alpha(K)\exp=0.010\ 3\ (1976Ri10).$
		1206.2 <i>10</i> 1550.6 <i>10</i>	4.4 9 23 4	1547.6 1203.0	9/2 ⁺ (7/2) ⁻	(E1)		1.37×10 ⁻³	$\alpha(K)=0.000978 \ 14; \ \alpha(L)=0.0001458 \ 21;$ $\alpha(M)=3.35\times10^{-5} \ 5$ $\alpha(N)=8.48\times10^{-6} \ 12; \ \alpha(O)=1.689\times10^{-6} \ 24;$ $\alpha(P)=1.778\times10^{-7} \ 25; \ \alpha(IPF)=0.000205 \ 3$ Mult.: $\alpha(K)\exp=0.00074 \ 5 \ (1976Ri10).$ Value interfered by that for the 1552 for
		1719.7 5	100 4	1033.76	7/2-	E1		1.31×10^{-3}	$\alpha(K)=0.000823 \ I2; \ \alpha(L)=0.0001222 \ I8;$

From ENSDF

L

					Adopted	l Levels, Gai	nmas (co	ntinued)	
						γ ⁽²⁰³ Pb) (co	ontinued)		
E _i (level)	J_i^π	E_{γ}^{\dagger}	I_{γ}^{\dagger}	\mathbf{E}_{f}	${ m J}_f^\pi$	Mult. ^{&}	δ^{a}	$\alpha^{\boldsymbol{b}}$	Comments
									$\alpha(M)=2.81\times10^{-5} 4$ $\alpha(N)=7.11\times10^{-6} 10; \ \alpha(O)=1.416\times10^{-6} 20;$ $\alpha(P)=1.496\times10^{-7} 21; \ \alpha(IPF)=0.000327 5$ Mult : $\alpha(K)\exp=0.00068 24 (1976Ri10)$
2753.6	(9/2)+	1856.5 <i>10</i> 2158.9 <i>10</i> 2567 <i>4 10</i>	8.5 <i>17</i> 1.1 <i>3</i> 0.87 <i>1</i> 7	896.9 595.1 186.6	9/2 ⁻ 3/2 ⁻ 3/2 ⁻				
2774.6	(7/2,9/2 ⁻)	880.0 ^c 10 1091.7 10 1576.0 10 1841.9 10 1908.2 10	0.37 17 19 4 36 7 29 6 100 19 72 14	1894.9 1682.6 1198.5 933.1 866.4	$(9/2^+)$ $(7/2)^-$ $9/2^-$ $(5/2)^-$ $5/2^-$				
2794.1	(9/2)+	322.0 <i>10</i> 406.3 <i>10</i>	28 6 69 14	2472.2 2387.9	$(9/2^+, 11/2^-)$ $(9/2)^+$	M1(+E2)	0.5 5	0.16 5	$\alpha(K)=0.13 4; \alpha(L)=0.023 4; \alpha(M)=0.0055 9$ $\alpha(N)=0.00140 23; \alpha(O)=0.00028 5; \alpha(P)=2.9\times10^{-5} 7$ Mult : $\alpha(K)=0.13 4 (1976R 10)$
		421.8 10	72 17	2371.8	(7/2)+	E2+M1	2.4 6	0.063 11	$\alpha(K)=0.046 \ 10; \ \alpha(L)=0.0130 \ 11; \ \alpha(M)=0.00322 \ 25 \\ \alpha(N)=0.0082 \ 7; \ \alpha(O)=0.000155 \ 13; \ \alpha(P)=1.27\times10^{-5} \\ 18 \\ Mult: \ \alpha(K)exp=0.046 \ 5 \ (1976Ri10)$
		1153.5 10	37.7	1641.5	$9/2^{+}$				Mult.: u(R)exp=0.040.5 (1970R110).
		1246.1 10	100 22	1547.6	9/2 ⁺	M1+E2	0.6 4	0.0086 14	α (K)=0.0071 <i>12</i> ; α (L)=0.00117 <i>18</i> ; α (M)=0.00027 <i>4</i> α (N)=7.0×10 ⁻⁵ <i>11</i> ; α (O)=1.39×10 ⁻⁵ <i>21</i> ; α (P)=1.48×10 ⁻⁶ <i>24</i> ; α (IPF)=1.33×10 ⁻⁵ <i>16</i> Mult.: α (K)exp=0.0072 <i>10</i> (1976Ri10).
2795.77	23/2+	634.5 [‡] 2	41.3 [‡] 22	2161.31	(21/2)+	M1		0.0577	$\alpha(K)=0.0474$ 7; $\alpha(L)=0.00792$ 12; $\alpha(M)=0.00185$ 3 $\alpha(N)=0.000470$ 7; $\alpha(O)=9.37\times10^{-5}$ 14; $\alpha(P)=1.006\times10^{-5}$ 15 Mult : From A ₂ =-0.08 6, A ₄ =0.31, 8 in ²⁰² Hg(α 3ny)
									and K/L=5.8 13 and α (K)exp=0.053 11 (1979Mc02); α (K)exp=0.054 6 (1977Li04) in ²⁰⁴ Hg(α ,5n γ).
		678.1 [‡] 2	7.2 [‡] 8	2117.62	$(19/2)^+$				
		851.9 [‡] 3	8.8‡ 8	1943.82	19/2+				
		873.8 [‡] 1	100 [‡] 5	1921.99	21/2+	M1+E2	1.4 3	0.0143 <i>19</i>	$\alpha(K)=0.0115 \ I6; \ \alpha(L)=0.00210 \ 24; \ \alpha(M)=0.00049 \ 6$ $\alpha(N)=0.000126 \ I4; \ \alpha(O)=2.5\times10^{-5} \ 3; \ \alpha(P)=2.5\times10^{-6} \ 4$ Mult., δ : From K/L=6.1 $I4$ and $\alpha(K)$ exp=0.011 I (1979Mc02). Other: $\alpha(K)$ exp=0.0056 II (1977Li04); Other: A ₂ =-0.02 5, A ₄ =0.05 8 in 202 Hg(α ,3ny).
2821.1	(7/2,9/2)+	252.2 10	12.5 25	2568.8	9/2+	E2+M1	1.4 4	0.36 8	$\alpha(K)=0.25 \ 8; \ \alpha(L)=0.082 \ 4; \ \alpha(M)=0.0204 \ 7$ $\alpha(N)=0.00516 \ 18; \ \alpha(O)=0.00097 \ 5; \ \alpha(P)=7.4\times10^{-5} \ 12$ Mult.: $\alpha(K)exp=0.26 \ 5 \ (1976Ri10).$

 $^{203}_{82} \mathrm{Pb}_{121}\text{-}12$

					Adopted	l Levels, Ga	mmas (co	ontinued)	
						γ ⁽²⁰³ Pb) (c	ontinued)		
E _i (level)	${ m J}^{\pi}_i$	E_{γ}^{\dagger}	I_{γ}^{\dagger}	E_{f}	${ m J}_f^\pi$	Mult. ^{&}	δ^{a}	$\alpha^{\boldsymbol{b}}$	Comments
2821.1	(7/2,9/2)+	432.5 10 449.9 10 1787.6 10 2000.7 10	16 3 4.6 11 23 5 100 21	2387.9 2371.8 1033.76 820.26	(9/2) ⁺ (7/2) ⁺ 7/2 ⁻ 7/2 ⁻	E1		1.30×10 ⁻³	$\alpha(K)=0.000642 \ 9; \ \alpha(L)=9.48\times10^{-5} \ 14;$ $\alpha(M)=2.18\times10^{-5} \ 3$ $\alpha(N)=5.51\times10^{-6} \ 8; \ \alpha(O)=1.098\times10^{-6} \ 16;$
2870.5	(7/2,9/2)+	157.3 <i>10</i>	9.1 <i>18</i>	2713.3	9/2+				α (P)=1.165×10 ⁻⁷ <i>17</i> ; α (IPF)=0.000530 8 Mult.: α (K)exp=0.00046 <i>21</i> (1976Ri10).
		202.2 10	11.4 23	2667.7	(7/2,9/2)+	E2+M1	1.4 <i>4</i>	0.70 14	α (K)=0.46 <i>15</i> ; α (L)=0.183 <i>5</i> ; α (M)=0.0461 <i>16</i> α (N)=0.0117 <i>4</i> ; α (O)=0.00218 <i>6</i> ; α (P)=0.000150 <i>19</i>
		498.5 10	100 18	2371.8	$(7/2)^+$	M1+E2	0.5 2	0.093 11	Mult.: α (K)exp=0.46 8 (1976Ri10). α (K)=0.076 9; α (L)=0.0133 12; α (M)=0.00314 25
		1068.3 <i>10</i>	91 <i>19</i>	1802.3	(7/2)+	E2+M1	3.4 9	0.0066 <i>6</i>	$\begin{aligned} &\alpha(N) = 0.00080 \ 7; \ \alpha(O) = 0.000158 \ 14; \\ &\alpha(P) = 1.65 \times 10^{-5} \ 17 \\ &\text{Mult.:} \ \alpha(K) \exp = 0.077 \ 8 \ (1976 \text{Ri}10). \\ &\alpha(K) = 0.00033 \ 5; \ \alpha(L) = 0.00098 \ 7; \ \alpha(M) = 0.000232 \\ &16 \end{aligned}$
									$\alpha(N)=5.9\times10^{-5} 4; \ \alpha(O)=1.16\times10^{-5} 8; \ \alpha(P)=1.15\times10^{-6} 10$ Mult.: $\alpha(K)\exp=0.0053 17 (1976Ri10)$. Value interfered by that for the 1070.1 γ .
2923.3	(21/2 ⁻)	1188.2 <i>10</i> 979.5 [#]	20 <i>4</i> 100 [#]	1682.6 1943.82	$(7/2)^{-}$ 19/2 ⁺	D			Mult.: From A ₂ =0.02 6, A ₄ =-0.04 7 in 202 Hg(α 3nz)
2949.12	29/2-	153.4 [‡] 2	37.3 [‡] 20	2795.77	23/2+	E3		15.50	B(E3)(W.u.)=0.0264 +6-7 α (K)=0.686 10; α (L)=10.87 17; α (M)=3.03 5 α (N)=0.772 13; α (O)=0.1381 22; α (P)=0.00629 10 Multiple K(L, α) 7 and α (L)=10 and α (L)=10 (L)
		1027 0‡ 3	100‡ 5	1021 00	21/2+	M4		0 1412	Mult.: K/L<0.7 and α (L)exp=9.9 13 (1979Me02); α (exp)=14.8 18 (1977Li04) in ²⁰⁴ Hg(α ,5n γ). B(M4)(W n)=1.15.8
		1027.0* 3	100. 5	1921.99	21/2	1714		0.1412	$\alpha(M4)(W.l.)=1.15 \ \delta$ $\alpha(K)=0.1054 \ 15; \ \alpha(L)=0.0270 \ 4; \ \alpha(M)=0.00672 \ 10$ $\alpha(N)=0.001721 \ 25; \ \alpha(O)=0.000338 \ 5; \ \alpha(P)=3.25\times10^{-5} \ 5$ Mult.: K/L=3.9 4 and $\alpha(K)\exp=0.106 \ 18 \ (1979Mc02); \ \alpha(K)\exp=0.12 \ 1 \ (1977Li04) \ in \ ^{204}Hg(\alpha,5n\gamma).$
2964.5?	$(7/2, 9/2, 11/2^{-})$	2144.2 10	100	820.26	$7/2^{-}$				

 $^{203}_{82}\mathrm{Pb}_{121}$ -13

					Adop	oted Levels,	, Gamn	nas (continued	1)
E_i (level)	\mathbf{J}_i^{π}	E_{γ}^{\dagger}	I_{γ}^{\dagger}	\mathbf{E}_{f}	\mathbf{J}_f^π	Mult.&	δ ^a	α b	Comments
3006.6	(9/2+,11/2)	212.5 <i>10</i> 618.7 <i>10</i> 927.7 <i>10</i> 2181.6 <i>10</i>	76 <i>15</i> 100 <i>20</i> 55 <i>11</i> 38 <i>7</i>	2794.1 2387.9 2078.8 825.11	$ \begin{array}{r} (9/2)^+ \\ (9/2)^+ \\ (11/2)^+ \\ 13/2^+ \end{array} $				
3016.7	(7/2,9/2)-	196.1 ^c 10 982.3 10 1214.3 10	9.7 20 20 4 25 5	2821.1 2034.1 1802.3	$(7/2,9/2)^+$ $(7/2)^+$ $(7/2)^+$				
		1983.1 <i>10</i>	100 20	1033.76	7/2-	M1+E2	43	0.0022 7	$\alpha(K)=0.0016 5; \alpha(L)=0.00026 8; \alpha(M)=6.0\times10^{-5} 18$ $\alpha(N)=1.5\times10^{-5} 5; \alpha(O)=3.0\times10^{-6} 9; \alpha(P)=3.2\times10^{-7}$ $10; \alpha(IPF)=0.00027 8$ Mult.: $\alpha(K)\exp=0.0016 7$ (1976Ri10).
3044.9	(7/2,9/2)+	2084.0 <i>10</i> 2196.3 <i>10</i> 331.3 <i>10</i> 657.9 ^c <i>10</i>	6.7 <i>13</i> 2.7 7 11.7 <i>23</i> 12.5 <i>25</i>	933.1 820.26 2713.3 2387.9	(5/2) ⁻ 7/2 ⁻ 9/2 ⁺ (9/2) ⁺				
		2011.4 10	100 20	1033.76	7/2-	E1		1.30×10 ⁻³	$\alpha(K)=0.000636 \ 9; \ \alpha(L)=9.39\times10^{-5} \ 14; \\ \alpha(M)=2.16\times10^{-5} \ 3 \\ \alpha(N)=5.46\times10^{-6} \ 8; \ \alpha(O)=1.089\times10^{-6} \ 16; \\ \alpha(P)=1.155\times10^{-7} \ 17; \ \alpha(IPF)=0.000538 \ 8 \\ Mult.: \ \alpha(K)exp=0.00052 \ 14 \ (1976Ri10).$
2690 5	$(21/2^{-})$	2224.8 10 740 5 $^{@}$ 5	9.3 <i>18</i>	820.26	7/2 ⁻	M1		0.0286	$\alpha(W) = 0.0217$ 5; $\alpha(L) = 0.00528$ 8; $\alpha(M) = 0.001221$ 18
5087.5	(31/2)	740.5 5	100	2949.12	27/2	1411		0.0580	$\alpha(\mathbf{N})=0.003175, \ \alpha(\mathbf{L})=0.003285, \ \alpha(\mathbf{M})=0.00123178$ $\alpha(\mathbf{N})=0.0003135; \ \alpha(\mathbf{O})=6.24\times10^{-5}9; $ $\alpha(\mathbf{P})=6.70\times10^{-6}10$ Mult : From A = 0.704, A = 0.2277 in ²⁰² Hg(g 2ng); $\alpha(\mathbf{P})=0.003135; \ \alpha(\mathbf{P})=0.003285, \ \alpha(\mathbf{P})=0.00123178$
		_							DCO= $0.64 \ 6 \ in \ ^{197}$ Au(209 Bi,X γ).
3910.3	(33/2 ⁻)	961.0 [@] 5	100 [@]	2949.12	29/2-	(E2)			Mult.: DCO=1.05 9 in 197 Au(209 Bi,X γ).
4054.7	(31/2 ⁻)	1105.6 5	100 @	2949.12	29/2-	M1		0.01375	$\alpha(K)=0.01132 \ 16; \ \alpha(L)=0.00186 \ 3; \ \alpha(M)=0.000434 \ 6$ $\alpha(N)=0.0001102 \ 16; \ \alpha(O)=2.20\times10^{-5} \ 3; \ \alpha(P)=2.37\times10^{-6} \ 4; \ \alpha(IPF)=3.43\times10^{-7} \ 9$ Mult : From A ₂ = 1.21 3 A ₂ = 0.24 8 in ²⁰² Ha(a 3na)
4457.2	(33/2 ⁺)	402.6 [@] 5	100 [@] 5	4054.7	(31/2 ⁻)	E1		0.01517	$\alpha(K) = 0.01249 \ 18; \ \alpha(L) = 0.00205 \ 3; \ \alpha(M) = 0.000477 \ 7 \\ \alpha(N) = 0.0001204 \ 18; \ \alpha(O) = 2.35 \times 10^{-5} \ 4; \\ \alpha(P) = 2.26 \times 10^{-6} \ 4 $
		546.7 [@] 5	98 [@] 5	3910.3	(33/2 ⁻)	(E1)		0.00794	Mult.: From A ₂ =-0.15 5, A ₄ =0.01 8 in ²⁰² Hg(α ,3n γ); DCO=0.62 4 in ¹⁹⁷ Au(²⁰⁹ Bi,X γ). α (K)=0.00658 10; α (L)=0.001049 16; α (M)=0.000243 4 α (N)=6.15×10 ⁻⁵ 9; α (O)=1.209×10 ⁻⁵ 18;

Adopted Levels, Gammas (continued)											
γ ⁽²⁰³ Pb) (continued)											
E _i (level)	\mathbf{J}_i^{π}	E_{γ}^{\dagger}	I_{γ}^{\dagger}	E_f	\mathbf{J}_{f}^{π}	Mult.&	α b	Comments			
4457.2	(33/2+)	767.8 [@] 5	48.8 [@] 24	3689.5	(31/2 ⁻)	E1	0.00408	α (P)=1.195×10 ⁻⁶ <i>18</i> Mult.: From A ₂ =0.12 <i>4</i> , A ₄ =-0.15 <i>6</i> ; J to J transition in ²⁰² Hg(α ,3n γ). α (K)=0.00339 5; α (L)=0.000527 8; α (M)=0.0001218 <i>18</i> α (N)=3.08×10 ⁻⁵ 5; α (O)=6.08×10 ⁻⁶ 9; α (P)=6.18×10 ⁻⁷ 9 Mult.: From A ₂ =-0.25 5, A ₄ =0.34 7 in ²⁰² Hg(α ,3n γ).			
5025.3	(37/2+)	568.1 [@] 5	100 [@]	4457.2	(33/2+)	E2	0.02177 <i>31</i>	α (K)=0.01592 22; α (L)=0.00443 6; α (M)=0.001090 16 α (N)=0.000276 4; α (O)=5.25×10 ⁻⁵ 7; α (P)=4.32×10 ⁻⁶ 6 B(E2)(W.u.)=0.053 +7-6 Mult.: From A ₂ =0.27 9, A ₄ =0.31 9 in ²⁰² Hg(α ,3n γ).			
5296.3 5571.3 6081.0 6554.0 6625.2 6700.4	(39/2) (41/2)	271 [#] 546 [#] 1055.7 [@] 5 1528.7 [@] 5 544.2 [@] 5 619.4 [@] 5	100 [#] 100 [#] 100 [@] 100 [@] 100 [@]	5025.3 5025.3 5025.3 5025.3 6081.0 6081.0	(37/2 ⁺) (37/2 ⁺) (37/2 ⁺) (37/2 ⁺) (39/2) (39/2)	(Q)		Mult.: DCO=0.86 8 in 197 Au(209 Bi,X γ).			

[†] From ²⁰³Bi ε , unless otherwise stated. [‡] From ²⁰³Pb IT decay (480 ms). [#] From ²⁰²Hg(α ,3n γ). [@] From ¹⁹⁷Au(²⁰⁹Bi,X γ).

& From $\alpha(K)$ exp, $\alpha(L)$ exp and sub-shell ratios in ²⁰³Bi ε decay, unless otherwise stated. ^{*a*} Using the briccmixing program and the $\alpha(K)$ exp and subshell ratios data in ²⁰³Bi ε decay, unless otherwise stated.

^b Additional information 2.

^c Placement of transition in the level scheme is uncertain.

 $^{203}_{82} Pb_{121}\text{--}15$

From ENSDF

 $^{203}_{82}$ Pb $_{121}$

Legend

Level Scheme (continued)

Intensities: Relative photon branching from each level

 $--- \rightarrow \gamma$ Decay (Uncertain)

 $^{203}_{82}\text{Pb}_{121}$

Legend

 $^{203}_{82}{\rm Pb}_{121}$

Adopted Levels, Gammas Legend Level Scheme (continued) Intensities: Relative photon branching from each level $--- \rightarrow \gamma$ Decay (Uncertain) 8848 131.64 22,40 24,5 24,5 Ś (9/2+,11/2-) 2472.2 \$ $\frac{(9/2)^+}{(7/2)^+}$ 2387.9 2371.8 41,100 239 2124 2124 $\frac{(21/2)^+}{(19/2)^+}$ õ 22 2161.31 24 2117.62 ŝ $(11/2)^+$ 2078.8 $\frac{1}{4} \frac{23}{60} \frac{1}{2} \frac{23}{60} \frac{1}{2} \frac{23}{10} \frac{1}{10} \frac$ v $(9/2^+)$ 2048.6 ¥. (7/2) 280-27.8 2034.1 I Т $19/2^{+}$ 1943.82 ¥ $\begin{array}{c} -1.80\\ -0$ V 1921.99 42 ns 3 $\frac{21/2^+}{(9/2^+)}$ ____ 1894.9 1 +1 582 582 15 142 582 15 142 15 10 1 1 T T I $(7/2)^+$ 1802.3 1 I ł I (7/2) 1682.6 $\frac{17/2^+}{9/2^+}$ 1 1663.62 1641.5 ______ ¥ 1 _____ • _|-1 1 j_ 1 1592.8 V ! • _**t**_' × <u>9/2</u>⁺ (7/2)⁻ 1547.6 1536.5 (7/2) 1203.0 ¥ <u>9/2</u>-(7/2) ¥ _ ***** 1198.5 1161.0 7/2-1033.76 (5/2) 933.1 ¥ ¥ 9/2-¥ 896.9 V 866.4 825.11 $\frac{5/2^{-1}}{13/2^{-1}}$ ¥ 6.21 s 8 7/2 820.26 3/2-595.1 3/2-186.6 5/2-0 51.92 h 3

 $^{203}_{82}{\rm Pb}_{121}$

Legend

Level Scheme (continued)

 $^{203}_{82} \mathrm{Pb}_{121}$