Adopted Levels, Gammas

		Type	•	Author	History Citation	Literature Cutoff Date							
		Full Evalu	uation	F. G. Kondev	NDS 177, 509, 2021	4-Jul-2021							
Q(β ⁻)=-7725 12	e; S(n)=102	296 9; S(p)=13	38 <i>19</i> ; Q	(α)=7275 <i>4</i>	2021Wa16								
					²⁰³ Fr Levels								
				Cross R	eference (XREF) Flags								
$ \begin{array}{rcl} \mathbf{A} & {}^{207}\text{Ac } \alpha \text{ decay} \\ \mathbf{B} & {}^{169}\text{Tm}({}^{40}\text{Ar},6n\gamma) \end{array} $													
E(level) [†]	J^{π}	T _{1/2}	XREF			Comments							
0.0‡	9/2-	Wi11; π from μ ; systematics in neighboring (1980Ew03), 0.560 s 15 (2005De01) and 0.53											
				 s 2 (2005Uu02). Others: 0.7 s 3 (1967Va20), 0.5 s +9-2 (1994Le05). Eα=7130 keV 5 (1967Va20), 7135 keV 10 (1980Ew03), 7120 keV 25 (1994Le05), 7130 keV 6 (2005Uu02), 7132 keV 5 (2005De01) and 7072 keV 27 (2015We13). μ,Q: Using high-resolution collinear resonance ionization spectroscopy technique (2017Wi11,2019StZV). Other (the same group): μ=+3.73 4 (2014Ly01,2013Fl09). 									
				configuratio $\delta < r^2 > (^{203}F_1)$	n: $\pi(h_{9/2}^{+1})$. r, ²²¹ Fr)=-1.5302 fm ² 2 (-1.530 fm ² 8 (stat) 16 (stat)	(stat) <i>168</i> (syst) (2017Wi11). Other (the same yst) (2013E109 2014L y01)							
161.9? 4	$(7/2^{-})$		В	J^{π} : 161.9 γ to 9/2 ⁻ ; comparison with the neighboring ²⁰⁵ Fr isotope.									
configuration: Dominant $\pi(f_{7/2}^{+1})$.						ha naighharing ²⁰⁵ Er isotopa							
~557!	(3/2)		D	configuratio	π prime p	point $\pi(h_{\alpha\beta}^{+1}) \otimes 2^+$.							
361 6	1/2+	43 ms 4	В	$\% \alpha = 20.4$ (2)	2013Ja06); %IT=80 4	100							
				E(level): Fro J ^π : Favored decay to t mass regi	om 2021Ko07, based on α decay to ^{199m} At (J^{π} = to ^{195m} Bi (J^{π} =1/2 ⁺ ,2016 on.	$E\alpha$ and $E(^{199m}At)=244$ keV <i>I</i> . 1/2 ⁺ ,2018Cu02) and subsequent favored α Ba42); systematics of odd-A nuclei in this							
				T _{1/2} : Weigh when gati (2013Ja00 $E\alpha$ =7246 kc	the average of 41 ms +, ing on E α =6643 keV (¹⁹ 6). Other: 60 ms +30-20 eV 5 (2013Ja06), superse	5-4, deduced from 7256α(t) time spectrum, ⁹ At), and 45 ms 5 from recoil(203 Fr)-ce(Δt) 9 (2005Uu02). edes 7227 keV 8 (2005Uu02).							
426.0 [#] 10	13/2+	0.37 µs 5	В	J^{π} : 426 γ M2 to 9/2 ⁻ ; systematics of odd-A nuclei in this mass region. T _{1/2} : From recoil(²⁰³ Fr)-ce(Δ t) (2013Ja06).									
476.40 [‡] <i>10</i>	(13/2 ⁻)		В	J^{π} : 476.4 γ t configuratio	to $9/2^-$. n: Dominant $\pi(h_{0/2}^{+1}) \otimes 4^+$								
789.1? [#] 11	$(15/2^+)$		В	J^{π} : 362.5 γ t	to $13/2^+$.								
1035.00 [‡] 23	$(17/2^{-})$		В	J^{π} : 558.6 γ to (13/2 ⁻).									
1035.6? [#] 11	$(17/2^+)$		В	J^{π} : 245.5 γ to (15/2 ⁺), 611.1 γ to (13/2 ⁺).									
1672.7?‡ 4	(21/2 ⁻)		В	J ^{π} : 637.7 γ t configuratio	to $(17/2^{-})$. n: Dominant $\pi(h_{9/2}^{+1}) \otimes 6^{+}$								

Continued on next page (footnotes at end of table)

Adopted Levels, Gammas (continued)

²⁰³Fr Levels (continued)

[†] From a least squares fit to $E\gamma$. [‡] Seq.(A): Sequence based on the $J^{\pi}=9/2^{-}$ ground state. [#] Seq.(B): Sequence based on the $J^{\pi}=13/2^{+}$ isomer.

						$\gamma(^{203}\mathrm{Fr})$		
E _i (level)	\mathbf{J}_i^{π}	E_{γ}^{\dagger}	I_{γ}^{\dagger}	E_f	${ m J}_f^\pi$	Mult. [†]	α^{\ddagger}	Comments
161.9?	(7/2 ⁻)	161.9 4	72	0.0	9/2-	[M1]	3.64 6	$\alpha(K)=2.93 5; \alpha(L)=0.537 9; \alpha(M)=0.1280 20 \alpha(N)=0.0336 6; \alpha(O)=0.00750 12; \alpha(P)=0.001203 19; \alpha(Q)=6.72\times10^{-5} 11$
≈337?	(5/2 ⁻)	≈175 [#]		161.9?	(7/2 ⁻)	[M1]	2.92	$\alpha(K) \approx 2.35; \ \alpha(L) \approx 0.431;$ $\alpha(M) \approx 0.1026$ $\alpha(N) \approx 0.0269; \ \alpha(O) \approx 0.00601;$ $\alpha(P) \approx 0.000965; \ \alpha(Q) \approx 5.38 \times 10^{-5}$
361	1/2+	≈20 [#]		≈337?	(5/2 ⁻)	[M2]	6.78×10 ⁴	α (L) \approx 4.87 \times 10 ⁴ ; α (M) \approx 1.426 \times 10 ⁴ α (N) \approx 3.86 \times 10 ³ ; α (O) \approx 844; α (P) \approx 124.4; α (Q) \approx 5.32
		≈195 [#]		161.9?	(7/2 ⁻)	[E3]	6.56	$\alpha(K) \approx 0.400; \ \alpha(L) \approx 4.48;$ $\alpha(M) \approx 1.269$ $\alpha(N) \approx 0.336; \ \alpha(O) \approx 0.0702;$ $\alpha(P) \approx 0.00921; \ \alpha(Q) \approx 4.65 \times 10^{-5}$
426.0	13/2+	426 1	100	0.0	9/2-	M2	0.749 12	$\begin{aligned} &\alpha(\mathbf{K}) = 0.567 \; 9; \; \alpha(\mathbf{L}) = 0.1374 \; 22; \\ &\alpha(\mathbf{M}) = 0.0341 \; 6 \\ &\alpha(\mathbf{N}) = 0.00901 \; 15; \; \alpha(\mathbf{O}) = 0.00201 \; 4; \\ &\alpha(\mathbf{P}) = 0.000317 \; 6; \\ &\alpha(\mathbf{Q}) = 1.67 \times 10^{-5} \; 3 \\ &\mathbf{B}(\mathbf{M}2)(\mathbf{W}.\mathbf{u}.) = 0.099 \; + 16 - 12 \\ &\mathbf{Mult.: \; from \; K/(L+M+) = 3.3 \; 4} \\ &(2013Ja06). \end{aligned}$
476.40	$(13/2^{-})$	476.4 1	100	0.0	9/2-			
789.1?	$(15/2^+)$	362.5 [#] 3	100	426.0	$13/2^{+}$			
1035.00	$(17/2^{-})$	558.6 2	100	476.40	$(13/2^{-})$			
1035.6?	$(17/2^+)$	245.5 # 4	44 <i>13</i>	789.1?	$(15/2^+)$			

1672.7?

 $(21/2^{-})$

[†] From 2013Ja06.
[‡] Additional information 1.
[#] Placement of transition in the level scheme is uncertain.

611.1[#] 5

637.7[#] 3

100 41

100

426.0 13/2+

1035.00 (17/2-)

Adopted Levels, Gammas

 $^{203}_{87}\mathrm{Fr}_{116}$