202 Hg(α ,3n γ) 1988Ro08,1977Sa18,1986Ja21

		History	
Туре	Author	Citation	Literature Cutoff Date
Full Evaluation	F. G. Kondev	NDS 177, 509, 2021	4-Jul-2021

1988Ro08: $E(\alpha)=53$ MeV; Target: enriched liquid mercury with a thickness of $\approx 200 \text{ mg/cm}^2$; Detectors: Ge and Ge(Li); Measured: $E\gamma$, $I\gamma$, $\gamma(\theta)$, $\gamma(\theta, H, t)$, $\gamma\gamma(t)$, $\gamma\gamma$ coin; Deduced: J^{π} , $T_{1/2}$, g-factor, configurations.

1977Sa18: $E(\alpha)=38.2$ MeV; Target: enriched liquid mercury with a thickness of $\approx 200 \text{ mg/cm}^2$; Detectors: three Ge; Measured: E γ , I γ , $\gamma(\theta,H,t)$; Deduced: J^{π} , $T_{1/2}$, g-factor, configurations.

1986Ja21: E(α)=41 MeV; Target: enriched up to 77% in ²⁰²Hg; Detectors: Ge(Li); Measured: E γ , I γ , γ (t), $\gamma\gamma$ coin; Deduced: J^{π} , T_{1/2}, configurations.

²⁰³Pb Levels

E(level) [†]	$J^{\pi \ddagger}$	T _{1/2}	Comments
0#	5/2-		
126.8 4	$1/2^{-}$		
186.7^{a} 4	3/2-		
393.9 - 4 820.3 $\frac{6}{5}$	3/2 7/2-		
820.3 5 $824 9^b 5$	$13/2^+$		
867.0 [@] 4	5/2 ⁻		
896.8 [@] 5	9/2-		
933.3 4	5/2-		
1641.2 7	$\frac{1}{2}$ 11/2 ⁺		
1663.2 [°] 7	$17/2^+$		
1921.4 ^d 8	21/2+	42 ns <i>3</i>	 T_{1/2}: From γγ(t) in 1977Sa18 using time spectrum produced by gating on the 258.2γ (below the isomer) and 239.6γ and 873.6γ (above the isomer) Other: 56 ns <i>1</i> from 258.2γ(t) and 838.3γ(t) in 1986Ja21. This value is assumed to be less accurate given the possible contribution from the J^π=(25/2⁻) isomer (T_{1/2}=122 ns 4). g-factor=-0.061 2 (1986Ja21) using in-beam time differential perturbed angular distribution technique. However, there is a possible contribution from the J^π=(25/2⁻) isomer (T_{1/2}=122 ns 4).
1943.3 ^d 8 2117.6 8 2160.9 9 2794.9 ^e 8 2922.8 10	19/2 ⁺ 19/2 ⁺ 21/2 ⁺ 23/2 ⁺ 21/2 ⁻		
2922.8+x ^g	25/2-	122 ns 4	Additional information 1. E(level): Based on the observed delayed component for the 979.5 γ , but no direct decay to the $J^{\pi} = (21/2^{-})$ level is observed. $T_{1/2}$: From 280 γ (t) and 979 γ (t) in 1988Ro08. g-factor=-0.059 3 (1988Ro08) using in-beam time differential perturbed angular distribution technique
2948.0 ^f 9	$29/2^{-}$	480 ms 7	$T_{1/2}$: From Adopted Levels. Other: 480 ms 40 from $\gamma(t)$ in 1977Sa18.
3688.7 ⁱ 10	31/2-		
3909.1 ¹ 10	$33/2^{-}$		
4456.2^{h} 10	$33/2^+$		
5024.5 ^{<i>j</i>} 11 5295.5 12 5570.5 12	37/2+		

202 Hg(α ,3n γ) 1988Ro08,1977Sa18,1986Ja21 (continued)

²⁰³Pb Levels (continued)

[†] From a least-squares fit to $E\gamma$ and by assuming $\Delta E\gamma$ =0.5 keV.

- [‡] From 1988Ro08.
- [#] Dominant configuration: $v(f_{5/2}^{-1})$.
- ^(a) Dominant configuration: $\nu(f_{5/2}^{-1}) \otimes 2^+$.
- & Dominant configuration: $v(p_{1/2}^{-1})$.
- ^{*a*} Dominant configuration: $\nu(p_{3/2}^{-1})$.
- ^b Dominant configuration: $\nu(i_{13/2}^{-1})$.

- ^c Dominant configuration: $v(i_{13/2}^{-1})^{*}$ ^d Dominant configuration: $v(i_{13/2}^{-1}) \otimes 2^{+}$. ^d Dominant configuration: $v(i_{13/2}^{-1}) \otimes 4^{+}$. ^e Dominant $v(p_{1/2}^{-1}, f_{5/2}^{-3}, f_{7/2}^{-1}, i_{13/2}^{-2}) \otimes 4^{+}$. ^f Configuration= $v(f_{5/2}^{-1}, i_{13/2}^{-2})$.
- ^{*g*} Configuration= $\nu(p_{1/2}^{-1}, i_{13/2}^{-2})$.
- ^{*h*} Configuration: $\nu(i_{13/2})$.
- ^{*i*} Configuration: $\nu(f_{5/2}^{-1}, i_{13/2}^{-2}) \otimes 2^+$. ^{*j*} Configuration: $\nu(i_{13/2}^{-3}) \otimes 2^+$.

$\gamma(^{203}\text{Pb})$

E_{γ}^{\dagger}	I_{γ}^{\dagger}	E _i (level)	\mathbf{J}_i^{π}	\mathbf{E}_{f}	\mathbf{J}_f^{π}	Mult. [#]	$I\gamma(delayed)^{\ddagger}$	Comments
(21.8)		1943.3	19/2+	1921.4	21/2+			E_{γ} : Not observed directly, but required by the 979 γ -258 γ coincidence relationship in 1988Ro08.
126.7	2.6	126.8	$1/2^{-}$	0	5/2-			
153.3	0.9	2948.0	29/2-	2794.9	23/2+	E3	57 3	E_{γ} : Other: 153.4 keV 2 (1977Sa18). Mult.: α(exp)=13.6 15 (1977Sa18).
174.4	9.8	2117.6	19/2+	1943.3	19/2+	(M1)	13 2	E_{γ} : Other: 173.9 keV 3 (1977Sa18). Mult.: A ₂ =0.16 6, A ₄ =0.14 8; J to J transition.
186.7	3.3	186.7	$3/2^{-}$	0	$5/2^{-}$			$A_2 < 0.$
217.7	≈1	2160.9	21/2+	1943.3	19/2+		92	E_{γ} : Other: 217.4 keV 3 (1977Sa18). A ₂ < 0.
^x 231.9 3	1.2 1						15 2	E_{γ} , I_{γ} : From 1977Sa18.
239.6	16.4	2160.9	21/2+	1921.4	21/2+	M1	129 6	E'_{γ} : Other: 239.3 keV 2 (1977Sa18). Mult.: A ₂ =0.20 6, A ₄ =0.01 8; $\alpha(\exp)=0.66$
258.2	71.9	1921.4	21/2+	1663.2	17/2+	E2	824 <i>33</i>	E_{γ} : Other: 258.4 keV <i>I</i> (1977Sa18). Mult.: From adopted gammas. A ₂ =-0.01 <i>6</i> , A ₄ =0.04 <i>8</i> .
264.4	4	1161.2	$7/2^{-}$	896.8	9/2-	M1		Mult.: $A_2 = -0.395$, $A_4 = 0.118$.
271 [@]	<1@	5295.5		5024.5	$37/2^+$			2 .
271.1	≈1 [@]	867.0	$5/2^{-}$	595.9	3/2-			
280.0	13.1	1943.3	$19/2^+$	1663.2	$17/2^+$	M1	40 5	E_{γ} : Other: 280.2 keV 2 (1977Sa18). Mult : $A_{2}=-0.295$: $A_{4}=-0.17.8$
403.0	5.6	4456.2	$33/2^{+}$	4053.4	$31/2^{-}$	E1		Mult: $A_2 = -0.15$ 5, $A_4 = 0.01$ 8.
454.5	≈1	2117.6	$19/2^+$	1663.2	$17/2^+$	21	10 2	E_{γ} : Other: 453.8 keV 3 (1977Sa18). A ₂ < 0.
546 [@]	≈1 [@]	5570 5		5024 5	$37/2^{+}$			
547	3.8	4456.2	33/2+	3909.1	33/2-	(E1)		Mult.: $A_2=0.12 4$, $A_4=-0.15 6$; J to J transition.
568.3	8.8	5024.5	$37/2^{+}$	4456.2	$33/2^{+}$	E2		Mult.: $A_2=0.27$ 9, $A_4=0.31$ 9.
596.0	≈5	595.9	$3/2^{-}$	0	5/2-			$A_2 = -0.115, A_4 = 0.278.$
634.2	7.3	2794.9	23/2+	2160.9	21/2+	M1	211 11	E_{γ} : Other: 634.5 keV 2 (1977Sa18). Mult.: A ₂ =-0.08 6, A ₄ =0.31 8.

$^{202}\mathrm{Hg}(\alpha,\!3\mathrm{n}\gamma)$ 1988Ro08,1977Sa18,1986Ja21 (continued)

$\gamma(^{203}\text{Pb})$ (continued)

E_{γ}^{\dagger}	I_{γ}^{\dagger}	E _i (level)	\mathbf{J}_i^{π}	E_f	\mathbf{J}_f^{π}	Mult. [#]	$I\gamma(delayed)^{\ddagger}$	Comments
677.3	3.2	2794.9	23/2+	2117.6	19/2+		37 4	E_{γ} : Other: 678.1 keV 2 (1977Sa18). A ₂ ≈0.
740.1	≈2.5	867.0	5/2-	126.8	$1/2^{-}$			
740.5	8	3688.7	$31/2^{-}$	2948.0	$29/2^{-}$	M1		Mult.: $A_2 = -0.70 4$, $A_4 = 0.22 7$.
746.6	4	933.3	$5/2^{-}$	186.7	3/2-			$A_2 < 0.$
767.4	4.1	4456.2	$33/2^{+}$	3688.7	$31/2^{-}$	E1		Mult.: $A_2 = -0.25 5$, $A_4 = 0.34 7$.
816.3	3.7	1641.2	$11/2^{+}$	824.9	$13/2^{+}$			$A_2 < 0.$
820.3	7.5	820.3	$7/2^{-}$	0	$5/2^{-}$	M1		Mult.: $A_2 = -0.05$ 7, $A_4 = -0.54$ 9.
824.9	82.8	824.9	13/2+	0	5/2-			E_{γ} : Other: 825.1 keV <i>1</i> (1977Sa18). $A_2 = -0.00$ 5.
838.3	100	1663.2	17/2+	824.9	$13/2^{+}$	E2	1000	E_{γ} : Other: 838.5 keV <i>l</i> (1977Sa18). Mult.: A ₂ =0.11 6. A ₄ =0.03 8.
851.3	≈3	2794.9	$23/2^{+}$	1943.3	$19/2^{+}$		45 <i>4</i>	E_{γ} : Other: 851.9 keV 3 (1977Sa18).
867.0	9.6	867.0	$5/2^{-}$	0	$5/2^{-}$			$A_{2}=-0.36$ 6, $A_{4}=-0.12$ 8.
873.6	23.2	2794.9	$23/2^{+}$	1921.4	$21/2^{+}$	M1	511 23	E_{γ} : Other: 873.8 keV <i>1</i> (1977Sa18).
								Mult.: $A_2 = -0.02$ 5, $A_4 = 0.05$ 8.
896.8	3.2	896.8	9/2-	0	$5/2^{-}$			$A_2=0.83$ 7, $A_4=0.15$ 8.
933.3	4	933.3	$5/2^{-}$	0	$5/2^{-}$			
961	≈6	3909.1	33/2-	2948.0	29/2-			
979.5	6.6	2922.8	$21/2^{-}$	1943.3	$19/2^{+}$	D		Mult.: $A_2=0.02$ 6, $A_4=-0.04$ 7.
1026.5	6.5	2948.0	$29/2^{-}$	1921.4	$21/2^{+}$		153 8	E_{γ} : Other: 1027.0 keV 3 (1977Sa18).
1105.6	4.3	4053.4	$31/2^{-}$	2948.0	29/2-	M1		Mult.: $A_2 = -1.21 \ 3$, $A_4 = -0.24 \ 8$.

[†] From 1988Ro08. [‡] From 1977Sa18. [#] From $\gamma(\theta)$ in 1988Ro08 and $\alpha(\exp)$ in 1977Sa18. [@] Multiply placed with undivided intensity. ^x γ ray not placed in level scheme.

 $^{203}_{82}{\rm Pb}_{121}$

²⁰²Hg(α,3nγ) 1988Ro08,1977Sa18,1986Ja21

 $^{203}_{\ 82} Pb_{121}$